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We use computer simulations to study the relaxation dynamics of a model for oil-in-water microemul-
sion droplets linked with telechelic polymers. This system exhibits both gel and glass phases and we
show that the competition between these two arrest mechanisms can result in a complex, three-step
decay of the time correlation functions, controlled by two different localization lengthscales. For
certain combinations of the parameters, this competition gives rise to an anomalous logarithmic
decay of the correlation functions and a subdiffusive particle motion, which can be understood as
a simple crossover effect between the two relaxation processes. We establish a simple criterion for
this logarithmic decay to be observed. We also find a further logarithmically slow relaxation related
to the relaxation of floppy clusters of particles in a crowded environment, in agreement with recent
findings in other models for dense chemical gels. Finally, we characterize how the competition of
gel and glass arrest mechanisms affects the dynamical heterogeneities and show that for certain
combination of parameters these heterogeneities can be unusually large. By measuring the four-point
dynamical susceptibility, we probe the cooperativity of the motion and find that with increasing
coupling this cooperativity shows a maximum before it decreases again, indicating the change in
the nature of the relaxation dynamics. Our results suggest that compressing gels to large densities
produces novel arrested phases that have a new and complex dynamics. © 2015 AIP Publishing
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I. INTRODUCTION

In nature and in our daily life, many soft materials are
formed due to the dynamical arrest of the constituent parti-
cles.'= Usually they are labelled as gels if the particle density
is low and as glasses if the density is large. However, the
difference between these two states is at present not very well
understood and therefore it is not always easy to distinguish
them. Despite this difficulty, quite a few features in this glass-
gel cross-cover regime have been studied extensively.

In dense glass forming liquids, the slowing down of dy-
namics is related to the mutual steric-hindrance in the motion
of the constituent particles. The dynamical properties of these
glass formers are characterized by a stretched-exponential
shape of relaxation functions,! or similarly by the anoma-
lous, exponential tails in the van Hove distributions of par-
ticle displacements.* Many of these dynamical features are
described well by mode-coupling theory.! At even lower tem-
peratures, the relaxation dynamics can be understood by means
of the random first order transition theory.’ In these glass
formers, the structure is usually close-packed for hard sphere
or van der Waals type interactions and is accompanied by a
super-Arrhenius increase of viscosity. Or, if there are covalent
bondings, they form network-like structures and exhibit an
Arrhenius increase in viscosity.

On the other hand, chemical gels or rubbers are soft solids
having random network structures.”%’ The cross linking of the
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permanent bonds between the constituent monomers happens
during the synthesis process inducing a vulcanization tran-
sition once the density of the links exceeds the percolation
threshold.® Different static and dynamical properties in the
vicinity of this transition have been studied, both using simula-
tions and theoretical models (e.g., see Refs. 9 and 10). Physical
gels are, on the other hand, low-density network structures with
bonds that can be broken/realigned by thermal fluctuations
within finite time scales.’” One possible nonequilibrium path to
physical gelation is via a thermal quench across the liquid-gas
spinodal leading to dynamically arrested states,''~'# that show
complex aging phenomena.'>!® In general, these paths lead to
spatially heterogeneous structures. However, in recent times,
considerable effort has been made to devise ways by which
spatially homogeneous physical gels can be formed.'*!7-2
For such gel-forming systems, a wide variety of relaxation
functions have been reported: 10garithmic,27‘30 stretched,'® or
compressed exponentials.?'*! While theoretical models?®3>3*
have been proposed to account for such dynamical properties,
they are at this time certainly not yet comprehensive.

Of particular interest is the interplay between these differ-
ent arrest mechanisms, viz., gel and glass, since their compe-
tition can be used to engineer materials with novel function-
alities.?®3-37 Similar studies have been carried out in sys-
tems with competing lengthscales®®3° or interactions.?’-#04!
Yet, only few models do allow to study the low density gel
phase and high density glass at the same time. Accessing this

©2015 AIP Publishing LLC
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regime is, however, necessary for investigating the structure
and dynamics at those intermediate densities where the gel
transforms into a glass and vice versa. Here, we study a simple
three-dimensional model with direct experimental relevance, 18
and which permits us to traverse the density regime of interest
and hence to study the interplay of different processes which
lead to either equilibrium gelation or glassiness. Thus, our
study is distinct from those addressing the competition be-
tween non-equilibrium gelation arising from arrested spinodal
decomposition and glassiness.?3’

Furthermore, our model also allows us to tune the lifetime
of bonds, a feature that is usually not present in other models
(for example, see the recent work*?). On one hand, this facil-
itates not only a wider exploration of the relaxation dynamics
of such model physical gels, but also allows to disentangle
the origin of the apparently anomalous relaxation observed in
these systems. The versatility of our model, and in particular
the possibility of tuning at will the bonds lifetime, allows us to
explore the different mechanisms at play and hence to elucidate
the interplay of various lengths and time-scales. In particular,
we demonstrate that a logarithmic relaxation occurs only for
specific combinations of the parameters of our model and at
specific state points in the phase diagram,”® whereas a cross-
over between two competing arrest mechanisms more gener-
ically yields multi-step decay of time correlation functions.
This represents an instructive alternative scenario to mode-
coupling theory which predicts that logarithmic relaxation may
occur whenever two different arrest lines meet, one gel-like and
another glass-like, and relates it to an underlying higher-order
singularity in the theory.??

The paper is structured as follows. In Sec. II, we explain
the details of our model transient-network fluid, together with
the numerical schemes used to simulate its dynamics. The
phase diagram of the model system and its structural properties
are discussed in Secs. III and IV, respectively. In Sec. V, we
analyze in detail the fluid’s dynamics, quantified by the mean
squared displacement and the incoherent scattering function.
For that, we follow different routes across the phase diagram,
which allows us to clearly understand the interplay between
the gel and the glass regimes. Finally, the dynamical hetero-
geneities which characterise the slow dynamics in the gel and
glass phases are studied in Sec. VI, followed by a summary of
our results and a broader perspective in Sec. VII.

Il. MODEL AND DETAILS OF SIMULATION

Our model system is a coarse-grained representation'’
of a transient gel which has been studied in experiments.'8
In this system, an equilibrium low-density gel is obtained by
adding telechelic polymers to an oil-in-water microemulsion.
Since the polymer end-groups are hydrophobic, the polymers
effectively act as (attractive) bridges between the oil droplets
they connect. The strength, lengthscale, and typical lifetime of
these bridging polymers can be controlled at will. Denoting
by C;; the number of polymers connecting droplets i and j,
we have established in Refs. 17 and 19 that the following
interaction is areasonable coarse-grained representation of this
ternary system:
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The first term is a soft repulsion acting between bare
oil droplets, where o;; = (0; + 0;)/2, o is the diameter of
droplet i, and r;; is the distance between the droplet cen-
ters. The second term describes the entropic attraction induced
by the telechelic polymers, which has the standard “FENE”
(finitely extensible nonlinear elastic) form known from poly-
mer physics,” Veeng(ri;) =In(1 — (r;; — 07;;)*/€%), and accounts
for the maximal extension ¢ of the polymers. The last term
introduces the energy penalty €y for polymers that have both
end-groups in the same droplet. The most drastic approxima-
tion of model (1) is the description of the polymers as effective
bonds between the droplets, which is justified whenever the
typical lifetime of the bonds is much larger than the timescale
for polymer dynamics in the solvent.'® Thus, for exploring the
different properties of such a model, the relevant variables are
the droplet volume fraction ¢ and the number of polymer heads
per droplet R.'” Note that for soft particles interacting with a
continuous potential, this “volume fraction” cannot be directly
compared to the one of hard spheres. In order to describe the
dynamics of the system, we use a combination of molecular
dynamics to propagate the droplets with interaction (1) and
local Monte Carlo moves with Metropolis acceptance rates
7.1 min[1,exp(AV/kgT)] to update the polymer connectivity
matrix C;;, where AV is the difference in potential energy of
the system for the two bond configurations.!”!® Thus, tj;, is
the timescale governing the renewal of the polymer network
topology. In order to prevent crystallization at high volume
fractions (which would be the case for the monodisperse model
studied earlier!”), we use a polydisperse emulsion with a flat
distribution of particle sizes in the range o; € [0.75,1.25] (hav-
ing a mean diameter o~ = 1). The units of length, energy, and
time are, respectively, o, €1, and oy m/ €, where m is the mass
of the particles. The space of control parameters is quite large.
Therefore, we set £ = 3.5 0 as measured in experiments,18
T =1,and €g = 1 and €, = 50, and vary the remaining param-
eters {¢, R, Tiink }. These choices for the parameter values lead
to a phase diagram which is similar to the one obtained in
experiments.

Our numerical simulations are done for a three dimen-
sional system of N = 1000 particles. The equations of motions
of these particles are integrated using a velocity Verlet scheme
with a time step of 67 = 0.005. Here, most of the results are re-
ported for Ty, = 102, although we also explore other values of
Tink: 1, 10, 10%,10* to illustrate some of the dynamical features
of the system. At each volume fraction ¢, we first equilibrate
the system of particles without any links (R = 0). Once equil-
ibrated, bonds are introduced corresponding to the required
value of R and then the system is again equilibrated to obtain
the proper distribution of bonds per particle. Since the structure
of the network is independent of the choice of 7j,'” we use
a small value of 7jj,x = 1 to expedite the equilibration process.
Subsequently, data are generated by continuing the simulations
with different i, values when required and the averages are
typically calculated over 100 different time origins. We also do
simulations for the case when the bonds between two particles
are completely frozen. In order to do a proper sampling of
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FIG. 1. Phase diagram of the system obtained by varying R and ¢. The
diamonds correspond to the coexistence region between gas and liquid, the
circles to the sol phase, and the squares to the gel phase. The horizontal
dashed line corresponds to onset of percolation, the dot-dashed line indicates
the phase-coexistence boundary and the thick line marks the predicted glass
line. Snapshots of typical configurations in each phase have been published
elsewhere, see Fig. 3 in Ref. 19.

the network configurations for this situation, we use 6 initial
configurations (positions, connectivities) from the simulations
with a finite T, as initial inputs for subsequent evolution
of the particle positions using molecular dynamics with the
connections now permanently fixed.

lll. PHASE DIAGRAM

We begin by summarizing our earlier findings for the
phase diagram (shown in Fig. 1) for this model. If the number
of polymers is small (i.e., R < 2), the system is in a simple
liquid phase (the sol) at small values of ¢. In this regime,
the distribution of connectivities per particle is just an expo-
nential.'® With increasing ¢, the dynamics in the sol regime
becomes slow and one eventually enters a glassy phase at large
¢, characterized by a very strong increase of the time scales for
structural relaxation. If the number of bonds is large and ¢ is
small, phase separation is observed due to strong attractions
between the droplets. Here, the distribution of connectivities
becomes bimodal, with one of the two peaks corresponding
to a well-connected liquid and the other to free particles. For
intermediate values of R, the system is in a gel phase. In
this region of the phase diagram, the particles are connected
together and form a percolating cluster and the spatial density
is homogeneous. Here, the connectivity distribution is peaked
around the average value and has an exponential tail. Note that
this gel is an equilibrium phase since the polymer network
is constantly rewired on the timescale Tj,x. Thus, this gel
formation is different from the ones obtained via the route
of spinodal decomposition.!'~'* However, if we go to large
enough volume fractions, we observe again a glassy system
for all connectivities, with the corresponding divergence of
relaxation time scales.

At low ¢, in the gel phase, the main slow relaxation
process is related to the connections between the droplets by
means of the polymers and the timescale associated with its re-
configuration. At low R, as the system becomes glassy at large
¢, the origin of the slow dynamics is the steric hindrance caused
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FIG. 2. Main panel: structure factor S(g) computed for the particles at a
volume fraction of ¢ =0.70 for different connectivities R =0,4,8, and 12.
Inset: S(g) at ¢ =0.50 for R =0, 12,30, and 50. The dashed line corresponds
to q’4.

by the caging of each particle by its neighbors. In the region
where both R and ¢ act as a source for slow dynamics, we have
shown that the generic relaxation process has three steps but
with proper tuning of the two relaxation time scales, one can
also obtain logarithmic decays of the relaxation function.?’

In the following we will discuss in detail the interplay
between these two relaxation processes and show the conse-
quences on the nature of different dynamical quantities as we
move around in the phase diagram.

IV. STRUCTURE

Before we discuss the different dynamical properties of
the system, we briefly look at its structure. In Fig. 2, we plot the
static structure factor, S(g), for a system thatis dense, ¢ = 0.70,
varying the connectivity R. The general shape of S(q) is very
similar to the one of a simple liquid and hence, we can conclude
that the system is homogeneous. Also, we see no significant
dependence of S(g) on R, thus showing that at high densities
the structure is mainly governed by steric hindrance. For inter-
mediate densities, however, we do note the weak dependence
on R in the regime of small wave-vectors, illustrated in the inset
of Fig. 2 where we show S(g) for ¢ = 0.50. This is at a volume
fraction at which for large R the system approaches the co-
existence region, and hence, one starts to see the emergence
of a power-law behavior at small values of ¢ with increasing
R; the data for R = 50 can be approximated by g~* (which is
expected in proximity to phase co-existence*?).

V. RELAXATION DYNAMICS
A. Dependence on volume fraction ¢

We now characterize the dynamical properties of the
system by focusing on two quantities: (i) the mean squared
displacement, defined as A%(t) = (# i |ri(®) = r:(0)[*) and (ii)
the self-intermediate scattering function, defined as Fi(q,t)
= (5 %, exp(iq - [r;(t) — r;(0)])). Here, ri(r) is the position
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FIG. 3. Variation of mean squared displacements A%(¢) with changing R
for (a) ¢ =0.50, (b) ¢ =0.61, and (c) ¢ =0.70, using a bond lifetime of
Tiink = 102. The dashed line marks the emergence of caging due to the bonds.

of particle i at time ¢, ¢ is the wave-vector, and (.) corresponds
to the ensemble average.

For increasing volume fraction ¢ = 0.50,0.61,0.70, we
discuss simultaneously the data for A%(¢), shown in Fig. 3, and
Fy(q,t), shown in Fig. 4, computed at a wave-vector value ¢
= 6. Thus, the measured F(q,t) probes the relaxation dy-
namics on length scales that are slightly larger than the average
particle diameter (the peak in the structure factor S(g) occurs
atg = 7.3).

We start in the pure gel phase (¢ = 0.50). The mean
squared displacement, Fig. 3(a), shows that the increasing
number of bonds restricts the motion of the particles: for
R > 0 we see the emergence of an intermediate regime which
develops into a well-defined plateau at R = 10. The height of
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R. (a) ¢ =0.50, (b) ¢ =0.61, and (c) ¢ =0.70, using Tjinkx = 102. The inset
in panel (c) shows the collapse of correlation functions for ¢ =0.70 after
rescaling by the relaxation time, similar to time-temperature superposition
principle.

this plateau depends significantly on R, showing that this cage
motion is directly related to the transient bonds between the
particles. The self-intermediate scattering function, Fig. 4(a),
shows for small R a very rapid decay. This changes in that for R
around 4-6, a plateau develops at intermediate and long times,
the height of which depends strongly on R. The presence of
this increasing plateau height, which is reminiscent of the so
called type-A transition of mode-coupling theory,*? indicates
that the relaxation mechanism is changing: For small R, the
motion of the particles is only weakly slowed down by the
presence of the bonds, which typically break on the time scale
of Tjink. However, for larger R, breaking a few bonds is not
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FIG. 5. Variation of diffusion constant D with R, for different ¢» (shown in
Fig. 3). The dotted line, corresponding to an exponential function, is drawn
as a guide to the eye.

enough to allow the particles to move since the remaining
bonds still allow to maintain the particle inside its cage. Hence,
this makes that at large R the relaxation dynamics does not
depend very strongly on R anymore. This effect is seen in
Fig. 5 where we show the diffusion constant of the particles,
D, (as obtained from the mean squared displacement at long
times) as a function of R. For small R, D shows a rather
strong R—dependence, whereas for R > 5 this dependence
becomes weaker. Below we will discuss the R—dependence
of the relaxation time in more detail.

Next, we look at the data for an intermediate density,
viz., ¢ = 0.61, and in Fig. 3(b) we show the corresponding
A%(1). Like for ¢ = 0.50, the longtime diffusion decreases with
increasing R, and the R—dependence of the diffusion constant
shows again a break at around R =~ 5 (see Fig. 5). For this value
of ¢ we observe, however, for R > 2 at intermediate times,
a shoulder in A%(r). This shoulder, clearly visible for R = 4
(marked with dashed lines in Fig. 3(b)), is related to the pres-
ence of the bonds that lead to a caging of the particles on the
length scale related to ¢, the maximum extension of a bond.**
Thus, the hint of the short-time plateau (when A%(t) ~ 0.1) and
again one at later time (when A(¢) ~ 1) reflects the presence of
the two different mechanisms for constraining particle motion,
viz., local steric hindrance and the network bonds. Since each
type of caging leads to a plateau in the intermediate scattering
function,” the existence of the two competing mechanisms
makes that at intermediate times, Fy(g,?), shown in Fig. 4(b),
has a very slow, almost logarithmic, decay, if R is around 6.
More details on this particular case are given in the context of
Fig. 11. If one compares the data for R = 10 at the two volume
fractions ¢ = 0.50 and ¢ = 0.61, we recognize that the height
of the plateaus in F(g,t) increases with ¢ from which one can
conclude that the proximity of the particles leads to increased
tightening of the cage.

If the density is increased further to ¢ = 0.70, the relaxa-
tion dynamics becomes strongly dominated by the steric hin-
drance mechanism. Already for R = 0 one sees a weak plateau
in A%(¢) and its length grows rapidly with increasing R without
changing much its height (see Fig. 3(c)). This is the typical
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behavior of simple glass-forming liquids.* At the same time,
the self-intermediate scattering function shows the growth of a
shoulder with finite height and this height depends again only
weakly on R, Fig. 4(c). In contrast to the case at lower densities,
here the shape of the correlator is basically independent of
R. This is demonstrated in the inset of Fig. 4(c) where we
plot Fs(q,t) as a function of ¢/7, with the relaxation time
7 defined by Fy(g,7) = 0.03. The fact that this presentation
of the curves leads to a nice master curve shows that we
have for this system a time-R superposition, in analogy to the
time-temperature superposition found in simple glass-forming
systems. !

Despite the qualitative changes seen in A(¢) and Fy(q,1), if
¢ is increased, the R—dependence of the diffusion constant for
¢ = 0.70 is very similar to the one seen at lower densities, see
Fig. 5. Also for this high value of ¢ we see that this dependence
is relatively strong at small R and becomes weaker if R > 6.
Hence, the fact that at low R just few bonds have to be broken
in order to allow a particle to move whereas at high R this is
not a sufficient condition, is reflected in the R—dependence of
D atall ¢.

B. Varying the bond life-time

We will now explore further the interplay between the two
processes leading to slow relaxation, i.e., the nearest-neighbor
caging and the constrained motions due to the polymer bonds.
Since the relative importance of these two processes depends
on the lifetime of the polymer bonds, we will in the following
vary this lifetime and consider values of Tk = 10, 102, and
103, and at fixed state-point of R = 6.3, ¢ = 0.61, where loga-
rithmic decay in the time-correlation function is observed. We
study how the shape of Fy(q,t) changes with varying 7j;,x and
will relate this to the interplay between the two processes. This
is done for different values of wave-vector in order to see how
the relaxation time scales vary over different lengthscales.

We begin by looking at the case of the large 7 = 10°,
i.e., when the polymer bonds hinder the motion on a time
scale longer than the steric hindrance effect, see Fig. 6(a).
The correlation function reflects three different relaxation pro-
cesses which can be seen for all values of g. Initially, the
particles rattle inside the cage, resulting in partial relaxation
of the correlation function on a timescale 73 ~ 1. Later on, the
particles escape from the cage of neighboring particles (which
for this value of ¢ not very pronounced) but the relaxation
process is then held up by the polymer bonds. Eventually, the
polymer network rewires on a timescale which is proportional
t0 Tiink = 103 and the particles start the final relaxation process.
The height of the plateau in Fy(qg,?) increases with decreasing
g, which is the typical behavior for a glassy system.**6 How-
ever, for the range of wave-vectors explored, the final timescale
for decay of Fy(g,t) depends only weakly on ¢. Thus, over
these length scales, the relaxation process is determined by
the reconfiguration of the network. However, at larger length
scales, one can expect that hydrodynamic effects will eventu-
ally dominate and this will then determine the relaxation time
scales.

For intermediate values of the bond lifetime, Tj;, = 102
in Fig. 6(b), the final decay has moved to shorter times and
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FIG. 6. Fy(q,t)for R=6.3, ¢ =0.61, (a) Tjink = 10%, (b) Tyink = 102, and (c)
Tlink: 10

makes that now the interplay between the two processes results
in alogarithmic decay of Fy(g,t) as discussed elsewhere.?’ This
logarithmic dependence is seen for a range of g values (see
Fig. 6(b)), with the time-window over which it exists decreas-
ing with decreasing g. This implies that this form for the
correlation function occurs only for specific combination of the
relaxation time scales of the two processes of steric hindrance
and eventual network relaxation. At sufficiently small g, hydro-
dynamic effects make the initial relaxation so slow that the
second relaxation step is no longer visible and hence the log-
arithmic r—dependence is not observed any more. Finally, we
mention that the logarithmic shape in the relaxation function,
as discussed here, is not related to any underlying higher order
mode-coupling transition, in contrast to the case of certain
colloidal systems for which similar relaxation functions have
been observed.?’

If we set Ty to a small value, this three-step relaxation
can no longer be observed, as is seen for the case of 7j,, = 10
in the bottom panel of Fig. 6: For all ¢’s the curve shows a
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(seemingly) simple two step relaxation, since the third step
(related to the bonds) starts already when the second step
(related to steric hindrance) is not yet completed and hence
the two processes become completely mixed in time. Below
we will briefly come back to this effect.

C. When the bonds are permanent

A useful way to check the influence of the polymer
bonds on the relaxation dynamics is by comparing the relax-
ation functions for the case when the bonds are permanent,
i.e., Tjink = 9, to those when the lifetime is finite. In Fig. 7, we
do this comparison for different connectivities (R = 4,6, and
8) and different values of ¢.

In Fig. 7(a), we show Fy(g = 6,1) for the case of R = 4 with
the two different bond lifetimes 7y, = 102 and Ty = 0. For
¢ = 0.50, 0.60, and 0.65, the time scales for overcoming the
steric hindrance are the same for both lifetimes. However, for
all ¢, we find that the correlation function for 7,k = 0o shows
a plateau at long times (not visible in this plot), which is due to
the fact that the frozen bonds in the percolating gel-network
prevent the complete relaxation of the system. In contrast,
the curves for the finite 7,k vanish at long times. For small
and intermediate ¢ the two sets of curves are very similar,
indicating that the presence of a few bonds does not change the
dynamics significantly. Only for ¢ = 0.7, one sees a substantial
difference in that the correlator for the permanent links decays
slower than the one with 7, = 10%. It is reasonable that these
differences are noticeable for times somewhat longer than 102,
i.e., the time scale of Tjjpy.

If we increase the connectivity to R = 6 (Fig. 7(b)), we see
that the behavior is qualitatively similar to R = 4 in that for all
values of ¢ the two curves track each other up to times around
102, i.e., the time of the finite Tj;,. For larger times, the corre-
lators for T = 10% decay to zero whereas the ones for Ty
= oo show at long times a marked plateau. The height of this
plateau depends now more strongly on ¢ than it was the case for
R = 4, showing that if R is increased, the life time of the bonds
becomes more influential. This is reasonable since it is related
to the general observation that in glass-forming system small
changes influence the relaxation dynamics increasingly more
the slower the dynamics is. We also note that for ¢ = 0.70, the
correlator for the permanent bonds becomes very stretched.
This sluggish relaxation might be related to the fact that for
this value of R there are, in addition to the percolating cluster,
clusters of different sizes (see Ref. 19 for typical distributions),
thus giving rise to relaxation dynamics that spans many orders
of magnitude in time and hence to a very stretched average
correlation function. The stretching of the correlator for the
frozen bonds could, however, also be due to the fact that these
different clusters hinder each other resulting in the overall
slowdown of the dynamics.*’

Next, we increase the number of bonds even more, viz.,
R = 8, as shown in Fig. 7(c). We see that for the case of perma-
nent bonds, the height of the asymptotic plateau has increased
strongly in comparison to the case of R = 6. As a result, the
correlator for ¢ = 0.70 shows only a negligible decay of the
correlation function if the bonds are permanent. The motion is
so constrained by these bonds that the height of the asymptotic
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plateau, caused by the permanent bonds, becomes comparable
to the one related to the steric hindrance. Also, for ¢ = 0.5 the
height of the second plateau has increased so much that the
relaxation from caging is now completely masked. However,
for the intermediate values of ¢, one does notice a difference
between the two plateau heights and the correlation functions
decay in a very stretched fashion from one to the other. In fact,
the decay is so slow that the time-dependence is seen to be
logarithmic (nearly for five decades in the case of ¢ = 0.65).
Note that this logarithmic decay is due to the heterogeneous
relaxation of the floppy clusters of frozen bonds, which we
will discuss later in further detail. Thus, this mechanism is
different from the one leading to the logarithmic relaxation
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seen in Fig. 4 which was due to a unique combination of the
two finite relaxation time scales.

We now study the floppiness of this network of particles
connected by the permanent bonds by probing the wave-vector
dependence of the relaxation functions Fy(g,t). In Figs. 8(a)
and 8(b), we show for ¢ = 0.60 the variation of Fy(q,t) for
R =2 and 4, i.e., in the region of the phase diagram where
gelation sets in. The height of the plateau at long times, also
called non-ergodicity parameter, is a measure for the stiffness
of the network on the length scale g considered. Comparing
the two panels we recognize that, for a given g, the height of
the plateau increases with increasing R. Denoting this height
by fIN, we show in Fig. 8(c) that f}™ shows basically an
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exponential decrease in g with a slope that decreases rapidly
with increasing R. That f}:N decreases with increasing ¢ is of
course reasonable since on small length scales the particles
have more leeway to flop around than on large length scales.
Note, however, that this exponential dependence is in contrast
to the one found for the height of the plateau due to the steric
hindrance, the latter being basically a Gaussian function.*®
Since in the representation of Fig. 8(c) such a Gaussian depen-
dence is given by a parabola, we see that such a curve will
intersect the one for f, gN at a certain value of ¢,. For g < g, the
plateau due to the steric hindrance is above gN, thus making
that one observes two plateaus in the correlator. However, for
q > qx the plateau at long times is higher than the steric one,
thus making that the latter one will be completely masked by
the former and thus the correlator will show only one plateau.

We have also studied how the g—dependence of f, };N
changes with the volume fraction, and in Figs. 8(d) and 8(e),
we show fy™ for R = 4 and 6, respectively. For both cases, we
see that the rigidity of the network at large scales, i.e., small g,
is not affected by the volume fraction which is not surprising.
For R = 4, we see that this is also true at small length scales,
whereas for R = 6 we note a significant ¢—dependence if g is
large. This difference is likely related to the fact that the system
with R = 6 is much more sluggish than the one for R = 4, see
Fig. 7, and hence small changes (here in ¢) will have a stronger
impact on the dynamics.

Finally, we disentangle the dynamics of the particles that
belong to the percolating cluster from the ones that are not
attached to it. In the following discussion, these are referred as
clustered and non-clustered particles, respectively. The objec-
tive is to clarify the respective contributions to the different
dynamical quantities that we have discussed above. We do this
comparison for an increasing number of connections R at a
fixed (large) volume fraction of ¢ = 0.65. In Fig. 9, we show
the data for A%(t) and F,(q, t) for these two families of particles.

The mean squared displacement of the clustered particles
shows, after the ballistic regime at short times, a shoulder that is
related to the cage of the steric hindrance (Fig. 9(a)). This local-
ization is, however, only temporary and is followed by a further
increase of A%(r). Only at longer times A”(¢) saturates at a height
that depends on R. We note that the approach to this asymptotic
height becomes increasingly slow with increasing R and in
fact for R = 8, the time dependence is close to logarithmic
and does not end within the time window of our simulation.
This behavior is also seen in the self-intermediate scattering
function F(q,t) (Fig. 9(b)). At short times, the correlator de-
cays quickly onto a plateau (not very pronounced) before the
relaxation of the steric hindrance starts. For R = 4 and 6, this
process ends in that the correlator reaches the final plateau
(which is given by f™ discussed above). However, for R = 8
the final decay is so slow, again compatible with a logarithmic
time dependence, that we do not see the asymptotic behavior.

Finally, we look at the motion of the non-clustered parti-
cles and compare it with the one for R = 0. From Fig. 9(a), we
recognize that at this volume fraction also these particles are
slowed down by the cage effect in that one sees for all values of
R a shoulder in A%(¢) at time ¢ ~ 1. For R = 0, the A%(¢) shows
then immediately the diffusive behavior, i.e., it is proportional
to t. However, if R is increased, the r—dependence of A%(1)
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for the non-clustered particles follows first the one of the clus-
tered particles. Only once the latter starts to reach the plateau
discussed above, do the former cross over to the diffusive
behavior. Hence, we can conclude that before this crossover
the relaxation dynamics of the two population of particles are
strongly coupled. This result is reasonable because in order
to move, the non-clustered particles have to explore the holes
within the percolating cluster formed by the particles which
are permanently linked.

Also the self-intermediate scattering function of the non-
clustered particles tracks one of the clustered particles at short
times (Fig. 9(b)). However, once the latter starts to show at
long times a plateau that has a significant height, the two
correlators differ strongly since the one for the non-clustered
particles decays to zero at long times. From the graph we
also see that for R = 8§, the correlator is extremely stretched
and shows almost a logarithmic —dependence. This very slow
decay indicates that the mobile clusters can move around the
percolating cluster only with great difficulty, a behavior that
is similar to the relaxation dynamics of particles moving in
random porous media.*®* It is also interesting that for the
highest R the mean squared displacement shows for the last
two decades in time a nice diffusive behavior, whereas F(q,t)
is far from having decayed to zero. This apparent contradiction
is related to the fact that A%(¢) is dominated by the particles
that move relatively fast (i.e., they are in the small clusters)
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whereas Fi(q,t) is dominated by the slowly moving particles
(i.e., the large clusters). This cluster-size dependent dynamics
leads to a so-called dynamical heterogeneity and in Sec. VI we
will discuss this phenomenon in more detail.

Although we show in Fig. 9 the comparison between the
dynamics of clustered and non-clustered particles for the case
that 7,k is infinitely large, it is evident that for a very large
but finite value of Tk, the relaxation dynamics will be very
similar. Hence if, e.g., Tjp¢ is on the order of 103, basically
none of the shown curves will change significantly and thus,
the conclusions drawn from Fig. 9 will apply also for such
value of Tlink-

D. Relaxation time scales

We now investigate how the two different relaxation time
scales, one due to breaking of local cages and the other due to
the reconfiguration of the network-bonds, vary with the volume
fraction ¢ and the connectivity R.

To start, we consider the case of structural relaxation
related to the steric hindrance. In order to avoid that this relax-
ation process is influenced by the one of the network, we
consider the case in which the latter is completely suppressed,
which can be achieved by choosing Tjj,x = oo. In the follow-
ing, we will study the relaxation times associated with the
intermediate scattering function for wave-vector ¢ = 6. As
discussed above, this correlator shows at long times, an asymp-
totic plateau the height of which, f;™ depends on R and ¢. To
take this into account, we define the relaxation time 7sy to be
the time at which Fy(¢,t) — ;™ = 0.03. The evolution of 7sy
with ¢ is shown in Fig. 10(a), for different values of R.

We see that in the absence of any bonds, i.e., for R = 0,
we have the usual slowing down of dynamics with increasing
¢. The ¢—dependence of the relaxation time can be fitted by
a Vogel-Fulcher-Tammann-law of the form 7sy ~ exp[A/(¢p.
— ¢)P], with B8 = 1, from which we can estimate the volume
fraction ¢, at which the relaxation times would diverge. If
we increase the number of bonds among the particles, we see
that gy increases. That this increase is not just a constant (R—
dependent) factor but depends also on ¢ is demonstrated in the
inset of the figure where we have normalized the relaxation
times to theirl value at ¢ = 0.5. Using the Vogel-Fulcher-
Tammann-law we can thus extract from these data the R—
dependence of ¢., which can be considered as a proxy for
the R—dependence of the glass transition temperature. This
¢-(R) line is included in Fig. 1 as well and we see that
it has a weak negative slope with ¢.(R = 0) = 0.847 and
¢-(R = 6) = 0.808. Thus, we can conclude that the glass tran-
sition as induced by the steric hindrance mechanism does not
depend strongly on the value of R, and exhibits the character-
istics of fragile glass-formers, unlike silica.’> However, since
the prefactor of the Vogel-Fulcher-law does depend strongly
on R, we can conclude that a line of iso-relaxation time will
bend significantly more.

Next, we investigate how the timescale for the full relaxa-
tion of the network of particles depends on the average number
of bonds, R. For this, we define a relaxation time using the 7—
dependence of Fy(q = 6,t) with a very short lifetime for the
bonds (tjinx = 1). 7p is then defined via Fg(qg = 6,7pN) = 0.03
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scale in this plot.

and the R—dependence of this relaxation time is shown in
Fig. 10(b). The figure shows that for small and intermediate
values of R, the R-dependence is independent of the volume
fraction in that the curves for the different values of ¢ seem
to be just shifted vertically. That this is indeed the case is
demonstrated in the inset where we show that a plot of the same
data, but now normalized to the relaxation time for R = 0, gives
a master curve. The main panel shows that at small concentra-
tion of bonds, the R—dependence is close to an exponential, a
result that is likely related to the fact that increasing R leads
to a tighter cage for the steric hindrance and hence a slower
dynamics. However, for intermediate values of R the curve 7pN
starts to bend over towards a weaker R—dependence. In order
to investigate this effect better, we have carried out simulations
for ¢ = 0.50 at very high values of R: 16, 30, and 50. We
find that in this regime the relaxation time follows closely
an exponential (see main Fig. 10(b)), but with an exponential
scale that is smaller than the one seen at small R. Note that
this dependence implies that there is no singularity in the
relaxation dynamics at any finite value of R, at least for this
volume fraction. Instead, the dynamics shows a behavior that is
similar to an Arrhenius law in that the barrier for the relaxation
depends only on the number of bonds between the particles.
This observation is in agreement with earlier simulations for
equilibrium gels.”
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We conclude this discussion by using the different relaxa-
tion time scales to develop a criterion that tells whether or not
the correlator Fy(g,t) will show the logarithmic 7—dependence
discussed in the context of Fig. 4(b). For this, we define f
as the height of the plateau associated to the a-process, with
« € {SH,PN}, and recall that 75, sy, and 7pn o Tk are
the time scales for the three different relaxation processes
described above, namely, the rattling inside the cage, the
escape from the local cage, and the network renewal process.
‘We can now define a simple criterion for the anomalous loga-
rithmic relaxation to be observed by requiring that the slope of
the two segments defined by pairs [(In7g, f31), (In Tsn, £ )]
and [(In7sy, fp™),(In 7pn,0)] is the same, see Fig. 11. It is
known that for glass-forming systems, the plateau related to
steric hindrance is a Gaussian function of the wave-vector g,
ISP ~ exp(—q*lgy).* We showed earlier, see Fig. 8(c), that for
the PN-process, ng has an exponential shape at large g (the
regime corresponding to anomalous logarithmic behavior).
Putting these elements together we thus obtain

ln(TSHT[;I) :|

In(7pNT, S}II)

(qlex = ¢*lgy) = In [1 + )
This equation relates a purely structural observable which
depends on the competition between two localization length-
scales with dynamical information encoded in the different
relaxation times, predicting a precise connection between
structure and dynamics whenever anomalous logarithmic re-
laxation is to be expected.

VI. HETEROGENEITIES IN DYNAMICAL PROPERTIES

Typical glass formers show a heterogeneous dynamics
of the particles when the system is increasingly supercooled.
It reflects the broad distribution in the time scales for local
structural relaxations.’* On the other hand, we have reported
earlier'” that also the dynamics in the gel phase can be hetero-
geneous: The particles in the percolating cluster and those that
are unattached have different mobilities till the time scales
at which the bonds in the network are reconfigured. In the
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following, we will thus explore how these two different sources
of heterogeneity interact as we increase the density of particles
as well as the number of connectivities in the system.

We use two different measures of dynamical heteroge-
neity. The first one is the non-Gaussian parameter a,(t), de-
fined as a»(t) = 3(r*(1))/5(r2(t))* — 1, where (r2(r)) and (r*(¢))
are the second and fourth moments of the distribution func-
tion of single particle displacements Gy(r,t) = N™' 3 (6(r —
[r;(¢) — r;(0)])), i.e., of the self-part of the van Hove function. A
non-zero value of a,(¢) quantifies the extent of deviation from
a Gaussian shape for G(r,1).>" Note that G(r,) is Gaussian at
short times, i.e., in the ballistic regime, and again at long times
when the particles are diffusive.

The second measure is the dynamic susceptibility y4(g,?),
computed via the fluctuations of time-correlation function:
x4(q.1) = N[(F2(q.1)) — (Fs(q,1))*]. It is designed to capture
the spatiotemporal correlations of particle mobilities and pro-
vides, from its peak value, an estimate of the dynamic correla-
tions.>'** Such functions have also been analyzed for gels with
permanent bonds>> or low density gels.*®

A. Non-Gaussian parameter as(t)

We begin by looking at how the non-Gaussian parameter
varies with changing connectivities R, either when we go from
the liquid to the gel phase, at ¢ = 0.50, or when we are in a
strongly glassy region, ¢ = 0.70. For the case Ty, = 107, the
data are shown in Fig. 12.

For ¢ = 0.50, Fig. 12(a), ay(t) shows at r ~ 1 a peak if
R =0 and a shoulder for R > 0. This feature is thus related
to the dynamical heterogeneity due to the steric hindrance
mechanism, as in usual glass-forming systems.*> For R > 0
we find in addition a very prominent peak the location of
which is basically independent of R, which shows that for this
packing fraction the time at which the system is maximally
heterogeneous does not depend on R. This observation is in
tune with our earlier discussion that the timescale for structural
relaxation at small values of ¢ does not change with R if
the number of bonds is not very large (see Fig. 4(a)). The
maximum occurs around 7 ~ 103, a time which corresponds to
a timescale for which a significant number of particles have
broken the bonds with their neighbors and exit the constraints
of the network. The location of the peak is thus somewhat
larger than Tji,k. As has been documented in Ref. 17, at small
packing fractions one has on this timescale two families of
particles, one for the mobile particles and the other related
to those that are immobile and as a consequence the shape
of G4(r,t) deviates strongly from a Gaussian. Figure 12(a)
indicates thus that the same behavior persists to the larger
volume fraction of 0.50. One interesting feature is that the peak
height is non-monotonous in R in that it increases till R = 6 and
then decreases again for larger R values. The reason for the
growth is that an increasing R allows for more diverse values
of the connectivity for the particles, and hence to a stronger
variety in the dynamical behavior. On the other hand, if R
is very large most of the particles are strongly connected all
the times and hence show a much smaller variation in their
relaxation dynamics, i.e., they behave like in a mean-field like
regime.
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FIG. 12. Time dependence of a; for different values of R (as marked in the
graphs) for Tjipk = 102 (a) ¢ =0.50 in double-logarithmic representation and
(b) ¢ =0.70.

Next, we study the behavior for ¢ = 0.70, Fig. 12(b).
When there are no bonds, R = 0, we see that a5(¢) is peaked
at around ¢ = 8. This peak, which is related to the steric hin-
drance, corresponds thus to the one seen for ¢ = 0.50 at 7 = 1
and which, due to the higher density has shifted to larger times.
For R = 2 (when the percolating cluster of the bonds develops),
the location of this peak slightly shifts to larger times and one
sees the appearance of a second peak at ¢ ~ 2000 (correspond-
ing to the time scales for renewal of the network connectiv-
ities). However, the dominant heterogeneity is still due to the
local steric hindrances. As R is increased, the location of the
first peak continues to shift to longer time scales, in track with
the increasing structural relaxation time scales (see Fig. 4(c)),
and also its height increases, in qualitative agreement with
the behavior found in simple glass-formers if the coupling is
increased.* For R = 6, the two peaks have merged, since the
time scales for the two sources of heterogeneity are nearly the
same, and thus, () has a single peak. If R is increased even
more, the position of the peak moves to larger times, but its
height starts to decrease. The reason for this decrease is likely
the same as the one we indicated when we discussed the data
for ¢ = 0.50, i.e., that for large R the system starts to become
mean-field like and hence heterogeneities are suppressed.

We also note that the height of the peak is significantly
smaller than the one for ¢ = 0.50. Thus, at large density, ste-
ric hindrance dominates and even the faster particles have
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FIG. 13. Self-part of the van Hove function for R =2 and ¢ =0.70, parame-
ters for which a(t) shows two peaks (see Fig. 12(b)).

less space to move around resulting in significantly less non-
Gaussian shapes for G4(r,1). As a consequence, the dynamics
is more homogeneous in this regime compared to the gel at
lower ¢.

To elucidate the origin of the two peaks in the non-
Gaussian parameter at R =2, ¢ = 0.70, we determine how
the distribution of particle displacements G(r,) evolves with
time. This is shown in Fig. 13. At short times, particle motion
is restricted by the local cage of neighbors, and thus, G4(r,?) is
a Gaussian at small r. At larger distances, the distribution has
an exponential tail which is due to a few particles that have
escaped the steric hindrance cage, in agreement with the usual
heterogeneous glassy dynamics in supercooled systems.* The
presence of these two processes gives rise to the maximum
in a; at short times. At around ¢ = 400, most of the particles
have escaped from this steric hindrance cage and thus, the
dynamics of the system becomes more homogeneous with
G(r,t) assuming a Gaussian form and hence a, decreases
again. But with time, the motion of the particles is again
restricted, this time by the bonds which have not yet relaxed.
Thus, again G4(r,t) develops a Gaussian shape (with a larger
width, determined by the length of the connecting bonds) and
an exponential tail, implying an increase in «a,. Later, the
network eventually relaxes, the particles are diffusive and thus
a; decreases again.

The presence of these two different contributions to the
shape of a5(f) can be further clarified by varying the lifetime
of the network, i.e., Tjink, and in Fig. 14 we show this for the case
¢ = 0.65,R = 6. Since we scan a large span of time scales and
a, changes strongly, the data are shown in logarithmic scales.
For 70 = 1, we see only a small peak at # ~ 10, which corre-
sponds to the one due to the steric hindrance. For Tjjpx = 10%, we
find that this peak has increased a bit in height and its location
has also shifted to ¢ ~ 30. This change is a consequence of
the increased effective coupling between the particles due to
the increased lifetime of the bonds. In addition, we see the
development of a new (weak) peak at ¢ = 103, which is caused
by the network renewal process. Now, if we increase Tjink
further, the location of the first peak remains at the same place,
since the local crowding effects are unaffected by the network
dynamics. In contrast to this, the location of the second peak
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shifts to longer time scales and its height increases strongly.
Since the position of this peak scales with Tk, We recognize
that this peak is related to the renewal process. Finally, if we
take the case of permanent bonds between the particles, the
curve is nearly identical to that for 7, = 104, except that we
see no signature of it eventually decreasing with time. The
reason for these runaway effects is the fact that with increasing
lifetime of the network, the unattached particles diffuse away
and travel long distances before the network is again renewed.
This results in very long extended tails in G(r,¢), which shows
up as very large values for the non-Gaussian parameter. For the
case that 7 diverges, the dynamics never becomes Gaussian
and a,(t) diverges at long times.

It is interesting that if one computes, for Ty, = 00, @(t)
separately for the clustered and non-clustered particles, only
the peak at short times is observed, i.e., the one which is due
to the crowding effects. This is shown in the inset of Fig. 14
for the case of the system of particles where there is a perma-
nently frozen percolating cluster and few unattached particles.
In this case, the ay(¢) for the clustered particles follows the
curve for the full system, shows the bump at short times, and
becomes at long times a constant (see the corresponding data
for A%(¢) in Fig. 9). The result that at long times a(¢) does
not go to zero, as it would be the case for vibrations in a
typical amorphous solid with R = 0, is related to the fact that
the spanning cluster is a disordered network of particles that
have different local environments. Thus, the large variety of
slow floppy motions, related to the slow relaxation in Fi(q,1)
over long times (see Fig. 9), gives a non-Gaussian shape for
G(r,t) even at very long times. This non-Gaussianity is also
the reason for the exponential shape of ng(q), as observed
earlier, see Fig. 8. For the non-clustered particles, a,(¢) does
show a slight decrease beyond the short-time maximum which
shows that the relaxation dynamics starts to become a bit more
homogeneous. However, it cannot be expected that the non-
Gaussian parameter will go to zero even at very long times,
since the mobile clusters do have a spread in size and hence a
different diffusion constant.
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B. Four point susceptibility xa(q, t)

We conclude by measuring to what extent the observed
heterogeneous dynamics is related to a correlated motion
of the particles. This can be quantified by y4(q,?), defined
above, measured for g = 6.0, i.e., we look for relaxations over
distances which are slightly larger than the average particle
diameter.

To have a reference, we consider first the case R =0,
i.e., when there are no polymers and the system is just a stan-
dard glass-forming system. The time dependence of y4(g,?) is
shown in Fig. 15(a) for different packing fractions. In agree-
ment with earlier studies on similar systems, Ref. 51, we find
that y4(q,t) shows a maximum at a time ¢ that increases with
¢ and which tracks the increasing relaxation time 7gy. The fact
that the height of the peak increases with increasing ¢ indicates
that the relaxation dynamics become more cooperative, also
this in agreement with previous studies for other glass-forming
systems.>*

Next, we contrast this behavior with the case of increasing
gelation, i.e., we fix a volume fraction and increase the number
of polymer bonds. For this, we choose ¢ = 0.70, i.e., the same
packing fraction for which we have studied the correlation
functions and the non-Gaussian parameter, since for this ¢
the effects due to the steric hindrance as well as the network
constraints are clearly observed. The corresponding y4(g,t) is
shown in Fig. 15(b) for 7y, = 10%.For 0 < R < 6, the location
of the peak in y4(q,?) shifts to larger times and the height of
the maximum increases. Thus, this trend follows the behavior
observed in the data for Fy(g,t) as well as a»(t), indicating
that steric hindrance dominates the relaxation process and that
the dynamics becomes more and more collective. However,
for R > 6, the peak height decreases again and its location
becomes independent of R. We can thus conclude that in this
regime the relaxation dynamics becomes less cooperative, a
result that makes sense since the rewiring of the network is
not really a collective process. This result is also in qualitative
agreement with the decrease of the maximum in a,(f), see
Fig. 12(b), which showed that the dynamics becomes more
homogeneous.

We conclude by investigating how the lifetime of the
network-bonds influences the function y4(g,t). For this, we
have calculated this observable for the case ¢ = 0.65 and
R =6, i.e., at intermediate density and in the gel phase for
which one sees a significant 7j;,c-dependence in the relaxation
behavior (see Fig. 7(b)). We see, Fig. 15(c), that at small
and intermediate Ty, the location of the peak in y4(q,t)
moves to larger time and that its height increases somewhat,
i.e., a behavior that is directly related to the steric hindrance
mechanism in which the effective cage becomes stiffer due
to the increased lifetime of the bonds. However, once Ty
exceeds 10*, we see that y4(g,7) no longer depends on this
lifetime, i.e., the rewiring of the network no longer affects the
cooperativity of the dynamics and the latter is solely dependent
on the steric hindrance.

To end this section, we contrast our results with the ongo-
ing discussion on whether the non-Gaussian parameter a(t)
and the four-point dynamic susceptibility y4(f) probe the same
time scales for dynamic heterogeneity in relaxation.’’-% It
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has been recently suggested, by analyzing data from model
polymer melts, that indeed this is not the case,’’ and similar
behavior has been reported in hard-sphere glass-formers.’ In
our case, the distinct behaviour for both quantities stems from
the fact that our model displays two different arrest mecha-
nisms in competition, whereas these other studies’”8 discuss
the different case where only steric hindrance is present.

VIl. SUMMARY AND CONCLUSIONS

In this paper, we have studied a coarse-grained model
for a transient network fluid, a system that can be realized in

J. Chem. Phys. 142, 174503 (2015)

experiments by an oil-in-water emulsion. By tuning the volume
fraction ¢ of the constituent particles, the number of bonds
R between the mesoparticle, and the lifetime 7y, of these
connections, we have scanned across the phase diagram to
investigate the relaxation dynamics of this system, in particular
the interplay between the gel-transition and the glass transition
induced by steric hindrance effects.

By analyzing the mean-squared displacement and self-
intermediate scattering function, we find that the nature of the
slowing down depends on the packing fraction: At low ¢ an
increase of R leads to a two step relaxation with a plateau that
increases continuously with R and an @— relaxation time that is
independent of R and that is related to the lifetime of the bonds.
In contrast to this, we find at large ¢ a two step relaxation with
a plateau height that is basically independent of R whereas the
relaxation time does depend on the density of bonds. Thus,
these two different behaviors show that the system can show a
glassy dynamics that is related on one hand to a gel transition
and on the other hand to a glass transition associated with the
steric hindrance mechanism. For intermediate densities and a
certain range of R and Ty, the interplay between these two
mechanisms leads to a decay of the time correlation function
that is logarithmic over several decades in time, whereas for
other combinations it gives rise to a three step relaxation. We
note here that a similar multistep relaxation pattern has been
recently reported for mixtures of multiarm telechelic polymers
and oil-in-water microemulsions,’® suggesting the existence
of a competition of different arrest length- and time-scales in
these systems. We have also studied how the height of the
plateau at long times, i.e., the Debye-Waller factor, depends
on the wave-vector and found that it decays in an exponen-
tial manner in g, i.e., very different from the Gaussian decay
observed in more standard glass-forming systems.

Furthermore, we have determined the relaxation times of
the system and found that these can approximately be factor-
ized into a function that depends strongly on R and a Vogel-
Fulcher type dependence on ¢. The R—dependent factor shows
for R < 10 a strong exponential dependence that is related to
the escape of the particles from the local cage, whereas for
larger values of R the dependence is weaker and linked to an
Arrhenius-like process for bond-breaking.

By studying the non-Gaussian parameter we have probed
to what extent the relaxation dynamics of the system is hetero-
geneous. At low packing fraction this dynamics becomes
extremely heterogeneous, if R is not too large, since some of
the particles are very strongly connected to their neighbors
(and hence are immobile) whereas others can move almost
freely. However, if R becomes larger than 6, the relaxation
dynamics becomes again quite homogeneous since at any
time all particles are well connected to their neighbors. At
large packing fractions the non-Gaussian parameter shows
a double peak structure and, by monitoring the van Hove
function, we can show that this feature is directly related to
the two relaxation processes, i.e., the steric hindrance and the
connectivity of the network.

Whether or not the relaxation dynamics is cooperative can
be characterized by the four-point correlation function y4(q,1).
We find that for large packing fractions the height of the peak in
x4(g,t) increases rapidly with R, showing that the strengthened
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coupling leads to an enhanced cooperative motion. However,
if R is increased beyond 6, this cooperativity decreases again,
since the relaxation dynamics is strongly dominated by the
rewiring of the network, i.e., a non-cooperative process.

Summarizing, we see that the interplay between the two
different mechanisms giving rise to glassy behavior can lead a
rather complex and unusual relaxation dynamics. In the present
study, we have focused on a system in which the particles
are connected by polymers having a fixed extension length
¢ = 3.50. For much smaller extension lengths, one can expect
to recover the re-entrant scenario observed in colloidal gels.”
For longer extension lengths, the particles will instead have
more space to explore and it will likely result in an even more
floppy network. In the future, it would certainly be worth-
while to explore also systems that have polymers with different
values of ¢, since this implies multiple localization lengths
and thus provides novel relaxation scenarios that can subse-
quently also be studied in experiments. And finally, we recall
that our model is motivated by an experimental system which
has highly nontrivial rheological properties, e.g., this material
flows like a liquid but eventually breaks as a brittle solid,5%%!
being capable of self-healing through thermal fluctuations.
Thus, in the future we plan to study the rheological properties
of our model in order to understand the microscopic mecha-
nisms that lead to the experimental observations.
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