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Intermittent dynamics and logarithmic domain growth during the spinodal
decomposition of a glass-forming liquid
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We use large-scale molecular dynamics simulations of a simple glass-forming system to investigate
how its liquid-gas phase separation kinetics depends on temperature. A shallow quench leads to a
fully demixed liquid-gas system whereas a deep quench makes the dense phase undergo a glass tran-
sition and become an amorphous solid. This glass has a gel-like bicontinuous structure that evolves
very slowly with time and becomes fully arrested in the limit where thermal fluctuations become
negligible. We show that the phase separation kinetics changes qualitatively with temperature, the
microscopic dynamics evolving from a surface tension-driven diffusive motion at high temperature
to a strongly intermittent, heterogeneous, and thermally activated dynamics at low temperature, with
a logarithmically slow growth of the typical domain size. These results elucidate the microscopic
mechanisms underlying a specific class of viscoelastic phase separation. © 2014 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4871624]

. INTRODUCTION

The behavior found in nonequilibrium kinetic phenom-
ena such as self-assembly,' pattern formation,> and phase
ordering kinetics® is typically much richer than the one en-
countered in equilibrium since a broader range of morpholo-
gies and a more complex relaxation dynamics can be ob-
served in systems that are far from equilibrium. While this
has been an active research area since many decades,>* the
field has seen a surge of interest in the last few years, since
progress in the synthesis of colloidal particles with complex
shapes and tunable pairwise interactions permits the self-
assembly of materials of ever growing complexity, i.e., sys-
tems that exist only if one masters their intricate formation
process.!

An important phenomenon occurring in nonequilibrium
systems is spinodal decomposition.>> The case of shallow
temperature quenches has been studied in great detail using
theory as well as experiments. Various regimes for the time
evolution of the average domain size have been predicted, and
observed in controlled experiments and simulations of sim-
ple fluids using a multitude of computational approaches.®'°
However, a much greater complexity can be expected if the
dense phase is not a simple liquid'' but is itself a “complex”
fluid.'? Of particular importance is the so-called “viscoelas-
tic phase separation”'>'# which is characterized by a strong
physical (mainly, rheological) asymmetry between the two
coexisting phases. For instance, one can study the phase sep-
aration between two fluids of unequal viscosities, or the co-
existence between a solid and a fluid phase. In the following,
we shall be concerned with a situation intermediate between
these two, where one component will evolve from being a
simple fluid to become a highly viscous liquid or an amor-
phous glass phase, thus giving rise to the competition between
the dynamics related to phase separation and the viscous re-
laxation of the dense phase.'>~!8
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The phase ordering process between a fluid and an amor-
phous solid can be expected to display a complex phe-
nomenology, since even the equilibrium bulk behavior of (ho-
mogeneous) amorphous glasses is not well understood.!®?°
When suddenly quenched from high temperature to below the
glass transition temperature, a glass-forming material evolves
slowly with time, undergoing a nonstationary aging dynamics
characterized by intermittent, heterogeneous dynamics occur-
ring far from equilibrium.?*->* It is not clear how this aging
glass state will evolve when it is present in the dense phase
of the complex bicontinuous structure formed during spin-
odal decomposition. Since a glass behaves mechanically like
a solid, one can expect that the bicontinuous structure formed
after the quench into the coexistence region becomes rigid,
and as a result will become kinetically arrested into a bicon-
tinuous porous structure.'® In that case, the glass-gas phase
separation would thus be a conceptually very simple way of
producing porous media. However, one can also expect that
the aging of the glass phase enables intermittent, thermally ac-
tivated microscopic rearrangements, which could potentially
make the porous material very fragile. To advance our under-
standing regarding these questions we present here the results
of our study concerning the interplay between phase separa-
tion kinetics and aging behavior resulting from deep quenches
at low temperatures in a simple glass-forming model.

Although our main motivation is to obtain a fundamental
understanding of the glass-gas phase separation Kkinetics,
there are also several experimental considerations that
motivate such a study. First, a number of colloidal systems
and protein solutions can be modelled as spherical particles
with nearly hard-core repulsion and longer-ranged attraction,
whose range and strength can be controlled. Thus, they
will undergo a phase separation in some part of the phase
diagram, which might possibly interfere with the colloidal
glass formation occurring at higher densities. Therefore, the
idea that, at least in some materials, gelation results from a

© 2014 AIP Publishing LLC
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kinetically arrested liquid-gas spinodal decomposition has
been explored in several experimental works.?>™>3 This
process has also been the subject of a number of numerical
studies, mostly aimed at reproducing realistic coarse-grained
pair interactions characterizing colloidal systems that were
specifically studied experimentally.?”-3*3° More recent
studies, in line with our own work,"> have considered more
diverse systems, such as the phase separation kinetics of a
coarse-grained model for buckyball Cg carbon molecules.*’
Moreover, bicontinuous disordered structures reminiscent of
the ones obtained in spinodal decompositions may also be
found in colorful bird feathers, and were recently interpreted
as incompletely phase separated polymeric glasses,*!:*?
thus demonstrating the broad relevance of the problem of
the glass-gas phase separation. Finally, even more complex
mixtures that are relevant to food processing® or solar cell
technology*¢ also exhibit kinetically arrested spinodal
decompositions, that might result from the fact that one
component becomes mechanically rigid.

There are several possible ways to study coarsening pro-
cesses by means of theory.® One efficient approach is to
study a coarse-grained model of a biphasic material using a
Ginzburg-Landau free energy functional of the two-phase sys-
tem complemented with phenomenological dynamical equa-
tions to incorporate relevant dynamical and mechanical prop-
erties of each phase.'>*” For simple fluids, this amounts to
studying model H in the classification scheme proposed by
Hohenberg and Halperin.* Possible extensions to viscoelastic
materials have indeed been considered in the past,'* and nu-
merically integrated to obtain insights into some specific vis-
coelastic phase separation processes. Still, it remains difficult
to faithfully incorporate in this approach the complex (typi-
cally highly nonlinear and history dependent) physical prop-
erties of real glass-forming materials in their aging regime.
Moreover, these coarse-grained equations cannot provide di-
rect information on the microscopic dynamics responsible for
the evolution of such bicontinuous materials.

To avoid this drawback we use here a microscopically
realistic description of the homogeneous glass using an atom-
istic model combined with molecular dynamics techniques.
We study its behavior during phase separation over a broad
range of control parameters, mainly density and temperature.
Indeed, numerous successful atomic-scale simulations of the
simpler situation of a liquid-gas spinodal decomposition have
been reported.®34%:4% In Ref. 50, a Lennard-Jones system was
quenched to low temperature in the coexistence region, and
the resulting crystal-gas phase separation was studied, but no
kinetic arrest was reported (see Ref. 51 for a recent related
experimental study). Simulations of realistic colloidal inter-
actions have been reported in Refs. 34, 35, 37, and 38, but the
quenches have been performed to very low temperatures and
hence particles aggregate nearly irreversibly and thermal fluc-
tuations play little role. Thus, a careful study of the crossover
regime between ordinary spinodal decomposition and irre-
versible aggregation is so far not available.

In the present work, we fill this gap and provide a de-
tailed numerical study of the phase separation kinetics be-
tween a gas and a glass-forming material at various tempera-
tures encompassing the glass transition of the bulk material.
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We describe how the phase separation kinetics changes quali-
tatively with temperature, the microscopic dynamics evolving
from the well-known diffusive motion driven by surface ten-
sion for shallow quenches, to a qualitatively different coars-
ening regime in which dynamics becomes strongly intermit-
tent, spatially heterogeneous and thermally activated at low
temperature, leading to logarithmically slow growth of the
typical domain size. A short account of our results has been
published. '’

Here we note that experiments in which the influence of
the glass transition on the spinodal decomposition has been
investigated have often (but not uniquely) considered systems
in which the interaction range is very short ranged, or systems
that are rather complex and hence difficult to simulate numer-
ically. In the following we will study a simple glass-forming
system of particles which interact via a potential that is not
very short ranged but whose glass-forming abilities are well-
documented in the literature. This approach is justified be-
cause our goal is to study generically how the glass transition
affects the liquid-gas phase separation rather than reproducing
the behavior observed in a particular set of experiments.

Our paper is organized as follows. In Sec. II, we define
the model, provide technical details about our numerical sim-
ulations, and discuss the phase diagram of the system and the
relevant parameters to be explored in this work. In Sec. III,
we provide a qualitative description of the temperature influ-
ence on the spinodal decomposition kinetics. In Sec. IV, we
present several structural characterizations of the bicontinu-
ous structures and in Sec. V we discuss the time evolution of
these structures, characterizing in detail the influence of tem-
perature on the growth law. In Sec. VI, we provide insights
into the microscopic mechanisms responsible for the coars-
ening structures at high and low temperatures. In Sec. VII,
we discuss the nature of the coexistence line below the glass
transition temperature, that was the subject of a recent contro-
versy in the literature. In Sec. VIII, we close the paper with
some perspectives for future work.

Il. MODEL AND PHASE DIAGRAM

In this section, we describe the details of the Lennard-
Jones model used in this study and provide some technical in-
formations about the numerical simulations. We then describe
the relevant features of the phase diagram of the model. Fi-
nally, we introduce a coarse-grained density field that will be
useful to the analysis of the simulations.

A. Model and technical details

To study the interplay between liquid-gas phase sepa-
ration and the liquid-glass transition we consider a simple
Lennard-Jones model for a liquid that was first devised to
study the dynamics of glass-forming materials in the bulk.>?
The model is a 80:20 binary mixture of Lennard-Jones par-
ticles with asymmetric interaction parameters chosen such
that the minority component frustrates, and therefore effi-
ciently prevents, the crystallization of the majority compo-
nent. The details of the interaction parameters are as in the
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original publication.>? In the following we use Lennard-Jones
units corresponding to the majority component, expressing
length in units of the particle diameter, o, and time in units
of T = /mo?/e, where m is the particle mass and € the en-
ergy scale of the Lennard-Jones interaction between particles
of the majority component.

We integrate Newton’s equation of motion using
LAMMPS>? for N particles enclosed in a volume V, work-
ing with periodic boundary conditions. We work at constant
number density, o = N/V, and adjust the temperature T us-
ing periodic velocity rescaling as a simple thermostatting pro-
cedure. The equations of motion are integrated using a stan-
dard velocity Verlet scheme with a discretization time step of
0.01 in reduced Lennard-Jones units.

In general it can be expected that the coarsening dynam-
ics does depend on the microscopic dynamics and hence also
on the nature of the thermostat. However, in the present work
we are mainly interested in the relaxation dynamics at low
temperatures, i.e., when the dynamics is slow. For this situa-
tion it is known that the details of the microscopic dynamics
do not influence the relaxation dynamics, apart from a global
scaling factor for time.’* Hence we expect that the results pre-
sented here are not influenced in a significant manner by the
nature of the microscopic dynamics. However, it is very likely
that the initial stage of the coarsening process will depend on
the microscopic dynamics since it has been found that the de-
tails of the structure at short times, i.e., when the first percolat-
ing structure is formed, is affected by the presence of hydro-
dynamics interactions.” However, we expect that on much
larger time scales these effects are no longer relevant, if T
is low, since due to the coarsening most of the particles will
be far away from the interfaces between the dense and low-
density domains and the gel is almost rigid (as demonstrated
below) and hence hydrodynamics will not be relevant.

To study the kinetics of phase separation, we first pre-
pare homogeneous samples at the desired density p, work-
ing at high temperature, 7= 3.0, well above the critical point
T, ~ 1.2, until thermal equilibrium is reached. We then in-
stantaneously quench the temperature 7 to the desired final
value, where the phase separation dynamics starts. In the fol-
lowing we will denote as the “age” of the system the time
elapsed since the quench to the final temperature. To improve
the statistics of our quantitative measurements and the robust-
ness of our findings, we have repeated simulations at each
state point using 5 to 10 samples, using independently pre-
pared samples at high temperatures.

Specific attention has been paid to system size. While nu-
merical studies of the glass transition in the homogeneous lig-
uid typically require simulating about N = 10° particles, we
have found that up to N = 10° particles are needed to obtain
results devoid of finite size effects during the phase separa-
tion. We have obtained most of our quantitative results using
N =3 x 10’ particles. Where appropriate, we will discuss the
N-dependence of our numerical results.

B. Coarse-graining the density

Since the bicontinuous structures produced during a spin-
odal decomposition are characterized by a typical length scale
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that is often much larger than the typical particle size, the local
structure of the fluid is probably not important. (We empha-
size that this does not imply that this local structure is nec-
essarily the same as the one of the bulk system, since, e.g.,
Royall et al.*® have found that in the gel phase certain locally
favored structures can become very frequent. However, the
presence of such structures will not affect the coarse-gaining
procedure used in the following.) Therefore, it will prove use-
ful to first coarse-grain the density field before quantifying
the spatial fluctuations of the obtained field.’”-> This coarse-
grained density will also be used to facilitate the visualiza-
tions of the particle configurations.

We start from the microscopic density field, which is de-
fined as

N
Pmicro(T) = Y 8(r — 1), ey
i=1

where r; is the position of particle i. Our first step is to dis-
cretize space by dividing it into boxes of linear size &y, so that
continuous space is now replaced by a discrete lattice contain-
ing V/Es sites. We consider a discrete density, p(r), defined
for discrete positions r located at the center of the boxes de-
scribed above, as

3 N
p(r) = D 0 — v — ), )

4 gl P
where 6(x) is the Heaviside function and a second coarse-
graining length, &, is introduced. Thus, the density at position
r takes into account all particles located in a sphere of radius
& centered at r.

Finally, we obtain the desired coarse-grained density p(r)
by using the following weighted average of p(r) over the
boxes surrounding r:

1
pr) = 2[2p(r) + p(r + &re.) + p(r + &pey) + p(r + §pe:)
+o(r —&pey) + p(r — §pey) + p(r — §pe;)]. 3)

Here e, is a unit vector in direction «.

The procedure described by Eqs. (2) and (3) is easy to
implement. It returns for each lattice site a coarse-grained
density field which is a much smoother function than the mi-
croscopic density field pmicro(r) in Eq. (1). The two coarse-
graining length scales &, and & can be adjusted by seeking
a compromise between having a smooth field without los-
ing too much spatial resolution. After having tried several
combinations,>® we have settled to the values &, = ¢/2 and
& = o, so that the lattice spacing is equal to the particle ra-
dius, while the density field is coarse-grained by taking into
account the immediate neighborhood of each particle.

Having defined the coarse-grained density field p(r), we
can now easily transform a set of particle coordinates from
a given particle configuration into the probability distribu-
tion of the coarse-grained density, p(0). In Fig. 1, we show
this distribution for two configurations obtained at density p
= 0.6. The first example is measured for 7= 1.75, where the
system is in the homogeneous fluid phase. As shown by the
dashed line, the distribution is well described by a Gaussian



164502-4 Testard, Berthier, and Kob

2.5]
2.0f

___1.5§
@/_ L
o

1.0f]

0.5F

0.0 S
0.0 05 1.0 15
p

n
o

FIG. 1. Probability distribution function of the coarse-grained density field
for p = 0.6 for both a homogeneous fluid configuration at 7= 1.75 and for a
phase separating system at 7= 0.1. The dashed lines are a fit with a Gaussian.

functional form with a maximum located at o0 = 0.6, as ex-
pected. More interesting is the second case at 7 = 0.1 where
the system is in the phase coexistence region. For this low
temperature, complete phase separation is not reached. The
distribution p(p) directly reflects this phase coexistence, since
it is characterized by two peaks. One peak is located at very
low density, representative of the gas phase (whose very small
density is not resolved in the scale chosen in Fig. 1). A second
peak corresponds to the dense phase and has a maximum near
p ~ 1.2 in this specific example. In between these peaks, the
distribution is nearly flat. We checked that this intermediate
density band corresponds to sites located near the interfaces
between the two phases where the density can take any value
comprised between the ones of the gas and fluid phases.

These observations can be used for two purposes: First,
by adjusting the peak at high density to a Gaussian distribu-
tion, we can directly measure the average density of the dense
phase and follow its evolution during a quench to the coexis-
tence region. This will be used for instance in Sec. VII to de-
termine the coexistence line at low temperature where com-
plete phase separation is not reached at long times, see also
the binodal curve in the phase diagram of Fig. 2.

A second application is the possibility to clearly distin-
guish, using o and p(p), between cells that belong to either of
the two phases, and those belonging to the interfaces. To this
end, we need to determine a threshold density delimiting the
dense phase from the gas phase. By careful visual inspections
of several configurations at various state points, we have
chosen p = 0.42 as giving the most faithful representation
of the particle configurations. Thus, we define from now on
cells with p > 0.42 as belonging to the fluid phase, and cells
with p < 0.42 as those forming the gas phase. Interfaces are
represented by cells that are in the dense phase and that have
at least one neighboring cell that is not in the dense phase.
We have used for instance these definitions to produce the
images shown in Figs. 4 and 5, where only cells belonging to
the interfaces were shown, using different colors for gas and
fluid phases.

C. Phase diagram

Using a combination of direct visual inspection of equi-
librium configurations coupled to more quantitative methods
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FIG. 2. Temperature-density phase diagram of the binary Lennard-Jones
mixture, showing the fluid, liquid, and glass homogeneous phases. The “glass
transition line” has been obtained from a mode-coupling analysis of the
glassy dynamics in the liquid phase.? The “binodal” line separates homo-
geneous from biphasic states. It is obtained by direct inspection of the con-
figurations for 7 > 0.4, and from the evaluation of the density in the dense
phase of biphasic states at lower temperatures. The “spinodal” line is taken
from Ref. 61.

to analyze the morphology of biphasic atomistic configura-
tions (as described above), we have determined the phase dia-
gram shown in Fig. 2, which we complement with some rele-
vant literature data. In this phase diagram, the control param-
eters are the temperature, 7, and the number density, p.

When density is high enough, roughly p > 1.2, the sys-
tem is always homogeneous. Similarly, the system is a ho-
mogeneous fluid at high temperature, 7 > 7T, ~ 1.2, which
corresponds to the critical temperature. At large density and
temperature, the system is a simple liquid, but its dynamics
slows down dramatically as temperature decreases, without
showing sign of crystallization. (Although we cannot exclude
the presence of small crystallites in the sample, we have seen
no evidence for them in our simulations.) Therefore, the sys-
tem undergoes a glass transition from a viscous liquid to an
amorphous glass as temperature is decreased at constant den-
sity. This process has been extensively studied before.’> To
set the typical temperature scale for the glass formation, we
include in Fig. 2 the density dependence of the temperature
obtained by analyzing the dynamics in the framework of the
mode-coupling theory of the glass transition.®® This temper-
ature was determined by a power-law fit to the growth of
the equilibrium relaxation time. It is known to represent a
useful temperature scale below which it becomes difficult to
reach thermal equilibrium in a standard numerical simulation.
Thus, for all practical purposes the system is in a homoge-
neous glass phase below the “glass transition line” shown in
the phase diagram of Fig. 2.

For temperatures below 7, ~ 1.2 and low enough densi-
ties, p < 1.2, the homogeneous system is unstable and phase
coexistence is observed, see Fig. 2. To determine the shown
binodal line we have performed quenches to a number of state
points (see Ref. 59 for details) and analyze whether the system
remains homogeneous at very long times, i.e. we determined
whether or not the distribution of coarse-grained density dis-
cussed in Subsection II B has only one peak. Very close to
the binodal, we paid attention to metastability and hysteretic
effects and performed additional numerical tests to assess the
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location of the binodal.’® Unfortunately, this direct method

becomes inefficient if temperature becomes small, 7 < 0.4,
because complete phase separation does not occur in the lim-
ited time window of our simulations, and hysteresis effects
become more pronounced at lower temperatures. In this re-
gion, therefore, the coexistence line has been determined by
performing quenches well within the coexistence region, and
by measuring the average density of the dense phase of the
biphasic configurations, using the method described above in
Sec. I B. We have made sure that both methods yield consis-
tent results in the vicinity of 7 = 0.4 where we switch from
one approach to the other.

Let us mention here that there are experimental studies in
which the phase separation dynamics of glass-forming sys-
tems have been studied and that there exists a controversy
about the nature and the behavior of the coexistence line be-
low its intersection with the bulk glass transition line. While
one group finds that the binodal line is little affected by its
intersection with the glass transition line,”%?” another group
reports, for a different system, that the density dependence of
the binodal evolves non-monotonically with decreasing tem-
perature, and becomes slaved to the glass transition line at
low temperatures.®3? These results show that, potentially,
the influence of the glass-transition on the dynamics of the
spinodal decomposition depends on the system considered but
they also might hint to the fact that the measurements of the
local density is experimentally difficult and hence prone to er-
ror. Therefore, it is of interest to study this influence within a
numerical simulation in which there is much less ambiguity
on the value of the local density.

lll. QUALITATIVE OVERVIEW OF RESULTS

In this section, we present a general overview of the dis-
tinct types of morphologies obtained in the course of our nu-
merical studies. Subsequently, we describe qualitative aspects
of the kinetics of the phase separation process at various state
points.

A. Biphasic morphologies at long times

We start by discussing the morphologies observed when
we quench the system to various state points in the coexis-
tence region of the phase diagram in Fig. 2. Figures 3 and 4
show that for a broad range of densities, 0.2 < p < 1.0, and for
low enough temperatures, 7 < 0.1, the morphologies obtained
at long times after the quench to the final temperature, t = 10*,
are bicontinuous gel-like structures. These particle configura-
tions are strongly reminiscent of the nonequilibrium colloidal
gels observed for instance using confocal microscopy.’®3! By
changing the density and the temperature, the typical length
scales characterizing these porous structures change and a
central goal of the present paper is to quantify these changes.

As can be noticed from the snapshots shown in Fig. 3, it
is not trivial to visualize the complex morphologies of porous,
bicontinuous materials in three dimensions. Therefore, to ease
the visualization, we have implemented a numerical method
to localize the two phases, and notably the interfaces be-
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FIG. 3. Snapshots of representative bicontinuous gel-like configurations ob-
tained at long time, t = 104, for T = 0.1 and densities p = 0.2 (left) and
p = 0.6 (right). For the sake of clarity, these snapshots show only a small
fraction (about 16%) of the total number of particles.

tween them. The procedure relies on the definition of a coarse-
grained density field, as explained above in Sec. II B. While
we primarily developed this procedure to quantitatively char-
acterize the numerically obtained bicontinuous structures (de-
scribed below), we find that it is also useful for visualization

FIG. 4. Representative configurations obtained at long times, t = 10*, and
various state points indicated in the figure. Left: Constant low temperature, T’
= 0.1, and various densities. Right: Constant intermediate density, p = 0.6,
and various temperatures. For all snapshots, periodic boundary conditions are
used, as is obvious for instance in the bottom right configuration.
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purposes, as demonstrated in Fig. 4 where now the entire sim-
ulation box is shown and the geometries are more easily visu-
alized than by showing particle configurations directly.

In the left column of the figure we show representative
configurations obtained at long times for a low temperature,
T = 0.1 (recall that the critical temperature is 7. &~ 1.2) and
various densities. For low density, p = 0.15, one obtains dis-
connected droplets of dense fluids that slowly coarsen with
time. For p > 0.2, a bicontinuous structure is obtained, with a
dense phase which occupies an increasing fraction of the to-
tal volume as density increases from p = 0.2, to p = 0.4 and
p = 0.8. For p > 1.0 (not shown), it is the low-density gas
phase which now occupies disconnected bubbles inside the
dense phase.

In the right column of Fig. 4, we show the evolution of
the final morphology obtained in our simulation for t = 10*
for quenches at fixed intermediate density, o = 0.6, and differ-
ent temperatures. While the phase separation proceeds rapidly
for shallow quenches, T'> 0.5, it is not complete for a deeper
quench at T = 0.4, see Fig. 4. (Note that the fact that in this
panel the final configuration is not the expected spherical ob-
ject might also be a finite size effect.) Decreasing further the
temperature, 7 < 0.2, one observes that even at the end of our
simulations an intricate bicontinuous structure remains appar-
ent, indicating that phase separation is far from being reached.
Even smaller domains are obtained at large times for very low
temperatures, 7 = 0.015. It is therefore clear that at low T
the phase separation kinetics is slowed down dramatically and
thus the typical domain size remains relatively modest even at
very long times. In Secs. IV-VI of the paper, we will charac-
terize these observations in a quantitative manner.

B. Kinetics of phase separation

We now make a qualitative description of the kinetics of
the phase separation process at various state points, as illus-
trated in the time series shown in Fig. 5. Each snapshot in a
given row is separated from the previous one by a factor of 10
in time.

The first column in Fig. 5 reproduces the typical time
evolution observed in molecular dynamics studies of the
liquid-gas spinodal decomposition.®'%*® For this density, p
= 0.4, the gas and liquid phases occupy similar volumes. The
temperature is 7 = 0.5, about half the critical temperature 7,
and thus the quench is not very deep. Using the phase diagram
in Fig. 2, we see that the liquid phase is still well above the
glass transition line. It thus behaves as a simple liquid, and so
the spinodal decomposition takes place with no interference
from the physics related to the glass transition. Indeed, one
observes that a bicontinuous structure forms over a very short
time, ¢ ~ 10, and then coarsens slowly with time. For a fi-
nite system as the one used in our numerical simulations, the
phase separation proceeds until a simple geometry is reached
with a flat interface separating the two phases. For an infinite
system, of course, spinodal decomposition would proceed in-
definitely in a scale-invariant manner.’

When temperature is decreased to 7= 0.3 as in the sec-
ond column in Fig. 5, the initial stages of the phase separation
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process are little affected and similar bicontinuous structures
are formed at early times. This is expected since dynamics
at short times mainly results from the well-known spinodal
instability:' The homogeneous state being fully unstable, a
density modulation develops with a dominant wavevector.
Therefore, temperature plays little role in this initial process.
However, the coarsening dynamics which follows is now
clearly affected by the temperature, since the final config-
uration is no longer a fully demixed system but remains a
complex bicontinuous structure. That the coarsening slows
down is reasonable since the self-diffusion constant of the
dense liquid phase decreases when temperature is lowered,
and is expected to be already very small at T = 0.3.°> On the
basis of these snapshots alone, it cannot be decided whether
the phase separation kinetics changes nature, or is simply
slowed down by a trivial factor in time which could for in-
stance be absorbed in a rescaling 7 with the diffusion constant.
We shall see later that such a simple rescaling is insufficient.

At even lower temperature, 7 = 0.1 (third column in
Fig. 5), the situation is much less ambiguous: While the phase
separation for early times, ¢ < 102, proceeds as before, the
slowing down is now dramatic, as demonstrated by the fact
that the two snapshots for r = 10% and ¢ = 10* are virtually
identical (at least to the eye). This implies that at this temper-
ature phase separation is nearly arrested at intermediate times,
and well before the typical domain size has reached the sys-
tem size. Finally the fourth column in Fig. 5 illustrates that a
similar slowing down of the phase separation is observed for a
broad range of densities, the example shown being p = 0.8 at
T = 0.1 where again the last two panels look identical but are
separated by one order of magnitude in timescales. These ob-
servations show that at low temperatures, the domain growth
is strongly slowed down, and indicate that the physics of the
coarsening process at low temperatures cannot be explained
by a simple rescaling of the time scale.

Below, we will establish that the phase separation is in
fact not fully arrested at low temperature, but that instead it
has changed nature in the sense that the observed growth law
depends qualitatively on temperature. Another point that will
be carefully considered is whether the near-arrest observed in
the low temperature images of Fig. 5 results from a finite size
effect, or if it survives in the thermodynamic limit.

IV. STRUCTURAL ANALYSIS

To quantify the above qualitative observations, we must
first characterizate the observed bicontinuous structures in
terms of quantitative observables and then determine how
these depend on time and temperature. In this section, we in-
troduce and compare several structural indicators, and show
that the so-called “chord length distribution” represents an
efficient choice to describe phase separating systems in our
particle-based numerical simulations.

A. Pair correlation function

Since we know at each timestep of the simulation the po-
sition of all the particles, an obvious choice of a microscopic
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FIG. 5. Time evolution of the phase separating system after a temperature quench at various state points indicated in each column. The selected timescales are
identical in the four column. From top to bottom, ¢ = 1.45, 13.2, 120, 1096, and 10%.

function to quantity the large scale structures is to record the
pair correlation function, defined as'!

1 N N
s =5 DO -0 —n@)), @

j=1 k=1

where the brackets represent an average over independent ini-
tial conditions and trajectories, and r;(#) is the position of
particle j at time ¢. Since our configurations are isotropic we
further perform a spherical average and divide by the phase
space factor 477 to obtain g(r = |r|, f). We have considered
also partial pair correlation functions, specializing the sums in
Eq. (4) to either one of the two species of the binary Lennard-

Jones mixture. However, since we are interested in the large-
scale structure of the configurations, we shall only discuss the
total pair correlation described by Eq. (4). Note that the pair
correlation function is frequently measured in colloidal exper-
iments using confocal microscopy techniques and hence is a
quantity that is experimentally accessible.

In Fig. 6, we show examples of the time evolution of
g(r, 1) for a quench to p = 0.6 and 7 = 0.1. By defini-
tion, g(r, f) is proportional to the probability to find a parti-
cle at distance r from a particle located at the origin. There-
fore g(r, f) describes for short distances the local amorphous
structure of the dense phase. Accordingly, it shows a pro-
nounced first peak corresponding to inter-particle distances
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FIG. 6. Time evolution of the pair correlation function g(r, 7) for a quench at
p = 0.6 and T = 0.1, and various logarithmically separated times. The inset
shows a zoom of the small amplitude oscillation around g(r, f) &~ 1 which can
serve as a measure of the average domain size (see main text for details).

(occurring at r & 1.0 and not shown in the figure), followed
by quickly decaying and smooth oscillations representative
of an amorphous structure that has no long-range crystalline
order.

The difference with a homogeneous liquid appears at
larger distances: While in a homogeneous liquid g(r, #) rapidly
converges to unity if r increases, for the heterogeneous phase
separating systems it shows oscillations around unity even at
large distances, as shown in Fig. 6. If ¢ is large, the first os-
cillation below 1 represents the average distance between a
particle taken at random in a dense domain to a neighboring
gas region. This physical interpretation suggests that a pos-
sible quantitative definition of the average domain size, L(),
can be obtained from g(L(), f) = 1. The data shown in Fig. 6,
however, indicate that the oscillations of g(r, ) around unity
at large r have a rather small amplitude, in particular if 7 is
large (see inset in Fig. 6). Our simulations have shown that the
above definition is physically sensible, in that it coincides well
with the typical domain size seen in the snapshots.>® However,
we also noticed that this measurement is prone to very large
statistical fluctuations, since the amplitude of the oscillations
in g(r, 1) is very small. As a result, the use of this method
to follow the time evolution of the phase separating systems
does require a very large numerical effort since highly accu-
rate pair correlation functions must be measured.

Additional visual inspections indicate that the large dis-
tance behavior of g(r, f) is in fact strongly influenced by a
small number of very large domains found in the system,
whose statistical properties strongly fluctuate from one run to
another. Therefore, although this two-point function is a sim-
ple structural correlation which corresponds also to the quan-
tity usually analyzed in theoretical calculations, our work sug-
gests that, at least for particle-based numerical simulations, it
does not represent the most practical choice to determine the
average domain size.

B. Structure factor

Since the static structure factor is the Fourier transform
of the pair correlation function,!! it carries a priori the same
physical content. It is, however, more easily accessible to ex-
periments using for instance light scattering techniques. It is
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FIG. 7. Time evolution of the static structure factor, Eq. (5), for a quench at
p = 0.6 and T = 0.1, and various logarithmically separated times. The lines
are fits using Eq. (6).

defined as

1 N N
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As for the pair correlation function, we perform a spherical
average to obtain S(g, f) = S(|q|, 1). In Fig. 7, we show the
results for the structure factor for the same set of parameters
as for the pair correlation function presented in Fig. 6. An
advantage of S(g, ) over the pair correlation function is that
the local structure of the dense phase at short-distance and the
inhomogeneous bicontinuous structure present at large scales
show up in S(q, ?) at very different wavevectors and thus can
easily be studied independently: While the local structure ap-
pears as a sharp peak near ¢ = 27/0 ~ 6 (not shown in
Fig. 7), the large domains at larger scale produce a signal at
much lower wavevectors, and it is this low-g range which is
shown in Fig. 7.

As reported in previous work on spinodal decomposi-
tion in fluids,%*® the static structure factor develops at low
wavevector a peak whose maximum intensity, S*(#), grows
and whose peak position, ¢*(¢), moves to lower g as time in-
creases. The peak position directly reveals the typical domain
size in the phase separating system, L(f) & 2 /q*(t), and the g-
dependence near the peak can be adjusted using the following
empirical formula:®?

. 3/q*)’

2+ (q/q")°
where the numerical factors are chosen such that S(g = g*, 1)
= §*. This formula interpolates in a simple manner between
the expected quadratic behavior at low ¢, S(g < ¢*, 1) « ¢7,
and Porod’s law describing the structure of the interfaces at
larger g, namely, S(g > ¢*, 1) o« ¢*, in a three dimensional
space. We have used Eq. (6) to fit the data shown in Fig. 7,
which gives us direct access to the growing length scale L(f)
characterizing the spinodal decomposition.

We have found that this approach is much more reli-
able to obtain a quantitative estimate of the average domain
size than using the function g(r, t), since the large-scale sig-
nal is better resolved in Fourier than in real space. Also, we
have noticed that fluctuations are less pronounced in S(g, f)
than in g(r, #), which implies a reduced numerical effort. The

S(g.1) =S (6)



164502-9 Testard, Berthier, and Kob

drawback of this simple measurement of the domain size is
however readily observed in Fig. 7. Since with increasing time
the peak position shifts to lower g, for large ¢ the peak ap-
pears at the border of the accessible wavevector range, which
is bounded at low ¢ by the system size, i.e., ¢ > 2T” This
is paradoxical at first sight, because the snapshots shown in
Fig. 5 seem to indicate that even at large times the average
domain size remains quite a bit smaller than the box size.

The reason for this is that the behavior of the structure
factor is, just as for the pair correlation function, strongly
dominated by the largest domains in the system. Therefore,
despite the several advantages mentioned above for the struc-
ture factor, it suffers from the practical drawback that accurate
measurements of this two-point correlation function require
system sizes that are considerably larger than the typical do-
main size. To circumvent this difficulty, we have turned to a
slightly more complicated observable, the chord length dis-
tribution, which we discuss in Sec. IV C. However, already
here we point out that the lengthscale 2rr/g* does track the ¢-
dependence of the length obtained from the chord length dis-
tribution (see Fig. 10).

C. The chord length distribution

The definition of the coarse-grained density field, given
by Eq. (3), allows to locate the position of the interfaces sep-
arating the two phases in the course of the phase separation
process. This information can then be used to measure the
distribution of the domain size in the bicontinuous structures.

To this end, we measure the so-called chord length distri-
bution (see Fig. 8).9% We define chords by two consecutive
intersections of a straight line with the interfaces present in
the system. In practice, we measure chords along the three
axis of the lattice used to coarse-grain the density, and mea-
sure the length ¢ of the segments belonging either to the gas
or to the dense phase. For this one has of course to take into
account the periodic boundary conditions.

By repeating this measurement over the entire lattice
used to determine the coarse-grained density, we obtain the
distribution of chord lengths P(¢), either for chords in the gas
phase, or for chords in the dense phase. Representative results
for the time evolution of these distributions after a quench
to p = 0.6 and T = 0.1 are shown in Fig. 9. These data in-
dicate that, apart the extremely short times when the bicon-
tinuous structure with well-defined interfaces has not yet de-
veloped, the two distributions are remarkably similar. They
show a maximum, which corresponds to the most probable
chord length in each phase, and beyond this length they decay
asymptotically with an exponential tail, as observed in many

FIG. 8. Chords are defined by the intersection of straight lines with the inter-
faces in the phase separating system. In this bidimensional example, the red
segments belong to the dense phase (yellow areas) and their length give the
chord length of the dense phase.
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gas

FIG. 9. Time evolution of the chord length distributions measured in the gas
phase (a) and in the dense phase (b) after a quench to p = 0.6 and 7= 0.1.

porous media.®®%* The sharp peak located near £ = L/2 for the
latest time in Fig. 9 is due to finite size effects. Such a clear
signature is useful, since it allows to distinguish between mea-
surements that are affected by finite size effects from those
which are not.

While either the location of the maximum or the inverse
of the slope of the exponential decay can be used as a good
quantitative definition of the average domain size, we have
decided to gather all the information stemming from the chord
length distribution into one single number, and defined the
average domain size as the first moment of the distribution:

L(t) = /oo de P, 1)e. 7)
0

In addition, although equivalent at long times, we find
that the distribution of chord length in the gas phase yields
more accurate results at short times than the one of the dense
phase, see Fig. 9. Therefore, in the rest of this paper we shall
use Eq. (7) for the chord length distribution in the gas phase
as our quantitative determination of the average domain size
characterizing our phase separating structures.

V. TEMPORAL EVOLUTION

In this section, we analyze the temporal evolution of the
phase separation process, and study how the kinetics depends
on the state point chosen for the quench, focusing in particular
on the influence of temperature.
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FIG. 10. Influence of system size on the growth of the average domain size
for a quench to p = 0.6 and T = 0.1, and system size between N = 8§ x 10°
and N = 10°. The data for L, (#) = 27/g* are deduced from the analysis of
the structure factor shown in Fig. 7. Note that these data have been multiplied
by 0.38 in order to match the length scale L() at intermediate times.

A. Finite size effects

One of the central question we wish to answer is whether
or not the phase separation kinetics is arrested at sufficiently
low temperatures. In Secs. III and IV, we have shown that
decreasing T does indeed lead to a strong slowing down of
the relaxation dynamics. Before one starts to characterize this
slowing down in a more quantitative manner it is, however,
important to recall that this relaxation dynamics does depend
to some extent on the size of the system and hence one has
to check the influence of these finite size effects. In particu-
lar, we find that coarsening stops earlier if the system size is
small. The reason for this is that the interfaces are frustrated
by the periodic boundary conditions which constrain and slow
down their motion. This remark is also experimentally rele-
vant for studies of phase separation in confined geometries.%
Therefore, before concluding on the possibility of kinetically
arrested phase separations, it is important to make sure that
our results do not depend crucially on the chosen system size.

To this end, we have performed a systematic study of the
influence of a finite system size on the growth of the aver-
age domain size. Some of these results are presented in Fig.
10 for a quench to p = 0.6 and T = 0.1. These results con-
firm that the average domain length reached at a given time
after the quench increases with increasing the system size.
However, we find that this effect does not influence the re-
sults in a strong manner. For the particular case shown in Fig.
10, the domain size increases by about 10% when N increases
by more than 2 orders of magnitude. Furthermore, we find no
N dependence within the error bars for the final sizes shown
in Fig. 10. Therefore, we have decided to perform most of our
studies using N = 3 x 10°, as a compromise between a very
large system, and a broad time window in which the dynamics
can be probed.

We point out that the magnitude of the finite size effects
does of course depend on the state point, i.e., on p and 7.
For example a quench that is made close to the critical point
will be affected more strongly by finite size effects. However,
since we are only interested in the static and dynamic prop-
erties of the system at low temperatures and intermediate and
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FIG. 11. (a) Influence of temperature on the domain growth for p = 0.6. Var-
ious power-laws expected to be present in coarsening systems are included as
well and one recognizes that only the r'/2-dependence is compatible with the
data at intermediate times. (b) Influence of the density on the domain growth
for T=0.1.

high densities, we can expect that the data shown in Fig. 10 is
representative for the study carried out here.

Another finding documented in Fig. 10 is that the growth
of the length scale extracted from the chord length distribu-
tion, Eq. (7), matches the one obtained from the length scale
extracted from the dominant wavevector g* in the static struc-
ture factor, Eq. (6). In the graph, we have multiplied the latter
by a constant factor 0.38 and find that at short and intermedi-
ate times the two curves do indeed track each other. Thus one
can conclude that the chord length distribution represents an
efficient and accurate way of extracting the average domain
size in phase separating systems.

B. Growth of domain size

We now study how the density and temperature for the
quench influence the kinetics of the phase separation process.
Our numerical results are summarized in Fig. 11.

We first discuss the influence of temperature for a given
density, p = 0.6, see Fig. 11(a). For a relatively shallow
quench, T > 0.4, the data shows an upward curvature in this
double logarithmic representation before it saturates at long
times at a system size dependent value, indicating complete
phase separation, i.e. at long times the data will be affected
by finite size effects (for p = 0.6 the size of the system is 80).
For lower temperatures the length scales probed in the times
accessed in the present simulations are significantly smaller
than the size of the box and hence finite size effects can be
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expected to be weak. For relatively early times, the domain
growth is approximated well by L(f) ~ ¢, crossing over to
a faster growth at larger times before the saturation. Such an
apparent square root time dependence has been found in ear-
lier work on the liquid-gas phase separation.®*%4° Its physi-
cal interpretation is that it represents an effective power-law
growth’ interpolating between two regimes, L(f) ~ '3 at short
times followed by L(f) ~ t at longer times, which are theoret-
ically expected power-laws controlling spinodal decomposi-
tion at early and late times.> These regimes have indeed been
separately observed in specifically dedicated simulations.’
Whereas the first regime corresponds to a surface-tension
driven domain growth limited by particle diffusion, the sec-
ond one is observed when hydrodynamics becomes relevant.
From the figure we recognize that within our simulations we
see neither the mentioned "> —law, not the ! —law. Hence we
can conclude that at the state points considered here neither
relaxation related to surface tension nor hydrodynamics are
uniquely controlling the dynamics. We do, however, have in-
dication that at intermediate times the observed time depen-
dence is compatible with a power-law with an exponent close
to 1/2.

The situation for deeper quenches, i.e. to lower temper-
atures, is more unusual. For 7 < 0.3 we observe at interme-
diate times again an algebraic domain growth with an expo-
nent around 1/2. Since, however, this time dependence crosses
over to one that is significantly slower, one cannot argue that
the exponent 0.5 is related to a cross-over behavior to the hy-
drodynamic regime. In fact, due to the very large viscosity of
the liquid at low T it must be expected that hydrodynamics
ceases to play a role.'> What is somewhat surprising is that at
long times the growth is even slower than the usual '3 law.
This indicates that at low temperatures surface tension is no
longer the main mechanism that drives the coarsening process
when the domain size becomes large and that instead a differ-
ent coarsening regime sets in. This result is in agreement with
the snapshots presented in Fig. 3 that show that at low tem-
peratures the interface can be rather rough (see also Fig. 13).

When temperature becomes very small, T < 0.2, the data
in Fig. 11 indicates that the domain growth at long times is
not well described by a power-law dependence, as the curves
appear to be bent in this log-log representation. This indicates
that at these low temperatures the growth is logarithmic, a
functional form that is found quite often in glassy systems.
For very low temperatures, 7 = 0.015 (which is about 1% of
the critical temperature), the domain size ceases to grow at
long times and becomes nearly constant within our statistical
accuracy.

The observation of very slow domain growth at low tem-
perature is quite generic, as demonstrated in Fig. 11(b), where
the density is varied for a constant low temperature 7' = 0.1.
The data for p = 0.2 up to p = 0.8 basically follow the same
time dependence, the rapid initial domain growth becoming
logarithmically slow at long times. In contrast to temperature,
density has a relatively simple influence on the typical do-
main size at long times, since to a first approximation denser
systems have just smaller domains (see Fig. 5).

The main conclusion of this section is that for deep
quenches, i.e. below the glass temperature of the dense phase,
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the nature of the coarsening process at long times becomes
qualitatively different from the standard liquid-gas phase sep-
aration. Instead of the usual power-laws we observe a log-
arithmically slow domain growth, and this domain growth
is only fully arrested in the limit of vanishing temperature.
This suggests that thermal fluctuations remain relevant and
control the slow domain growth during the liquid-gas phase
separation.

This qualitative change has two important consequences:
First, it indicates that the microscopic mechanisms governing
the phase separation are different at low temperature from the
standard surface tension driven diffusive dynamics observed
for shallow quenches. This will be the subject of Sec. VI be-
low. Second, it indicates the possibility that the gels formed by
spinodal decomposition and investigated in experiments®®?3
are not completely arrested but in fact age extremely slowly.

C. Energy density and area of interfaces

Before discussing the details of the microscopic dynam-
ics at low temperature, we present two additional observables
that are useful to characterize the dynamics of the system: The
energy density and area of interfaces.

The time evolution of these two quantities is shown in
Fig. 12 for the density p = 0.6 and various temperatures. The
area of the interface is here expressed as the fraction of the
lattice points that are considered as interface, see the coarse-
graining procedure described in Sec. II B. Both observables
are indicators related to the amount of interfaces in the sys-
tem, and therefore on how far the phase separation process
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FIG. 12. Time evolution of the surface of the interface (a) and potential en-
ergy (b) during the phase separation at p = 0.6 and various temperatures.
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has advanced. Indeed, the energy density or the amount of
topological defects are sometimes used as quantitative indica-
tors of the average domain size during coarsening processes.’

At short times the time dependence of these two quanti-
ties is of course very different: The energy density decreases
rapidly since it is dominated by the bulk behavior of the fluid
which must thermalize at low temperature after the sudden
quench from the high temperature. By contrast, because the
system must first create a large quantity of interfaces right af-
ter the quench from a homogeneous initial state, the amount of
interfaces is non-monotonous in that it first increases rapidly
at early times, before the coarsening process starts and the
surface decreases again, see Fig. 12(a).

For times ¢ > 10 the evolution of these quantities is more
similar, and follows indeed from similar physical considera-
tions. At large times, the area of the interface decreases slowly
as a result of the coarsening process which eliminates small
domains and generates larger ones. The energy density has a
more complicated behavior because it receives contributions
from both the energetically costly interfaces as well as from
the bulk of the dense domains. Since both contributions de-
crease slowly with time, the energy density also decreases
with increasing z. If one assumes that interfaces dominate the
time dependence at long times, then the energy density should
display a time dependence that is very similar to the one of the
fraction of interfaces, as confirmed by the data in Fig. 12 at
high T. However, since we have seen that at low temperatures
the size of the domains is not governed by the surface tension
(cf. discussion of Fig. 11) one can expect that at low T the
time dependence of the energy and of the surface are not the
same, and below we will see that this is indeed the case.

The time dependence of the surface as well as of the en-
ergy depends strongly on temperature in that the relaxation
becomes slower, in agreement with our findings regarding the
size of the domains. Figure 12(a) shows that the amount of
surface at a given (large) time increases monotonically with
decreasing temperature, showing that at low T the system has
smaller domains and their surface is rougher. At the lowest
temperatures the time dependence of the surface is compati-
ble with a logarithmic decay, in agreement with our results on
the growth of the domain sizes.

The increasing fraction of small domains at low temper-
atures has an implication on the value of the energy at a given
(large) time: Since the energy of the dense phase decreases
with 7T, one finds that for intermediate temperatures the en-
ergy at large t decreases if T is lowered. However, at even
lower T, the system starts to have so many small domains that
are rough and that cost energy, that the overall energy starts
to increase again, leading to a non-monotonic 7' —dependence
of that quantity (see Fig. 12(b)).

VI. INTERMITTENT DYNAMICS AT LOW
TEMPERATURES

In this section we provide evidence that the qualitative
change in the growth law at low temperatures is also accom-
panied by a qualitative evolution of the microscopic mecha-
nisms driving the coarsening dynamics.

J. Chem. Phys. 140, 164502 (2014)

A. How domains coarsen

If temperature is not very low, the microscopic dynamics
of coarsening is well understood. At early times of the spin-
odal decomposition, a bicontinuous structure emerges rapidly,
which is characterized by a well-defined length scale that re-
flects the intrinsic instability of the homogeneous system af-
ter the quench into the coexistence region. Moreover this bi-
continuous structure is characterized by curved interfaces that
store a large amount of potential energy. In this case, surface
tension is the main driving force for the phase separation pro-
cess that follows the spinodal instability, and domains coarsen
in order to reduce the curvature of the interfaces and their to-
tal area. At the microscopic scale, this process can proceed
because particles can easily move within the dense phase in
response to this driving force.

At low temperature, we observe that surface tension be-
comes unable to advance the coarsening process, because the
dense phase is now an (aging) glassy material that has a very
high viscosity and is in fact visco-elastic.’>% As a conse-
quence, surface tension is no longer able to relax in a signif-
icant manner the curved interfaces formed during the phase
separation process.

In a recent experimental work on attractive colloids,> it
has been found that particles located near the interface of the
bicontinuous structure have a mobility which is larger than the
one of particles in the bulk of the domains. Therefore, it has
been concluded that surface-enhanced mobility provides an
important contribution to the dynamics for deep quenches.®
We have investigated whether this effect is also relevant for
our simulations. First of all we point out that, due to ener-
getic considerations, it is more favorable for the system to
put the A particles at the interface (since the A-B interac-
tion is stronger than the A-A interaction). Thus such a micro-
segregation would a priori give rise to an enhanced mobil-
ity of the particles at the interface. However, despite this we
have not found that for deep quenches particles at the inter-
faces are significantly more mobile than the ones inside the
dense phase. This result is in fact consistent with earlier stud-
ies of the present binary Lennard-Jones in inhomogeneous
geometries.®” While particles near surfaces are in general in-
deed more mobile than particles in the bulk at equivalent ther-
modynamic conditions, one should also notice that this dy-
namical difference is usually only relevant in the narrow range
of temperatures which corresponds to the interval between
bulk and surface glass temperatures, where bulk diffusion is
already arrested while surface diffusion is not. The quench
depth should therefore be specifically adjusted to have condi-
tions for which surface-enhanced diffusion is as effective as
in the experiments of Ref. 33.

Although we do find in our low-temperature simulations
that slow coarsening persists, this domain growth is driven
neither by surface tension nor by interface-enhanced particle
diffusion. Instead, the complex bicontinuous structure formed
at long times continues to evolve by intermittent breaking
of thin necks, which in turn allows the structure to relax
further.’®% We illustrate this process in the time series of
Fig. 13, where the most mobile particles over the considered
time window are highlighted. Visual inspection shows that for
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FIG. 13. Time series showing the breaking of two thin domains in a quench
at p = 0.4, T=0.1. Only a small fraction (16%) of the entire system is shown
for clarity, and about 3000 particles with the largest mobility are highlighted
(light color). These are located near the breaking points (encircled). The first
breaking occurs between ¢ = 50 and 1100, the second one between ¢ = 1100
and 1300, and the third between ¢ = 1100 and 2100.

this low temperature, T = 0.1, particles located at the interface
of a dense domain are nearly arrested. A second observation
is that the interfaces are relatively rough, which confirms that
surface tension is no longer efficient at low temperatures, and
that it is unable to relax interfaces that are very curved. A
third observation is that the time evolution of the overall struc-
ture occurs when thin domains suddenly break, which occurs
three times in this specific time series, see Fig. 13. These sud-
den events are followed by a slower visco-elastic relaxation
of the structure, which eventually gives rise to an increase of
the typical domain size.

The reason for this type of relaxation behavior is re-
lated to the fact that domains in the bicontinuous structure
are under mechanical tension. The stress field present in the
glassy structure can be expected to be very inhomogeneous
because this is already a characteristic feature in bulk amor-
phous solids®® and the presence of a complex geometry will
certainly increase this heterogeneity. Due to these stress inho-
mogeneities and the thermal fluctuations the system will re-
lease the stored mechanical stress by breaking domains. These
events presumably occur most likely at the weak spots of the
structure, i.e., where domains are thin or highly stressed. Once
a domain is broken, the system can relax a certain amount
of mechanical constraint, and it will reach a new metastable
configuration, until another breaking event will occur. This
interpretation suggests that it should become more and more
difficult to find weak spots to break in the system, or equiva-

J. Chem. Phys. 140, 164502 (2014)

lently, that energy barriers that have to be crossed during these
events grow with time. This interpretation naturally accounts
for a logarithmic growth law for the domain size, as is typi-
cally found in many systems with quenched disorder.”®

Interestingly, the qualitative description of the coarsen-
ing process occurring in our simulations at low temperatures,
which results from the intermittent release of mechanical con-
straints is reminiscent of the physical scenario put forward
by Cipelletti and co-workers to account for the unusual ag-
ing dynamics observed via light scattering in a number of soft
materials.?* 717> These researchers put forward the idea that
some “internal stress” is stored and intermittently released
during the aging process, thus giving rise to the particular re-
laxation dynamics found in these systems. This analogy sug-
gests that it would be very interesting to study scattering func-
tions for the present system, and compare the results with
the behavior reported experimentally using light scattering
techniques.

Finally, we mention that the observed behavior on the re-
laxation dynamics is qualitatively similar to the one described
by Koyama et al.®® for a polymeric system. In that work,
the authors have shown that, depending on the depth of the
quench, the relaxation dynamics changes from “viscoelastic”
to a “fracture phase separation.” Our findings suggest thus the
possibility that a similar change can occur in simple glass-
forming system as well.

B. Intermittent dynamics in space and time

In this subsection, we provide further evidence for a qual-
itative change in the microscopic dynamics between shallow
and deep quenches. In Sec. VI A, we have argued that at low T
coarsening proceeds by intermittent domain breaking. How-
ever, even for shallow quenches domains grow and thin do-
mains can break. The main difference between the two situa-
tions is that at low temperatures, mobility is highly localized
in space and time, and domain breaking appears very rarely,
whereas at high T no such localization is observed.

To identify the most mobile particles we have proceeded
as follows: We have picked a length scale of the domains
Ly such that the system shows already well developed do-
mains, i.e., Ly is not too small. To this value of Ly corresponds
(for a given value of p and T) exactly one time fy such that
L(ty) = Ly. Now we consider a slightly larger domain size
L, > Ly. To L, corresponds a time ¢;. Hence we can look at
the displacement field of the particles between times fy and #|
and therefore see which type of motion makes that the domain
size grows from L to L;. The values #y and #;, as well as the
corresponding values for Ly and L; are given in the caption of
Figs. 14 and 15.

This difference is illustrated in Figs. 14 and 15, where
the 1% most mobile particles over different time intervals are
marked by spheres, and their displacements are represented
by a vector. The rest of the particles are represented by small
dots. The time intervals are chosen so that the images are
taken for comparable evolutions of the average domain size.
As a consequence, the times are much shorter at the high
temperature (Fig. 14) than at the lower one (Fig. 15), and time
windows become broader with increasing time in Fig. 15.
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FIG. 14. Most mobile particles (1% of all particles, shown as light green
spheres) and their displacements (shown as dark red cylinder) for a given
time interval, ¢ € [38.5, 40.5] after a quench to p = 0.4 and T = 0.5. These
times correspond to a typical size of domains of Ly = 14.3 and L; = 14.64,
respectively.

At high temperature (7T = 0.5, Fig. 14), the most mobile
particles appear anywhere in the system (both at interfaces
and in the bulk domains where mobility is high) and their dis-
placements are essentially uncorrelated. This picture is rep-
resentative of shallow quenches and indicates that dynamic
heterogeneity at the particle scale is not very relevant for or-
dinary phase separations.

This behavior is in strong contrast with the one found at
low temperature, T = 0.1 in Fig. 15. In this figure, we show
mobile particles and their displacements over three different
time intervals of the same run, at early, intermediate, and large
times. Mobile particles are now clearly clustered, and directly
reveal the locations in the system where the geometry of the
domains has changed over a given time interval. Furthermore,
one recognizes that these mobile particles also exhibit highly
correlated displacements.

Another remarkable feature is that from one image to the
next, clusters of mobile particles appear at different locations,
which directly reveals that domain breaking is a spatially and
temporally intermittent process. Finally, we notice that mobile
particles almost never appear in the interior of the domains,
in contrast to the behavior found at high temperatures. Such
bulk-like relaxation appears only at very long times, because
domain breaking becomes less and less probable as the aging
proceeds.

The findings in this subsection suggest that phase sep-
aration kinetics for deep quenches is highly intermittent in
space and time, and should therefore display a high degree of
dynamic heterogeneity. It would be interesting to apply the
tools developed to study spatially heterogeneous dynamics in
glassy materials’® to quantify further the present observations.

VIl. RELATION BETWEEN BINODAL
AND GLASS LINES

In this last section, we provide more details and discus-
sion about the determination and behavior of the coexistence
line at low temperatures in the phase diagram of Fig. 2.

FIG. 15. Most mobile particles (1% of all particles, shown as light green
spheres) and their displacements (shown as dark red cylinders) for three given
time intervals, ¢t € [209, 363], t € [1905, 3311], r € [5754, 10000] (top to
bottom), after a quench to p = 0.2 and T = 0.1. These times correspond to
a typical size of domains of Ly = 13.04, L; = 13.74 (top), Lo = 15.28, L;
= 15.67 (middle), and Ly = 16.0, L; = 16.35 (bottom). The small dots are
the remaining 99% of the particles.

Why is this an issue? In the phase diagram of Fig. 2, the
binodal line crosses the glass transition line near the point
p ~ 1.15 and T =~ 0.35. This implies that for temperatures
lower than T = 0.35, we cannot determine the coexistence
line using standard equilibrium simulations, and we have to
rely on nonequilibrium protocols to extend the binodal down
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to T = 0. Therefore, the low-temperature extension of the co-
existence line changes nature at low temperature since it is
not uniquely defined anymore but is instead dependent on the
protocol.

Because of this difficulty, two experimental groups have
investigated this issue in more detail.”*?® In both cases, the
measurements proceed as follows: The glass-forming system
is first quenched into the coexistence region where phase sep-
aration takes place, and becomes nearly arrested on experi-
mental timescales. Then the volume occupied by the dense
phase is determined experimentally, from which the density
is determined. Different methods have been used to mea-
sure the evolution of this density as a function of quench
depth, and (for the two systems considered) two qualita-
tively distinct results have been found, as mentioned above in
Sec. I C.

For the case of our numerical simulations, we have fol-
lowed a similar approach to determine the coexistence line.
After quenching the system to a given state point we deter-
mined the density of each phase using the coarse-grained den-
sity field described in Sec. II B. Following this procedure,
we obtained for each configuration both the volume occupied
by the dense phase as well as the number of particles it con-
tains, from which the density is easily deduced. Note that for a
given temperature, the density of the dense phase will depend
in principle on both the time spent since the quench, and on
the total density of the system at which the quench has been
performed.

In Fig. 16(a), we demonstrate that after the quench the
measured density converges very rapidly to its asymptotic
value. This is an important result since it shows that the het-
erogeneous nature of the configurations does not preclude a
quantitative determination of the density of the glass phase. In
other words, the time dependence of the glass density is not
an issue. Therefore, for a given density, here p = 0.6, we can
vary the quench depth and obtain the temperature evolution of
the glass density, which we can include in the p — T phase di-
agram, see Fig. 16(b). In this representation, we focus directly
on the relevant temperature region below the intersection with
the glass transition line. We observe that the coexistence line
determined using quenches at p = 0.6 changes slightly its cur-
vature at low temperatures, perhaps as a result of crossing the
glass transition line, but it is clearly very different from the
glass line itself. Therefore, our results are closer to the ones
of Ref. 26, which determine the density of the glass phase us-
ing confocal microscopy and a postprocessing which is not
very different from ours. We note that the different results re-
ported in Ref. 28 use a more indirect technique to measure the
glass density and the coexistence line.

In Fig. 16(b), we also document the influence of the
quench density on the measured coexistence line, varying
the quench density over a broad range between p = 0.2 and
p = 0.8. We find that all densities produce very similar co-
existence lines, with differences in density of about 2% be-
tween the two extremes, the larger quench density producing
a smaller glass density.

Finally, we compare the results for the coexistence
line with a very different numerical approach. In Ref. 74,
the present Lennard-Jones binary mixture was used to study
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FIG. 16. (a) Density of the dense phase during phase separation at p = 0.6
and various low temperatures. (b) Coexistence lines obtained from quenches
at various densities are reported in the phase diagram, together with the glass
transition line, and the glass density obtained in zero pressure homogeneous
glasses in Ref. 74.

the influence of cooling rates on the structure of the glass.
These quenches were done at constant pressure, which was
zero. Thus, the produced homogeneous glass configurations
were adjusting their densities to maintain a zero pressure, and
these densities were recorded numerically. We have included
the temperature evolution of these densities in Fig. 16(b) as
well and we see that they compare very well with our deter-
mination of the coexistence region. This is expected because
the dense phase in our phase separating systems coexists with
a gas phase with vanishing pressure. This comparison seems
to confirm our finding that the coexistence line does not ex-
hibit a reentrant behavior as a result of the crossing of the
glass transition line.

VIil. SUMMARY AND CONCLUSION

We have used large-scale molecular dynamics simula-
tions to study the influence of a temperature quench on the
liquid-gas phase separation kinetics in a Lennard-Jones fluid,
and therefore the competition between the phase separation
kinetics and the glass transition occurring at low temperature
in bulk liquids. This represents therefore an example of a vis-
coelastic phase separation.

Although the binary Lennard-Jones model studied here
does not correspond to a specific system considered in an ex-
periment, it can be expected that the behavior we have found
at low temperatures and at long times is quite generic, and
will not depend in a crucial manner on the details of the model
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or the microscopic dynamics. Therefore, we believe that the
presented results give physical insights on how the glass tran-
sition influences the dynamics of the spinodal decomposition.

Our main finding is the observation that the phase
separation kinetics changes qualitatively with decreasing
temperature: The microscopic dynamics evolves from a dif-
fusive motion driven by surface tension for shallow quenches,
to a qualitatively different coarsening regime in which the
dynamics becomes strongly intermittent, spatially heteroge-
neous, and thermally activated at low temperature, leading to
logarithmically slow growth of the typical domain size.

The microscopic description of the coarsening process
occurring in our simulations at low temperatures, which re-
sults from the intermittent release of mechanical constraints,
is strongly reminiscent of the physical scenario put forward
to explain experimental and simulation results obtained in a
broad variety of soft glassy materials for which unusual aging
dynamics has been reported.’* 7727 In future work, it would
be interesting to compare time correlation functions measured
in numerical simulations such as ours to the outcome of light
scattering experiments performed in soft glassy materials in
their aging regime. Such studies would allow to obtain a bet-
ter understanding how these soft glass materials are related to
the gel-like structures investigated here.
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