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ABSTRACT
The configurational entropy is one of the most important thermodynamic quantities characterizing supercooled liquids approaching the glass
transition. Despite decades of experimental, theoretical, and computational investigation, a widely accepted definition of the configurational
entropy is missing, its quantitative characterization remains fraught with difficulties, misconceptions, and paradoxes, and its physical rele-
vance is vividly debated. Motivated by recent computational progress, we offer a pedagogical perspective on the configurational entropy in
glass-forming liquids. We first explain why the configurational entropy has become a key quantity to describe glassy materials, from early
empirical observations to modern theoretical treatments. We explain why practical measurements necessarily require approximations that
make its physical interpretation delicate. We then demonstrate that computer simulations have become an invaluable tool to obtain precise,
nonambiguous, and experimentally relevant measurements of the configurational entropy. We describe a panel of available computational
tools, offering for each method a critical discussion. This perspective should be useful to both experimentalists and theoreticians interested in
glassy materials and complex systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5091961

I. CONFIGURATIONAL ENTROPY
AND GLASS FORMATION
A. The glass transition

When a liquid is cooled, it can either form a crystal or avoid
crystallization and become a supercooled liquid. In the latter case,
the liquid remains structurally disordered, but its relaxation time
increases so quickly that there exists a temperature, called the glass
temperature Tg, below which structural relaxation takes such a
long time that it becomes impossible to observe. The liquid is then
trapped virtually forever in one of many possible structurally dis-
ordered states: this is the basic phenomenology of the glass tran-
sition.1–4 Clearly, Tg depends on the measurement time scale and
shifts to lower temperatures for longer observation times. The exper-
imental glass transition is not a genuine phase transition, as it is not
defined independently of the observer.

The rich phenomenology characterizing the approach to the
glass transition has given rise to thick literature. It is not our goal
to review it, and we refer instead to previous articles.1–9 There are
convincing indications that the dynamic slowing down of super-
cooled liquids is accompanied by an increasingly collective relax-
ation dynamics. This is seen directly by the measurement of growing
lengthscales for these dynamic heterogeneities10–12 or more indi-
rectly by the growth of the apparent activation energy for structural
relaxation, as seen in its non-Arrhenius temperature dependence.

These observations suggest an interpretation of the experimental
glass transition in terms of a generic, collective mechanism possibly
controlled by a sharp phase transition.13 “Solving the glass prob-
lem” thus amounts to identifying and obtaining direct experimen-
tal signatures about the fundamental nature and the mathematical
description of this mechanism.

Why is this endeavor so difficult as compared to other phase
transformations encountered in condensed matter?14,15 The core
problem is illustrated in Fig. 1 by two particle configurations taken
from a recent computer simulation.16 The left panel shows an equi-
librium configuration of a two-dimensional liquid with a relaxation
time of order 10−10 s, using experimental units appropriate for a
molecular system. The right panel shows another equilibrium con-
figuration now produced close to Tg with an estimated relaxation
time scale of order 100 s. The system on the right flows 1012 times
slower than the one on the left, but to the naked eye, both config-
urations look quite similar. In conventional phase transitions,14,15 a
structural change takes place and some form of (crystalline, nematic,
ferromagnetic, etc.) order appears. Glass formation is not accom-
panied by such an obvious structural change. Therefore, the key
to unlock the glass problem is to first identify the correct phys-
ical observables to distinguish between the two configurations in
Fig. 1.

Several theories, scenarios, and models have been developed
in this context.5,17–27 Some directly focus on the rich dynamical
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FIG. 1. Two equilibrium configurations of a two-dimensional glass-forming model
characterized by relaxation times that differ by a factor 1012. The two density
profiles appear to the naked eye similarly featureless. These two states in fact dif-
fer by the number of available equilibrium states, and the configurational entropy
quantifies this difference.

behavior approaching the glass transition,24 while others advocate
some underlying phase transitions of various kinds,17,19,20 possibly
involving some “hidden” or amorphous order.

In this perspective, we explore one such research line, in which
configurational entropy associated with a growing amorphous order
plays the central role.19,20,28 We argue that recent developments
in computational techniques offer exciting perspectives for future
work, allowing the determination of complex observables that are
not easily accessible in experiments, as well as the exploration of
temperature regimes relevant to experiments.

B. Why the configurational entropy?
The fate of equilibrium supercooled liquids followed below Tg

with inaccessibly long observation times was discussed 70 years ago
by Kauzmann in a seminal study.29 Since the supercooled liquid is
metastable with respect to the crystal, Kauzmann compiled data for
the excess entropy, Sexc ≡ Sliq − Sxtal, where Sliq(T) and Sxtal(T) are
the liquid and crystal entropies, respectively. Kauzmann observed
that Sexc(T) decreases sharply with decreasing the temperature of the
equilibrium supercooled liquid.

An extrapolation of the temperature evolution of Sexc from
equilibrium data to lower temperatures suggests that Sexc becomes
negative at a finite temperature, which led Kauzmann to comment:29

“Certainly it is unthinkable that the entropy of the liquid can ever
be very much less than that of the solid.” To avoid this paradoxi-
cal situation, referred to as the Kauzmann paradox or entropy crisis,
he mentioned the possibility of a thermodynamic glass transition
occurring well below Tg, at a temperature now called the Kauzmann
temperature, TK . Although Kauzmann suggested that crystallization
eventually prevents the occurrence of an entropy crisis, Kauzmann’s
intuition remains very influential, for good reasons.

Gibbs and DiMarzio were the first to give theoretical insights
into the temperature evolution of Sexc, by analogy with a lattice
polymer model whose entropy is purely configurational,30,31 hence
the conventional name “configurational entropy” and notation Sconf
widely used in the experimental literature.32 We show below that
there is no, and that there cannot be any, unique definition of Sconf.
We nevertheless use the same symbol for all discussed estimates. In
particular, Sconf ≈ Sexc.

We compile state-of-the-art experimental32,34,35 and numeri-
cal16,33 data of Sconf and their extrapolation to low temperatures in
Fig. 2. We employ a representation close to Kauzmann’s original
analysis,29 rescaling Sconf by its value at some high temperature (we
choose the mode-coupling temperature Tmct,36 for convenience).

In calorimetric experiments, the configurational entropy
becomes constant below Tg upon entering the nonequilibrium glass
regime, defining a residual entropy.29,34 The glass residual entropy
is a nonequilibrium effect that has been extensively discussed.37–41

Here, we focus on equilibrium supercooled liquids and do not dis-
cuss further the glass residual entropy and remove nonequilibrium
measurements in Fig. 2.

The data for ethylbenzene and toluene are extended by combin-
ing conventional calorimetric measurements to data indirectly esti-
mated from ultrastable glasses produced using vapor deposition.35,42

In that case, T corresponds to the substrate temperature. Various
computational models using hard,43 soft,44 and Lennard-Jones (LJ)
potentials,45 along isochoric and isobaric paths, in spatial dimen-
sions d = 216 and 333 are included along with experiments.32,34,35

This representative data set demonstrates that all glass formers in
dimension d = 3 display a sharp decrease in Sconf, even down to a
temperature regime unavailable to Kauzmann. These results rein-
force the idea that Sconf can vanish at a finite temperature, TK > 0.
Simulation data in d = 2 suggest instead that Sconf vanishes only at
TK = 0, suggesting that a finite TK entropy crisis does not occur for
d < 3.16

Of course, the data in Fig. 2 do not rule out the existence,
at some yet inaccessible temperature, of a crossover in the behav-
ior of Sconf that makes it smoothly vanish at T = 046,47 or remain
finite with an equilibrium residual entropy in classical systems,48–52

a discontinuous jump due to an unavoidable crystallization,29,53,54

a liquid-liquid transition,22 or a conventional (kinetic) glass

FIG. 2. Experimental and numerical determinations of the equilibrium configura-
tional entropy in various models16,33 and materials.32,34,35 Data points extracted
from vapor deposition experiments35 are indicated by the ellipse. Both axes are
rescaled using the mode-coupling crossover as a reference temperature at which
the relaxation time is about 10−7 s. For hard spheres, the inverse of the reduced
pressure, 1/p, replaces temperature. Extrapolation to low temperatures suggests
the possibility of an entropy crisis at a finite TK in d = 3, whereas TK = 0 in
d = 2.
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transition.55 These alternative possibilities are not supported by data
any better than the entropy crisis they try to avoid. It is impos-
sible to comment on the many articles supporting the absence of
a Kauzmann transition,46,50,56–59 but we clarify below that none of
them resists careful examination. The existence of a thermodynamic
glass transition remains an experimentally and theoretically valid,
but unproven, hypothesis. Thus, extending configurational entropy
measurements to even lower temperatures remains an important
research goal.60

As emphasized repeatedly, a negative Sexc is not prohibited by
thermodynamic laws.56 This is also not “unthinkable” since entropy
is not a general measure of disorder. As a first counterexample, think
of hard spheres for which the crystal entropy is larger than that of the
fluid above the melting density under constant volume condition. A
second example under constant pressure condition would be mate-
rials showing inverse melting.61 A stronger reason to “resolve” the
Kauzmann paradox is that if Sliq continues to decrease further below
Sxtal, the third law of thermodynamics could be violated.62 However,
the third law is conventionally interpreted as a consequence of the
quantum nature of the system.63 This implies that the Kauzmann
paradox is not really problematic if considered within the realm of
classical physics. In summary, there is no theoretical need to avoid
the entropy crisis.

However, theoretical treatments rooted in Gibbs and
DiMarzio’s theory30,31 relate the configurational entropy to the (log-
arithm of the) number of distinct glass states available to the sys-
tem at a given temperature. A proper enumeration of those states
must therefore result in a non-negative configurational entropy.
In this interpretation, Fig. 2 suggests that a fundamental change
in the properties of the free-energy landscape must underlie glass
formation.

A strong decrease of the configurational entropy answers the
question raised by the apparent structural similarity suggested by
the snapshots in Fig 1. Conventional phase transitions deal with the
“structure” of a single configuration,14,15 for instance, the periodic
order of the density profile for crystallization; see Fig. 3(a). By con-
trast, it is not the nature of the density profile that changes across
the glass transition but rather the “number” of distinct available pro-
files.1 There are many distinct states available to the liquid, leading
to a finite configurational entropy, but only a subextensive number
in the putative thermodynamic glass phase, where Sconf = 0. “Glass
order” can thus only be revealed by the enumeration of equilibrium
accessible states; see Fig. 3(b).

A final general question is the following: How can a purely ther-
modynamic quantity be useful to understand slow dynamics? After
all, the above phenomenological description of the glass transition
relies on dynamics, and a connection to configurational entropy is
not obvious. The first quantitative connection arose in 1965, when
Adam and Gibbs proposed that the time scale for structural relax-
ation increases exponentially with 1/(TSconf).17 Quantitatively, the
modest decrease in Sconf(T) in Fig. 2 could then be sufficient to
account for the modest increase in the apparent activation energy
and for the large increase in relaxation times although this view
remains heavily debated to this day.64,65

Testing the Adam-Gibbs relation has become a straw man for
a deeper issue:32,58,66,67 how can one (dis)prove the existence of a
causal link between the rarefaction of equilibrium states and slow
dynamics? In essence, the physical idea to be tested is that the driving

FIG. 3. (a) Crystallization at the melting temperature Tm corresponds to the emer-
gence of periodic order in the density profile of a single configuration. (b) The glass
transition at TK is detected by enumerating equilibrium configurations in config-
uration space C. Glass order is revealed by comparing the degree of similarity
[in practice, the overlap in Eq. (7)] of amorphous density profiles.

force behind structural relaxation for T > TK is the configurational
entropy gained by the system exploring distinct disordered states.
Slower dynamics then arises when fewer states are available at lower
T since the system hardly finds new places to go. In this view, the two
configurations in Fig. 1 relax at a much different rate not because
their structure is different but because much fewer equilibrium con-
figurations are accessible to the configuration on the right. This is
indeed hard to recognize by the naked eye.

C. Mean-field theory of the glass transition
Despite the diversity of theoretical works related to glass for-

mation, the configurational entropy plays a central role. This is
natural for theories rooted in thermodynamics and describe an
entropy crisis,17,18,68 but theories based on a different mechanism
must also explain the observed behavior of Sconf and the role played
by a (possibly avoided) entropy crisis.21,22,46 Finally, theories based
on dynamics must explain why a rapidly changing Sconf is an
irrelevant factor.24,69–71 This makes the concept of configurational
entropy, a careful understanding of its physical content, and the
development of precise numerical measurement important research
goals.

The first theory “predicting” an entropy crisis appeared about a
decade after Kauzmann’s work.30,31 Inspired by lattice polymer stud-
ies,72 Gibbs and DiMarzio identified the decrease in Sexc presented
by Kauzmann with the reduction of the entropy computed within
a set of mean-field approximations. In their lattice model, “states”
were identified with microscopic configurations, with no need to
subtract any vibrational contribution, Sconf ≃ Stot, where Stot is the
total entropy. An approximate statistical mechanics treatment of
their model yields Stot → 0 at a finite temperature.
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Revisions and extensions of the Gibbs-DiMarzio work
abound.48,73,74 Modern studies offer more detailed treatments of the
polymer chain and refined approximations.75 The entropy may or
may not vanish depending on the approximations used and the
ingredients entering the model.52,76 An entropy crisis is thus not
always present within the Gibbs-DiMarzio line of thought, but one
cannot draw general conclusions about the existence of an entropy
crisis in supercooled liquids. Moreover, the distinction between indi-
vidual configurations and free-energy minima is generally not con-
sidered, which may be problematic.77 Finally, these studies rely heav-
ily on the polymeric nature of the molecules to make predictions
whose validity for simpler particle models or molecular systems is
not guaranteed. These studies nevertheless suggest that the pres-
ence of a Kauzmann transition could well be system-dependent.
This is demonstrated by some specific colloidal models in which the
entropy crisis is indeed avoided with a finite configurational entropy
at zero temperature.49,51

A coherent mean-field theory of the glass transition was
recently derived for classical, off-lattice, point particle systems inter-
acting with generic isotropic pair interactions.78–82 The “mean-field”
nature of the theory stems from the fact that it becomes mathe-
matically exact in the limit of d → ∞, whereas it amounts to an
approximate analytic treatment for physical dimensions d <∞. The
nature of the glass transition found in this mean-field limit agrees
with results obtained in the past in a variety of approximate treat-
ments, starting with density functional theory of hard spheres,83

replica calculations of fully connected spin glass models,18,84–88 and
others.89–91

The fact that distinct models and treatments yield similar
results reflects a universal evolution of the free-energy landscape
in glassy systems, with results rediscovered in a variety of con-
texts.28,92 The theory reveals the existence of sharp temperature
scales where the topography of the free-energy landscape changes
qualitatively. There exists a first temperature scale, Tonset, above
which a single global free energy minimum exists and below which
a large number, N, of free-energy minima appear. This number
scales exponentially with the system size, which allows for the def-
inition of an entropy, Σ = lnN,93 also called complexity. At a sec-
ond temperature scale, Tmct < Tonset, the partition function becomes
dominated by those multiple free-energy minima. This transition
shares many features with the dynamic transition first discovered
in the context of mode-coupling theory.36 The third critical tem-
perature is TK < Tmct, below which the number of free-energy
minima becomes subextensive, resulting in a vanishing complexity,
Σ(T → TK)→ 0.

An entropy crisis is thus an analytic result in mean-field theory,
which provides a clear physical interpretation of the configurational
entropy as the logarithm of the number of free-energy minima,
Sconf ≈ Σ = lnN. A Kauzmann transition is exactly realized and is
referred to as a random first order transition (RFOT).

The idea that the existence, number, and organization of dis-
tinct free-energy minima control the glass transition was elegantly
captured by an approach developed by Franz and Parisi.94,95 As in
Landau theory, they expressed the free-energy, or effective potential
V(Q), as a function of a global order parameter Q. As illustrated in
Fig. 3(b), the distinction between liquid and glass phases stems from
the degree of similarity of particle configurations drawn from the
Boltzmann distribution. Let us define an overlap, Q, as the degree of

similarity of the density profiles of two equilibrium configurations
such that Q ≈ 0 for uncorrelated profiles (liquid phase) and Q ≈ 1 for
similar profiles (glass phase); see Eq. (7) below.

The free-energy V(Q) can be computed analytically for mean-
field glass models, as shown in Fig. 4. As expected, the global mini-
mum of V(Q) is near Q ≈ 0 for T > TK as there exist so many distinct
available states that two equilibrium configurations chosen at ran-
dom have no similarity. All critical temperatures mentioned above
have a simple interpretation in this representation. The free-energy
V(Q) has nonconvexity when T < Tonset, it develops a secondary
minimum when T < Tmct, and this local minimum becomes the
global one when T reaches TK . The secondary minimum occurs
for Q slightly smaller than 1 due to thermal fluctuations.96 In this
description, mean-field glass theory shares similarities with ordinary
first-order transitions.

In the interesting regime, TK < T < Tmct, the glass phase at high
Q is metastable with respect to the liquid phase at low Q. The free-
energy difference between the liquid and glass phases results from
confining the system within a restricted part of the configuration
space. Preventing the system to explore the multiplicity of avail-
able free-energy minima entails an entropic loss, precisely given by
the complexity, TΣ(T). The temperature evolution of the configu-
rational entropy Sconf is thus readily visualized and quantified from
the Franz-Parisi free-energy, as shown in Fig. 4. The inset of Fig. 4
shows that a finite configurational entropy emerges discontinuously
at Tonset and vanishes continuously at TK .

The entropy crisis captured by the random first-order transi-
tion universality class is now validated by exact calculations per-
formed in the large dimensional limit, d → ∞.82 This confers to
RFOT, a status similar to van der Waals theory for the liquid-gas
transition. With its well-defined microscopic starting point, mean-
field theory confirms that the configurational entropy is central to
the understanding of supercooled liquids, and the rigorous treat-
ment it offers puts phenomenological and approximate ideas intro-
duced earlier by Kauzmann, Gibbs, DiMarzio, Adam, and others on
a solid basis. This now serves as a stepping stone to describe finite
dimensional effects.97–102

FIG. 4. Schematic plot of the Franz-Parisi free energy in mean-field theory. Inset:
Temperature evolution of the configurational entropy.
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D. Conceptual and technical problems
Physically, the configurational entropy quantifies the existence

of many distinct “glass states” that the system can access in equilib-
rium conditions. There are two main routes to measure Sconf.

First, one can subtract from the total entropy a contribu-
tion that comes from small thermal vibrations performed in the
neighborhood of a given reference configuration: Sconf(T) ≈ Stot(T)
− Sglass(T). In this view, Sglass(T) should be the entropy of an equilib-
rium system that does not explore distinct states at temperature T.
This quantity can be measured straightforwardly in equilibrium for
T < TK , whereas some approximations are by construction needed
to measure Sglass for T > TK .

Experimentally, it is often assumed that Sglass ≈ Sxtal because it
is possible to measure Sxtal in equilibrium using reversible thermal
histories.32 This represents a well-defined and physically plausible
proxy. It has been tested for some systems,103–108 and its validity
seems to be nonuniversal.108 We shall introduce in Sec. III E a com-
putational method to determine Sglass that makes no reference to the
crystal.109–111

The second general route to Sconf is to directly enumerate the
number of distinct glass states available to the system in equilib-
rium, N, and use Sconf = lnN. Here, mean-field theory provides a
rigorous definition of glass states as free-energy minima. However,
just as for ordinary phase transitions (e.g., van der Waals theory),
local free-energy minima are no longer infinitely long-lived when
physical dimension is finite, and states can no longer be defined pre-
cisely. Thus, strictly speaking, the complexity that vanishes at TK
in mean-field theory “is not defined in finite dimensional systems.”
Again, approximations must be performed to measure a physical
analog. Two such methods based on the Franz-Parisi free energy94,95

and glassy correlation length68 are now available, as discussed in
Secs. IV and V. The existence of an entropy crisis in finite dimen-
sion is not directly challenged by the approximate nature of these
estimates. To determine whether a Kauzmann transition can occur
in finite d, one should rather study the effect of finite-dimensional
fluctuations within a d-dimensional field theory using the Franz-
Parisi free-energy as a starting point.97–102 There exists no “proof”
that the Kauzmann transition should be destroyed in finite dimen-
sions as divergent conclusions were obtained using distinct approx-
imate field-theoretical treatments. This is a difficult, but pressing,
theoretical question for future work.

A popular alternative is the enumeration of potential energy
minima using the potential energy landscape (PEL), which was
actually proposed long before the development of mean-field the-
ory, first by Goldstein112 and further formalized by Stillinger and
Weber.113,114 The PEL approach assumes that an equilibrium super-
cooled liquid resides very close to a minimum of the potential
energy, also named inherent structure. Assuming further that each
inherent structure corresponds to a distinct glass state, the num-
ber of inherent structures, NIS, provides a proxy for the config-
urational entropy, Sconf ≈ ln NIS. This assumption offers precise
and simple computational methods to estimate the configurational
entropy,46,115,116 discussed below in Sec. III.

The identification between inherent structures and the free-
energy minima entering the mean-field theory should not be made
as explicit examples were proposed to show that it is generally
incorrect.77,117 Physically, it is believed that free-energy minima

may contain a large number of inherent structures. The concept
of “metabasins”118 has been empirically introduced to capture this
idea, but there is no available method to enumerate the number
of metabasins to obtain a configurational entropy. The hard sphere
model is a striking example of the difference between energy and
free energy minima. In large dimensions, hard spheres undergo
an entropy crisis, but it does not correspond to a decrease in the
number of inherent structures, which are not defined due to the
discontinuous nature of the pair potential.

Using the PEL approach, several arguments were given to ques-
tion the existence of a Kauzmann transition in supercooled liquids.
By considering localized excitations above inherent structures, Still-
inger provided a physical argument showing that the PEL approx-
imation to the configurational entropy cannot vanish at a finite
temperature.46 The effect of such excitations on the free-energy
landscape has not been studied, and so this argument does not
straightforwardly apply to the random first order transition itself.
In the same vein, Donev et al. directly constructed dense hard
disk packings of a binary mixture model to suggest that NIS can-
not yield a vanishing configurational entropy. This again does not
question the Kauzmann transition of that system since it should be
demonstrated that the equilibrium free-energy landscape is sensitive
to these artificial inherent states, whose relevance to the equilib-
rium supercooled fluid is not established.119 Finally, the ambiguous
nature of inherent structures becomes obvious when considering
colloidal systems composed of a continuous distribution of parti-
cle sizes. Starting from a given inherent structure, each permutation
of the particle identity provides a different energy minimum and a
naive enumeration of the configurational entropy120 would contain
a divergent mixing entropy contribution, again incorrectly suggest-
ing the absence of a Kauzmann transition.117 A similar argument
was proposed for a binary mixture.121 The problem of the mixing
entropy in the PEL approach is considered further, and solved, in
Sec. III F.

II. COMPUTER SIMULATIONS
OF GLASS-FORMING LIQUIDS
A. Why perform computer simulations
to measure the configurational entropy?

Let us start with some major steps in computer simulations of
supercooled liquids, referring to broader reviews for a more exten-
sive perspective.122,123 Early computational studies date back to the
mid-1980s,124–128 followed by intensive studies strongly coupled to
the development of mode-coupling theory during the 1990s.45 The
nonequilibrium aging dynamics of glasses,129 along with concepts of
effective temperatures,130–132 rheology,133,134 and dynamical hetero-
geneities,10,133,135,136 were in the spotlight at the end of the 20th cen-
tury. The search for a growing static lengthscale,137 linked to a Kauz-
mann transition and configurational entropy,115,116 has continuously
animated the field until today. Over this period spanning about 3
decades, the numerically accessible time window increased about as
many orders of magnitude, mainly due to improvements in com-
puter hardware. Until 2016, computer studies lagged well behind
experiments in terms of equilibrium configurational entropy mea-
surements, but recent developments in computer algorithms have
been able to generate, for highly polydisperse systems, equilibrium
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configurations comparable to experimental glasses.44 For these mod-
els, temperatures below the experimental glass transition are now
numerically accessible in equilibrium conditions, making computer
simulations an essential tool for configurational entropy studies in
supercooled liquids.16,138

As illustrated in Fig. 1, theories for the glass transition need
to make predictions for complex observables that reflect nontrivial
changes in the supercooled liquid, such as multipoint time correla-
tion functions,139 point-to-set correlations,137,140 nonlinear suscep-
tibilities,141,142 as well as properties of the potential and free-energy
landscapes.143–145 Most of these quantities are extremely challenging,
or sometimes even impossible, to measure in experiments. Com-
puter simulations are particularly suitable because they generate
equilibrium density profiles from which any observable can be com-
puted. Obtaining the same information in experiments is possible to
some extent in colloidal glasses, but still a challenge in atomistic or
molecular glasses.

Computer simulations take place under perfectly controlled
conditions and are therefore easier to interpret than experiments.
All settings are well-defined: microscopic model, algorithm for the
dynamics, statistical ensemble (isobaric or isochoric conditions),
external parameters, etc. Computer simulations are also very flex-
ible. Since the mean-field theory for the glass transition provides
exact predictions for the configurational entropy in infinite dimen-
sions, it is crucial to understand how finite-dimensional fluctuations
affect them. Along with current efforts that strive to develop renor-
malization group approaches to this problem, numerical simulations
give precious insights into the effect of dimensionality on the physics
of glass formation. Numerical simulations can be performed in any
physical dimensions, and the range d = 1–12 was explored in that
context.146–149 Even the space topology can be varied.150,151 One can
study the effect of freezing a subset of particles with arbitrary geome-
tries by means of computer simulations.140,152–155 The size of the
system under study can be tuned and finite-size scaling analysis can
reveal important lengthscales for the glass problem.156,157

B. Simple models for supercooled liquids
The features associated with the glass transition, such as a

dramatic dynamical slowdown and dynamic heterogeneities, are
observed in a wide variety of glassy materials composed of atoms,
molecules, metallic compounds, colloids, and polymers. It may be
useful to focus on simple models exhibiting glassy behavior to
understand the universal features of the glass transition. We con-
sider classical pointlike particles with no internal degrees of freedom
that interact via isotropic pair potentials. These models may not cap-
ture all detailed aspects of glass formation, e.g., β-relaxations due
to slow intramolecular motion in molecules, but their configura-
tional entropy can nevertheless be measured. The numerical study
of simple models is especially relevant in the context of configura-
tional entropy since mean-field theory was precisely derived for such
simple models, which allow direct comparison between theory and
simulations.82

For this perspective, we use results for three simple glass-
formers to illustrate generic features of entropy measurements. The
Lennard-Jones (LJ) potential was first introduced to model the
interaction between neutral atoms and molecules. The interaction
potential between two particles separated by a distance r reads

vLJ(r) = 4ε[(σ
r
)

12
− (σ

r
)

6
] , (1)

where ε and σ set the energy and lengthscales. The stiffness of
the repulsion in the soft-sphere (SS) potential vSS(r) = ε(σ/r)ν
can be tuned with ν.44 The hard-sphere (HS) potential, defined as
vHS(r) = ∞ if r < σ and vHS(r) = 0 otherwise, models hard-core
repulsion between particles of diameter σ. This highly idealized
model efficiently captures the glass transition phenomenology.158,159

We recall that for hard spheres, pressure P (or density ρ) and
temperature T are no longer independent control parameters but
enter together in the adimensional pressure, p = P/(ρT), so that 1/p
replaces the temperature for that system158 and directly controls the
packing fraction � via the equation of state, � = �(p).

The homogeneous supercooled liquid is metastable with
respect to the crystal in the temperature regime where the con-
figurational entropy is measured, and so the expression “equilib-
rium supercooled liquid” represents, strictly speaking, an abuse of
language. Designing glass-forming models in which crystallization
is frustrated and defining strict protocols to detect crystallization
is crucial.44 Mixtures of different species are good experimental
glass-formers: colloidal glasses are made of polydisperse suspen-
sions,160 and metallic glasses are alloys of atoms with different
sizes.161 Inspired by experiments, numerical models use particles of
different species which differ by their size σ or interaction ε. The
Kob-Andersen (KA) model is a bidisperse mixture with 80% larger
particles and 20% smaller particles, interacting via the LJ potential
with adjusted parameters σ and ε to describe amorphous Ni80P20
metallic alloys.45 Many numerical models with good glass-forming
ability have been developed,44,45,126,128,162,163 although development
in computational power now leads to crystallization for some of
those models.44,164–166 Thus, developing new models robust against
crystallization is an important research goal.

While the situation may seem satisfactory to theorists, numer-
ical glass-formers are probably too simplistic for many experimen-
talists. A wide variety of more realistic glass forming models have
been developed and studied.167–170 Future developments should aim
at designing minimal models for more complex systems and pow-
erful algorithms for efficient simulations, in order to also close this
conceptual gap.

C. Molecular dynamics simulations
The two main classical methods used to simulate the above

models are Monte Carlo (MC) and Molecular Dynamics (MD)
simulations.171,172 Quantum effects, partially included in ab initio
simulations, are irrelevant in the present context.

The course of a numerical simulation is very similar to an
experiment. A sample consisting of N particles is prepared and equi-
librated (using either MC or MD dynamics) at the desired state
point, until its properties no longer change with time. After equi-
libration is achieved, the measurement run is performed. Common
problems are just as in experiments: the sample is not equilibrated
correctly, the measurement is too short, the sample undergoes an
irreversible change during the measurement, etc.

A noticeable difference between computer and experimental
supercooled liquid samples is their size. Numerical studies of the
configurational entropy are limited to around 104 particles, to be
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compared to around 1023 atoms or molecules in experimental sam-
ples. Periodic boundary conditions are applied to the simulation
box in order to avoid important boundary effects and simulate the
bulk behavior of “infinitely” large samples. Lengthscales larger than
the system size are numerically inaccessible. Up to now, this limit
was not really problematic since all relevant lengthscales associated
with the glass transition are not growing to impossibly large values,
in particular, for static quantities. Analysis of dynamic heterogene-
ity has shown that systems larger than 104 particles are sometimes
needed.10,12,156

The difference between MD and MC is the way the system
explores phase space. The molecular dynamics method simulates the
physical motion of N interacting particles. As an input, one defines
a density profile rN0 , particle velocities vN0 , and an interaction poten-
tial between particles. The method solves the classical equations of
motion step by step using a finite difference approach. As an out-
put, one obtains physical particle trajectories (rN(t), vN(t)) from
which thermodynamic quantities can be computed; see Sec. II E.
By construction, the trajectories sample the microcanonical ensem-
ble. Other ensembles can be simulated by adding degrees of freedom
which simulate baths which generate equilibrium fluctuations in any
statistical ensemble.171,173,174

Molecular dynamics mimics the physical motion of particles,
very much as it takes place in experiments, but computers are much
less efficient than nature. Long MD simulations of a simple glass
model (about a month) can only track the first 4–5 orders of mag-
nitude of dynamical slowdown in supercooled liquids approaching
the glass transition to be compared to 12–13 orders of magnitude
in real molecular liquids. In Fig. 5, we show relaxation time τα of
some molecular liquids of various fragilities175–177,179 and MD sim-
ulations of polydisperse soft spheres under isobaric condition. The

FIG. 5. Isobaric relaxation time of supercooled liquids as a function of the inverse
temperature for ethanol,175 propylene carbonate,176 and propylene glycol,177 as
well as the standard molecular dynamics (open squares) and its combination with
the swap Monte Carlo algorithm (open circles)178 for three-dimensional polydis-
perse soft spheres.44 We renormalize axis using the onset of glassy dynamics
(τ0 = 10−10 s in experiments) and the corresponding T0. We fit MD results with
a parabolic fit, which provides a reasonable estimate of Tg for this system (verti-
cal dashed line). The SWAP algorithm (open circles) can equilibrate the numerical
model well below that Tg value.

temperature range accessible with MD simulations is far from the
experimentally relevant regime and stops well before Tg is reached
(estimated from a parabolic fit180).

Recently, efficient software packages for MD have been devel-
oped that use the power of graphic cards.181,182 They typically yield a
speed-up of about two orders of magnitude over normal MD, which
is sufficient to get below the mode-coupling crossover, and thus
access interesting new physics and dynamics.166,181

D. Beating the time scale problem:
Monte Carlo simulations

Monte Carlo simulations aim at efficiently sampling the config-
urational space with Boltzmann statistics.183,184 A stochastic Markov
process is generated in which a given configuration rN is visited
with a probability proportional to the Boltzmann factor e−βU(r

N
),

where β = 1/T and U are the inverse of the temperature and the
potential energy, respectively. The method only considers config-
urational, and not kinetic, degrees of freedom and is suitable for
configurational entropy measurements.

A Markov process is defined by the transition probability
T(rN → r′N) to go from configurations rN to r′N . To sample con-
figurations with a probability P(rN) given by the Boltzmann factor,
the global balance condition should be verified

∑
r′N

P(rN)T(rN → r′N) = ∑
r′N

P(r′N)T(r′N → rN). (2)

We consider a stronger condition and impose the equality in Eq. (2)
to be valid for each new state r′N . This detailed balance condition
reads

T(rN → r′N)
T(r′N → rN) = P(r′N)

P(rN) = exp[−β(U(r′N) −U(rN))]. (3)

In practice, T(rN → r′N) = α(rN → r′N) × acc(rN → r′N), where
α and acc are the probabilities to propose a trial move and to
accept it, respectively. We consider a symmetric matrix α for tri-
als such that the matrix acc obeys the same equation as T in
Eq. (3). If trial moves are accepted with probability acc(rN → r′N)
= min{1, exp[−β(U(r′N) −U(rN))]} (Metropolis criterion),183 the
configurations are drawn from the canonical distribution at equilib-
rium at the desired temperature.

Contrary to MD simulations, dynamics in a Monte Carlo sim-
ulation is not physical since it results from a random exploration
of configurational space. This is actually good news since there is
a considerable freedom in the choice of trial moves, opening the
possibility to beat the numerical time scale problem illustrated in
Fig. 5. The choice of trial move depends on the purpose of the
numerical simulation. A standard trial move consists in selecting
a particle at random and slightly displacing it. For small steps,
the dynamics obviously resembles the (very physical) Brownian
dynamics.185

Efficient Monte Carlo simulations should in principle be possi-
ble using lattice models for glasses, which would use discrete rather
than continuous degrees of freedom. This approach has been heav-
ily used to analyze models based on dynamic facilitation such as
kinetic Ising models186 or plaquette models,187 but the entropy does
not play any central role in these models. Lattice glass models were
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introduced as lattice models that have, in some controlled mean-
field limit, a random first order transition,90,91 but simulation studies
of finite dimensional versions of these models remain scarce,188 and
we are aware of no study of configurational entropy in such lattice
models.

If instead efficient equilibration is targeted, more efficient but
less physical trial moves should be preferred. In the SWAP algo-
rithm,44,163,189–193 trial moves combine standard displacement moves
and attempts to swap the diameters of two randomly chosen par-
ticles. Since the trial moves satisfy detailed balance in Eq. (3), the
SWAP algorithm by construction generates equilibrium configura-
tions from the canonical distribution.

Using continuously polydisperse samples, this algorithm out-
performs standard MC or MD, as equilibrium liquids can be gen-
erated at temperatures below the experimental glass transition.44

In Fig. 5, we show the equilibrium relaxation time τα of a hybrid
scheme of MD and SWAP MC developed recently in Ref. 178. The
relaxation dynamics with this scheme is significantly faster than with
standard MD, which makes equilibration of the system possible even
below the estimated experimental glass transition temperature Tg.
Accessing numerically these low temperatures is crucial to com-
pare simulations and experiments. From a theoretical perspective,
the concept of metastable state applies far better at low temper-
atures. In particular, numerical estimates for the configurational
entropy become more meaningful in these extreme temperature
conditions.

To conclude, Monte Carlo simulations are very relevant in
the present context because their flexibility allows us to compute
and compare different estimates for the configurational entropy of
supercooled liquids.33,138 These measurements are done under per-
fectly controlled conditions, in a temperature regime relevant to
experimental studies, and even at lower temperatures.16

E. From microscopic configurations to observables
The output of a numerical simulation consists in a series of

equilibrium configurations. To measure an observable numerically,
one must first express it as a function of the positions of the
particles.

Static quantities describing the structure of the liquid are easily
computed.194 In particular, the density field is given by

ρ(r) =
N
∑
i=1
δ(r − ri). (4)

Two-point static density correlation functions such as the pair
correlation function

g(r) = 1
ρN

⟨∑
i≠j
δ(r + ri − rj)⟩ , (5)

where ρ = N/V is the number density and the bracket indicates an
ensemble average at thermal equilibrium, and the structure factor

S(k) = 1
N

⟨ρkρ−k⟩ (6)

are evaluated, where ρk = ∑N
i=1 e

ik⋅ri is the Fourier transform of the
density field. Even if these quantities are not relevant to describe

the dynamical slowdown of the supercooled liquid (see Fig. 1),
they are convenient to detect instabilities of the homogeneous
fluid (crystallization and fractionation). Thermodynamic quantities
(such as energy and pressure), and their fluctuations (e.g., specific
heats and compressibility) related to macroscopic response func-
tions, can be computed directly from the two-point structure of the
liquid.

As presented in Sec. I C, the relevant order parameter for the
glass transition is the overlap Q that quantifies the similarity of equi-
librium density profiles. This quantity compares the coarse-grained
density profiles of two configurations to remove the effect of short-
time thermal vibrations. Numerically, the following definition is
very efficient:

Q = 1
N ∑i,j

θ(a − ∣r1i − r2j∣) , (7)

where r1 and r2 are the positions of particles in distinct configura-
tions and θ(x) is the Heaviside step function. The parameter a is usu-
ally a small fraction (typically 0.2–0.3) of the particle diameter. The
overlap is by definition equal to 1 for two identical configurations,
and it is slightly smaller than 1 due to the effect of vibrations and
becomes close to zero (more precisely 4πa3ρ/3 ≪ 1) for uncorrelated
liquid configurations at density ρ.

III. CONFIGURATIONAL ENTROPY BY ESTIMATING
A “GLASS” ENTROPY
A. General strategy

The configurational entropy enumerates the number of distinct
glass states. One possible strategy to achieve this enumeration is to
first estimate the total number of configurations or phase space vol-
ume, Ntot. If one can then measure the number of configurations
belonging to the same glass state, Nglass, the number of glass states
Nconf can be deduced, Nconf = Ntot/Nglass. Taking the logarithm of
Nconf yields the configurational entropy

Sconf = Stot − Sglass. (8)

Whereas the measurement of the total entropy Stot is straightfor-
ward, the art of measuring the configurational entropy lies in the
quality of the unavoidable approximation made to determine Sglass.
Recall that experimentalists typically use Sglass ≈ Sxtal. This is not a
practical method for simulations because numerical models which
can crystallize are generally very poor glass-formers. In this section,
we describe several possible strategies to measure Sglass which do
not rely on the knowledge of the crystalline state and present their
limitations.

Let us now introduce our notations for entropy calculations.
We consider an M-component system in the canonical ensemble in
d spatial dimensions, with N, V, and T = 1/β as the number of par-
ticles, volume, and temperature, respectively. We fix the Boltzmann
constant to unity. We take M = N to treat continuously polydisperse
systems. The concentration of the mth species is Xm = Nm/N, where
Nm is the number of particles of the mth species (N = ∑M

m=1 Nm). A
point in position space is denoted as rN = (r1, r2, . . ., rN). For sim-
plicity, we consider equal masses, irrespective of the species, which
we set to unity.
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For this system, the following partition function in the canoni-
cal ensemble is conventionally used:195

Z = Λ−Nd

ΠM
m=1Nm! ∫V

drNe−βU(r
N
), (9)

where Λ and U(rN) are, respectively, the de Broglie thermal wave-
length and the potential energy. The only fluctuating variables
are the configurational degrees of freedom rN since momenta are
already traced out in Eq. (9).

B. Total entropy S tot

An absolute estimate of the total entropy at a given state point
can be obtained by performing a thermodynamic integration from a
reference point where the entropy is exactly known,111,115,196,197 typi-
cally the ideal gas at ρ→ 0 or β→ 0. This approach works for all state
points which can be studied in equilibrium conditions and are con-
nected to the reference point by a series of equilibrium state points.
This is usually doable also in most experiments. However, this con-
straint prevents a direct analysis of the entropy of vapor-deposited
ultrastable glasses produced directly at a very low temperature. In
practice, to perform the thermodynamic integration and access Stot,
we need to distinguish between continuous “soft” interaction poten-
tials, such as the Lennard-Jones potential, and discontinuous “hard”
potentials, as in the hard sphere model,

Stot = Sid + βEpot(β) − ∫
β

0
dβ′Epot(β′) (soft), (10)

Stot = Sid −N ∫
ρ

0
dρ′

(p(ρ′) − 1)
ρ′

(hard), (11)

where Sid, Epot, and p = P/(ρT) are the ideal gas entropy, the averaged
potential energy, and the reduced pressure, respectively. The ideal
gas entropy Sid can be written as

Sid = N
(d + 2)

2
−N ln ρ −N lnΛd + S(M)mix , (12)

where S(M)mix is the mixing entropy of the ideal gas,

S(M)mix = ln( N!
ΠM

m=1Nm!
). (13)

When M is finite and Nm ≫ 1, Stirling’s approximation can be
used, ln Nm! ≃ Nm ln Nm − Nm, and Eq. (13) reduces to S(M)mix /N
= −∑M

m=1 Xm lnXm.
As a representative example, Fig. 6(a) shows the tempera-

ture dependence of the numerically measured total entropy in the
Kob-Andersen model.45 It decreases monotonically with decreasing
temperature.

C. Inherent structures as glass states
The first strategy that we describe to identify glass states

and estimate Sglass is based on the potential energy landscape
(PEL).112–114,118,145 The central idea is to assume that each configu-
ration can be decomposed as

rN = rNIS + ∆rN , (14)

FIG. 6. (a) Total entropy Stot and various estimates of the glass entropy Sglass:
harmonic Sharm

glass , with anharmonic correction Sanh
glass, and the Frenkel-Ladd entropy

SFL
glass. (b) Anharmonic energy Eanh from simulations (black points) and polynomial

fitting to third order (red line). (c) Constrained mean-squared displacement in the
Frenkel-Ladd method. The dashed horizontal line corresponds to the Debye-Waller
factor independently measured in the bulk dynamics at the lowest temperature.
The vertical arrow indicates αmin.

where rNIS is the position of the “inherent structure,” i.e., the poten-
tial energy minimum closest to the original configuration. This
trivial decomposition becomes meaningful if one makes the cen-
tral assumption that “different inherent structures represent distinct

J. Chem. Phys. 150, 160902 (2019); doi: 10.1063/1.5091961 150, 160902-9

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

glass states.” It follows immediately that the glass entropy, Sglass, then
quantifies the size of the basin of attraction of inherent structures.

Assuming that temperature is low, ∆rN can be treated in the
harmonic approximation. Expanding the potential energy U(rN)
around the inherent structure rNIS, one gets

Uharm(rN) ≃ U(rNIS) +
1
2∑i,j

∂2U(rNIS)
∂ri∂rj

∆ri∆rj. (15)

Injecting this expansion in the partition function, Eq. (9), gives

Zharm = e−βU(r
N
IS)ΠNd

a=1(βh̵ωa)−1, (16)

where ω2
a are the eigenvalues of the Hessian matrix. We also consid-

ered that each inherent structure is realized ΠM
m=1Nm! times in the

phase space volume as permuting the particles within each specie
leaves the configuration unchanged (see the related argument in
mean-field theory).198–200 This factorial term cancels out with the
denominator in Eq. (9).

We have implicitly assumed that exchanging two distinct par-
ticles produces a different inherent structure,120 which is consistent
with the identification of energy minima as glass states. Physically,
this implies that there is no mixing entropy associated with inher-
ent structures. As realized recently,117 this assumption produces
unphysical results for systems with continuous polydispersity.

Averaging over independent inherent structures (denoted by
⟨(⋯)⟩IS), the free energy of the harmonic solid is obtained

− βFharm = ⟨lnZharm⟩IS = −β⟨U(rNIS)⟩IS − ⟨
Nd
∑
a=1

ln(βh̵ωa)⟩
IS

. (17)

The internal energy of the harmonic solid is

Eharm = Nd
2
T + ⟨U(rNIS)⟩IS +

Nd
2
T, (18)

where the first and last terms are the kinetic and harmonic potential
energies. Using Eqs. (17) and (18), we finally obtain the glass entropy
in the harmonic approximation

Sharm
glass = β(Eharm − Fharm),= ⟨

Nd
∑
a=1

{1 − ln(βh̵ωa)}⟩
IS

. (19)

In practice, this method requires the production of a large
number of independent inherent structures obtained by perform-
ing energy minimizations from equilibrium configurations using
widespread algorithms such as the steepest decent or conjugate
gradient methods201 or FIRE.202 The energy U(rIS) is measured,
and the Hessian matrix is diagonalized to get the eigenvalues ω2

a.
Using Eq. (19), these measurements then provide the glass entropy
Sharm

glass . The numerical results for Sharm
glass (T) in the Kob-Andersen

model are shown in Fig. 6(a). The difference Stot − Sharm
glass is a widely

used practical definition of the configurational entropy in computer
simulations.115,116,155,196,203,204

D. Anharmonicity
Although presumably not the biggest issue, it is possible to

relax the harmonic assumption in the above procedure.145 First, the

anharmonic energy, Eanh, is obtained by subtracting the harmonic
energy in Eq. (18) from the total one,

Eanh = Epot − ⟨U(rNIS)⟩IS −
Nd
2
T. (20)

The anharmonic contribution to the entropy can then be estimated
as

Sanh = ∫
T

0

dT′

T′
∂Eanh(T′)

∂T′
, (21)

which requires a low-temperature extrapolation of the measured
Eanh(T). This can be done using an empirical polynomial fitting,
Eanh(T) =∑k≥2akTk, where the sum starts at k = 2 to ensure a vanish-
ing anharmonic specific heat at T = 0. By substituting this expansion
in Eq. (21), we obtain

Sanh(T) = ∑
k≥2

k
k − 1

akT
k−1. (22)

We show the numerically measured Eanh for the Kob-Andersen
model, along with its polynomial fit in Fig. 6(b). The nontrivial
behavior of Eanh suggests that the harmonic description overes-
timates phase space at low T but underestimates it at high T, a
trend widely observed across other fragile glass-formers.145,167 The
resulting Sanh using Eq. (22) is thus negative and is of the order of
Sanh/N ≈ −0.1, which is a small but measurable correction to Sconf.
As a result, the improved glass entropy Sanh

glass = Sharm
glass + Sanh is slightly

smaller than the harmonic estimate, as shown in Fig. 6(a).

E. Glass entropy without inherent structures
The identification of inherent structures with glass states is a

strong assumption which can be explicitly proven wrong in some
model systems.77,117,205 Moreover, inherent structures cannot be
defined in the hard sphere model (because minima of the poten-
tial energy cannot be defined), which is obviously an important
theoretical model to study the glass transition.

A more direct route to a glass entropy which automat-
ically includes all anharmonic contributions and can be used
for hard spheres is obtained by using the following decomposi-
tion:109–111,138,196,205–207

rN = rNref + δrN , (23)

where rNref is a reference equilibrium configuration. The first differ-
ence with Eq. (14) is that inherent structures do not appear since
deviations are now measured from a given equilibrium configura-
tion.

The second difference is the strategy to estimate the size of the
basin surrounding rNref, which makes use of a constrained thermody-
namics integration about the fluctuating variables δrN . The potential
energy of the system is βU(rN) and is augmented by a harmonic
potential to constrain δrN to remain small, leading to

βUα(rN , rNref) = βU(rN) + α
N
∑
i=1

∣ri − rref,i∣2. (24)

We consider the statistical mechanics of a given basin, specified
by rNref, under the harmonic constraint. The partition function and
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the corresponding statistical average are

Zα = Λ−Nd ∫
V

drNe−βUα(r
N ,rNref), (25)

⟨(⋯)⟩T
α =
∫V drN(⋯)e−βUα(r

N ,rNref)

∫V drNe−βUα(rN ,rNref)
. (26)

Note that the factorial term ΠM
m=1Nm! in Eq. (25) is treated as in

Eq. (16) within the PEL approach. We consider the entropy of
a constrained system as Sα = β(Eα − Fα), where βEα = Nd

2 +
β⟨Uα(rN , rNref)⟩

T
α and βFα = −ln Zα are the internal energy and free

energy, respectively.
In the glass phase, the system remains close to the reference

configuration for any value of α, including α = 0. For the liquid, this
is true only for times smaller than the structural relaxation time. For
α small but finite, however, the system must remain close to the ref-
erence configuration and explore the basin whose size we wish to
estimate. We therefore define the glass entropy in the Frenkel-Ladd
method as109

SFL
glass = lim

αmin→0
Sαmin , (27)

where (⋯) represents an average over the reference configuration.
The limit in Eq. (27) is a central approximation in this method,
which is directly related to the conceptual problems summarized
in Sec. I D. Because metastable glass states are not infinitely long-
lived in finite dimensions, a finite value of α is needed to prevent
an ergodic exploration of the configuration space, and the limit in
Eq. (27) is difficult to take in practice. The choice of αmin amounts to
defining “by hand” the glass state as the configurations that can be
reached at equilibrium for a spring constant αmin.

The practical details are as follows. At very large α (=αmax), the
entropy is known exactly because the second term in the right hand
side of Eq. (24) is dominant. The entropy of the system is described
by the Einstein solid,

Sαmax =
Nd
2
−N lnΛd − Nd

2
ln(αmax

π
). (28)

By performing a thermodynamic integration from αmax, one gets
Sαmin and thus SFL

glass from Eq. (27)

SFL
glass = Sαmax + N lim

αmin→0∫
αmax

αmin

dα∆T
α , (29)

where ∆T
α is defined by

∆T
α =

1
N

⟨
N
∑
i=1

∣ri − rref,i∣2⟩
T

α
. (30)

To perform the integration and take the limit αmin → 0 in Eq. (27),
we write

lim
αmin→0∫

αmax

αmin

dα∆T
α ≃ αmin∆T

αmin + ∫
αmax

αmin

dα∆T
α . (31)

The practical choice for αmax is simple as it is sufficient that it lies
deep inside the Einstein solid regime where ∆T

α = d/(2α) is satisfied.
For αmin, a more careful look at the simulation results is needed.

In Fig. 6(c), we show ∆T
α for the Kob-Andersen model at a

low temperature. The Einstein solid limit is satisfied for large α,
and we can fix αmax = 107. When α decreases, deviations from Ein-
stein solid behavior are observed, and a plateau emerges. Decreasing
α further, the harmonic constraint for ∆T

α becomes too weak and
the glass metastability is not sufficient to prevent the system from
diffusing away from the reference configuration, which translates
into an upturn of ∆T

α at small α. It is instructive to compare the
plateau level with the Debye-Waller factor measured from the bulk
dynamics,166 indicated by a dashed line. This comparison shows that
αmin ≈ 2 is a good compromise: it is in the middle of the plateau
and corresponds to vibrations comparable to the ones observed in
the bulk. Using this value for αmin, we obtain the Frenkel-Ladd glass
entropy shown in Fig. 6(a). We observe that SFL

glass is smaller than
Sharm

glass and becomes comparable to the anharmonic estimate using
inherent structures, Sanh

glass, as temperature decreases, confirming that
anharmonicities are automatically captured by the Frenkel-Ladd
method.205

We show the resulting Sconf = Stot − SFL
glass in Fig. 2. Compar-

ing with experimental data, the temperature range where Sconf can
be measured is limited since the SWAP algorithm is not efficient
for binary mixtures such as the Kob-Andersen model.203 Neverthe-
less, an extrapolation to lower temperature suggests that Sconf/N may
vanish at a finite TK.33

F. Mixing entropy in the glass state
Using multicomponent mixtures is essential to study super-

cooled liquids and glasses for spherical particle systems, as exem-
plified by metallic161 and colloidal160,208 glasses. This is also true for
most computer simulations since monocomponent systems crys-
tallize too easily, except for large spatial dimensions149 or exotic
mean-fieldlike model systems.209 For such multicomponent sys-
tems, a mixing entropy term appears in the total entropy, see
Eq. (12), with no analog in the glass entropy; see Eqs. (19) and (29).
Physically, this is because we decided to treat two configurations
where distinct particles had been exchanged as two distinct glass
states.

For typical binary mixtures studied in computer simulations,
the mixing entropy is about as large as the configurational entropy
itself over the range accessible to molecular dynamics simula-
tions.111,115 Therefore, neglecting the mixing entropy can change
the configurational entropy by about 100%, which in turn pro-
duces a similar uncertainty on the estimate of the Kauzmann
temperature. Properly dealing with the mixing entropy is thus
mandatory.117

For discrete mixtures, such as binary and ternary mixtures, with
large size asymmetries, the above treatment produces an accurate
determination of Sconf.115,116,155,196,203,204 However, for systems with
a continuous distribution of particle sizes, such as colloidal parti-
cles and several computer models, this leads to unphysical results.
In the liquid, the mixing entropy is formally divergent since for
M = N it becomes S(M=N)mix /N = (lnN!)/N ≃ lnN − 1 → ∞.210,211

Because the glass entropy remains finite in conventional treatments,
the configurational entropy also diverges, leading to the conclu-
sion that no entropy crisis can take place in systems with con-
tinuous polydispersity.117,212 A similar argument was proposed by
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Donev et al. to suggest that an entropy crisis does not exist in binary
mixtures.121

In fact, the above treatments do not accurately quantify the
mixing entropy contribution in the glass entropy. This can be eas-
ily seen by considering a continuously polydisperse material with a
very narrow size distribution, which should physically behave as a
monocomponent system but has a mathematically divergent mixing
entropy. In addition to this trivial example, the fundamental prob-
lem is illustrated in Fig. 7, which sketches three configurations which
differ by the exchange of a single pair of particles. The inherent struc-
ture and the standard Frenkel-Ladd methods treat those three con-
figurations as distinct. Physically, configurations (a) and (b) should
instead be considered as the same glass state since they differ by
the exchange of two particles with nearly identical diameters. The
glass entropy should contain some amount of mixing entropy, tak-
ing into account those particle permutations that leave the glass state
unaffected.117

Recently, two methods were proposed to estimate the glass
mixing entropy. The first method provides a simple approximation
to the glass mixing entropy using information about the potential
energy landscape.117 We describe the second one in Subsection III G,
which leads to a direct determination of the glass mixing entropy
using a generalized Frenkel-Ladd approach.33

G. Generalized Frenkel-Ladd method to measure
the glass mixing entropy

A proper resolution to the problematic glass mixing entropy
is to directly measure the amount of particle permutations allowed
by thermal fluctuations, instead of making an arbitrary decision.33

Technically, one needs to include particle permutations in the sta-
tistical mechanics treatment of the system. In addition to the posi-
tions, we introduce the particle diameters, represented as ΣN = {σ1,
σ2, . . ., σN}. Let π denote a permutation of ΣN , and ΣN

π repre-
sents the resulting sequence. There exist N! such permutations. We
define a reference sequence ΣN

π∗ = (σ1,σ2,σ3, . . . ,σN). The potential
energy now depends on both positions and diameters, U(ΣN

π , rN).
For simplicity, we write U(rN) = U(ΣN

π∗ , rN) for the reference
ΣN
π∗ .

Including particle diameters as additional degrees of freedoms,
the partition function reads

FIG. 7. Mixing entropy conundrum for continuous polydispersity. Should one treat
these 3 configurations as 3 distinct glass states or only two by grouping (a) and (b)
together? In Sec. III G, a computational measurement is described that provides
the correct answer, instead of guessing it.

Z = 1
N!∑π

Λ−Nd

ΠM
m=1Nm! ∫V

drNe−βU(Σ
N
π ,rN). (32)

This partition function is the correct starting point to compute the
configurational entropy in multicomponent systems, including con-
tinuous polydispersity. The resulting method is a straightforward
generalization of the Frenkel-Ladd method.109

As before, we introduce a reference configuration and a har-
monic constraint,

βUα(ΣN
π , rN , rNref) = βU(ΣN

π , rN) + α
N
∑
i=1

∣ri − rref,i∣2, (33)

where rNref is a reference equilibrium configuration.
For the unconstrained system with α = 0, the partition function

in Eq. (32) reduces to the conventional partition function in Eq. (9)
because diameter permutations can be compensated by the configu-
rational integral. Therefore, the computation of Stot is not altered by
the introduction of the permutations. For the glass state with α > 0,
the partition function in Eq. (32) and the corresponding statistical
average become

Zα =
1
N!∑π

N!Λ−Nd

ΠM
m=1Nm! ∫V

drNe−βUα(Σ
N
π ,rN ,rNref), (34)

⟨(⋯)⟩T, S
α =

∑π ∫V drN(⋯)e−βUα(Σ
N
π ,rN ,rNref)

∑π ∫V drNe−βUα(Σ
N
π ,rN ,rNref)

. (35)

We add a factor N! in the numerator of Eq. (34) because there exist
N! configurations defined by the permutations of the particle iden-
tities of the reference configuration rNref. More crucially, due to the
presence of rNref, the partition function in Eq. (34) is not identical to
the one in Eq. (25).

Following the same steps as before, we get the glass entropy by
a generalized Frenkel-Ladd method, defined as

SGFL
glass = Sαmax + N lim

αmin→0∫
αmax

αmin

dα∆T,S
α + S(M)mix − Smix(rNref,β), (36)

with

∆T, S
α = 1

N
⟨

N
∑
i=1

∣ri − rref,i∣2⟩
T,S

α
, (37)

and Smix(rNref,β) is obtained as

Smix(rNref,β) = − ln
⎛
⎝

1
N!∑π

e−β(U(Σ
N
π ,rNref)−U(r

N
ref))

⎞
⎠

. (38)

Note that in Eq. (36), the mean-squared displacement ∆T,S
α is eval-

uated by simulations where both positions and diameters fluctu-
ate, and we expect ∆T,S

α ≥ ∆T
α . Practically, ∆T,S

α is computed by
Monte Carlo simulations including standard translational displace-
ments and diameter swaps. In addition to this, SGFL

glass in Eq. (36) con-
tains another nontrivial contribution, S(M)mix − Smix, which requires
Monte Carlo simulations of the diameter swaps for a fixed rNref. In
practice, the entropy in Eq. (38) is evaluated by a thermodynamic
integration.33
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For mixtures with large size asymmetry such as the Kob-
Andersen model, particle permutations of unlike particles rarely
happen,203 and the generalized Frenkel-Ladd method yields Smix

= S(M)mix and ∆T,S
α = ∆T

α so that Eq. (36) reduces to the conventional
Frenkel-Ladd method in Eq. (29). On the other hand, for continu-
ously polydisperse systems or mixtures with small size asymmetry,
we expect Smix/N < S(M)mix /N →∞ and ∆T,S

α > ∆T
α . In the limit case of

a very narrow continuous distribution, we would have Smix/N = 0
and ∆T,S

α = ∆T
α , and we automatically get back to the treatment of a

monocomponent material.
We finally obtain the configurational entropy as Sconf = Stot

− SGFL
glass, which finally resolves the paradox raised by the mixing

entropy in conventional schemes. For polydisperse systems, both the
total entropy and the glass entropy in Eq. (36) contain the diverg-
ing mixing entropy term, which thus cancel each from the final
expression of the configurational entropy. Instead, the physical mix-
ing entropy contribution is quantified by Smix(rNref,β) in Eq. (38),
which is finite, and whose value depends on the detailed particle size
distribution of the system.

In Fig. 8, we show the measured Smix(rNref,β) for three represen-
tative glass-forming models. For the Kob-Andersen binary mixture,
the combinatorial mixing entropy, S(M=2)

mix /N ≈ 0.5,115,196 is found,
whereas for continuously polydisperse soft44 and hard spheres43

with polydispersity ≈23%, a finite value of the mixing entropy is
measured, with a nontrivial temperature dependence. The data also
directly confirm that the mixing entropy cannot be used to disprove
the existence of a Kauzmann transition.121

Figure 2 shows the final result, Sconf = Stot − SGFL
glass, for polydis-

perse hard and soft spheres along isochoric33 and isobaric paths (in
preparation), in d = 216 and 3. For the hard sphere model, we use the
inverse of the reduced pressure, 1/p = ρT/P, as the analog of the tem-
perature. Thanks to the efficiency of the SWAP algorithm for these
models, we can measure a reduction of the configurational entropy
comparable to experimental molecular liquids and even access

FIG. 8. Mixing entropy Smix/N as a function of the normalized temperature T /Tmct
for polydisperse soft spheres (SS), hard spheres (HS), and the Kob-Andersen
model (KA). The dashed line corresponds to the combinatorial mixing entropy for
the KA mixture.

values measured in vapor deposited ultrastable glasses.213 Therefore,
the simulation results presented here, together with experimental
ones, offer the most complete and persuasive data set for existence
of the Kauzmann transition at a finite temperature in d = 3 and at
zero temperature in d = 2.

IV. CONFIGURATIONAL ENTROPY FROM FREE
ENERGY LANDSCAPE
A. Franz-Parisi landau free energy

The mean-field theory of the glass transition introduced in
Sec. I C suggests a well-defined route to the configurational
entropy,214 based on free energy measurements of a Landau free
energy V(Q), expressed as a function of the overlap Q between pairs
of randomly chosen equilibrium configurations.94,95 A practical def-
inition of the overlap was given in Eq. (7). The introduction of the
appropriate global order parameter to detect the glass transition
driven by an entropy crisis is the first key step.

The second key point is the assumption that V(Q) contains, for
finite dimensional systems, the relevant information about the con-
figurational entropy. As illustrated in Fig. 4, mean-field theory sug-
gests that the glass phase at large Q, for TK < T < Tmct, is metastable
with respect to the equilibrium liquid phase at small Q, with a free-
energy difference between the two phases that is controlled by the
configurational entropy. To measure this configurational entropy,
one should first demonstrate the existence of the glass metastability
and use it to infer Sconf as a free energy difference between liquid and
glass phases.

The computational tools to study V(Q) and metastability are
not specific to the glass problem but can be drawn from computer
studies of ordinary first-order phase transitions.191 To analyze the
overlap and its fluctuations, we introduce a reference equilibrium
configuration rNref. We then define the overlap Qref = Q(rN , rNref)
between the studied system rN and the reference configuration and
introduce a field, ε, conjugate to the overlap,

Uε(rN , rNref) = U(rN) − εNQ(rN , rNref), (39)

where U is the potential energy of the unconstrained bulk system
(ε = 0). The corresponding statistical mechanics and average become

Zε = Λ−Nd ∫
V

drNe−βUε(r
N ,rNref), (40)

⟨(⋯)⟩ε =
∫V drN(⋯)e−βUε(r

N ,rNref)

∫V drNe−βUε(rN ,rNref)
, (41)

and the related Helmholtz free energy is obtained as

− βFε = lnZε, (42)

where the overline denotes an average over independent reference
configurations. All thermodynamic quantities can then be deduced
from Fε, such as the average overlap ⟨Q⟩ε = −(1/N)∂Fε/∂ε.

Following the spirit of the Landau free energy,15 we express the
free energy as a function of the order parameter Q, instead of ε. The
Franz-Parisi free energy V(Q) is obtained by a Legendre transform
of Fε,
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V(Q) = 1
N

(min
ε

{Fε + εNQ} − F0), (43)

where F0 = −β−1 ln Z0 is the free energy of the unconstrained sys-
tem, which simply ensures that V(Q) = 0 for the equilibrium liquid
phase at small Q. Following standard computational approaches for
free-energy calculations,191 V(Q) is directly obtained by probing the
equilibrium fluctuations of the overlap,

V(Q) = − T
N

ln
Λ−Nd

Z0
∫
V

drNe−βU(rN)δ(Q −Qref),

= − T
N

lnP(Q), (44)

where P(Q) = ⟨δ(Q − Qref)⟩ is the probability distribution of the
overlap function for the unconstrained bulk system.

This method naturally solves issues about the mixing
entropy.117 As captured in Eq. (43), this construction treats free
energy differences, with no need to define absolute values for the
entropy. The combinatorial terms in Eq. (41) are therefore not
included since they eventually cancel out. Additionally, the con-
straint applied to the system acts only on the value of the overlap
Q. Since particle permutations do not affect the value of the over-
lap, see Eq. (7), particle permutations within the same species can
occur both in the liquid, near Qliq, and in the glass, near Qglass, with
a probability controlled by thermal fluctuations.

In finite dimensions, the secondary minimum inV(Q) obtained
in the mean-field limit (see Fig. 4) cannot exist, as the free energy
must be convex, for stability reasons.215 At best, V(Q) should
develop a small nonconvexity for finite system sizes and a linear
part for larger systems, as for any first-order phase transition. In
the presence of a finite field ε, a genuine first-order liquid-to-glass
transition is predicted,94,95 where ⟨Q⟩ε jumps discontinuously to
a large value as ε is increased. This phase transition exists in the
mean-field limit and can in principle survive finite dimensional
fluctuations.

The existence of this constrained phase transition induced by a
field ε in finite dimensional systems is needed to identify the Franz-
Parisi free-energy with the configurational entropy in the uncon-
strained bulk system. If a metastable glass phase is detected in some
temperature regime T > TK , then it is possible to measure the free-
energy difference between the equilibrium liquid and the metastable
glass, namely, V (Qglass). This quantity represents the entropic cost
of localizing the system in a single metastable state: this is indeed the
configurational entropy.

B. Computational measurement
The free-energy V(Q) in Eq. (44) is the central physical

quantity to measure in computer simulations.138,214,216 It follows
from the measurement of rare fluctuations of the overlap since
P(Q) ∼ e−βNV (Q). Measuring such rare fluctuations (indeed, expo-
nentially small in the system size) in equilibrium systems is a well-
known problem that has received considerable attention and power-
ful solutions in the context of equilibrium phase transitions,191 such
as umbrella sampling. Physically, the idea is to perform simulations
in an auxiliary statistical ensemble where the Boltzmann weight is
biased by a known amount and from which the unbiased canonical

distribution is reconstructed afterwards.217,218 Combining this tech-
nique to the swap Monte Carlo44 and parallel tempering methods219

to sample more efficiently the relevant fluctuations makes possible
the numerical measurement of V(Q) over a broad range of physical
conditions.

The same numerical techniques can also be used to probe the
existence and physical properties of the phase transition induced by
a field ε. The ε-transition has given rise to a number of theoretical
and computational analyses, which conclude that the transition is
present in spatial dimensions d > 2.214,216,218,220–222 The phase transi-
tion emerges for temperatures lower than a critical temperature T∗,
which is the analog of Tonset defined in the mean-field theory. For
T < T∗, a first-order phase transition appears at a finite value ε∗(T)
of the field, where the overlap jumps discontinuously to a value
Qglass(T).

The existence of the transition allows the quantitative determi-
nation of the configurational entropy, namely,

Sconf =
N
T
V(Q = Qglass). (45)

A nearly equivalent determination can be obtained directly from
the properties of the constrained phase transition since ε∗ repre-
sents the field needed to tilt the Franz-Parisi free energy and make
the local minimum at large Q become the global one.138,214 Taking
into account the small but positive Qliq > 0, we can estimate the
configurational entropy as

Sconf ≃
N
T
ε∗(Qglass −Qliq). (46)

In Fig. 9, we show the evolution of the Franz-Parisi free energy
V(Q) for a system of continuously polydisperse hard spheres in three
dimensions, with N = 300 particles. The value of Qglass is identified

FIG. 9. Franz-Parisi free energy in three dimensional polydisperse hard spheres,
using a combination of swap Monte Carlo, parallel tempering, and umbrella sam-
pling techniques.138 V(Qglass) decreases progressively with increasing volume
fraction �. The vertical arrow indicates the estimate of Sconf as the free energy
difference between the low-overlap (Qliq) and large-overlap (Qglass) phases. The
estimated Kauzmann transition volume fraction, �K, at which Sconf vanishes is
�K ≈ 0.68. The system shows jamming transition by rapid compression of dilute
configurations at �J ≈ 0.655.223
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by a separate study of the ε-transition and is indicated as a vertical
dashed line. For each value of the volume fraction �, V(Qglass) pro-
vides an estimate of the configurational entropy using Eq. (45), as
shown by the vertical arrow.

More broadly, the data in Fig. 9 suggest that Kauzmann’s intu-
ition of an underlying thermodynamic phase transition connected
to the rapid decrease in Sconf is realized in deeply supercooled liquid.
The evolution of the Franz-Parisi free energy shows that the glass
phase at large Q is metastable as � < �K (i.e., T > TK), but its sta-
bility increases rapidly as � increases (i.e., T decreases), controlled
by the decrease in the configurational entropy. It is still not known
whether a finite temperature entropy crisis truly takes place as a ther-
modynamic phase transition, but the key idea that glass formation is
accompanied by the decrease in the associated free energy difference
(and hence the configurational entropy) is no longer a hypothesis
but an established fact.

Finally, the evolution of the free-energy V(Q) with supercool-
ing is quite dramatic. This large change quantitatively answers the
question raised by the apparent similarity of the two particle configu-
rations shown in Fig. 1. The density profiles of those two state points
do not seem very different, but their free energy profiles V(Q) are.
This means that to compare the two snapshots, one should monitor
appropriate observables reflecting the reduction of available states in
glass formation, instead of simple structural changes.

V. CONFIGURATIONAL ENTROPY FROM REAL
SPACE CORRELATIONS
A. A real space view of metastability

In finite dimensions, the long-lived metastable states envi-
sioned by mean-field theory do not exist since the system will
eventually undergo structural relaxation in a finite time. Therefore,
metastable states can at best exist over a finite time scale.18,224 In
the construction of Franz-Parisi,94,95 metastable states are there-
fore explored by introducing a global constraint on the system via
a field conjugate to the macroscopic overlap. This strategy allows
one to estimate the number of free energy minima for a given
temperature.

The constraint envisioned in the Franz-Parisi is global and acts
on the bulk system. In this section, we introduce another type of con-
straint that again allows a sharp distinction between the vicinity of a
given configuration (the glass basin) and the rest of the free energy
landscape. The key difference with the Franz-Parisi constraint is that
we impose a spatially resolved constraint to the system using a cavity
construction.68 We shall argue that this provides a real space inter-
pretation of the rarefaction of metastable states in terms of a grow-
ing spatial correlation length, the so-called point-to-set correlation
length. This correlation length cannot emerge from the observation
of the density profile in a single configuration but stems once again
from the comparison between the distinct density profiles available
under some constraint.

The main idea is illustrated in Fig. 10. We prepare an equi-
librium configuration of the system, which we take as a reference
configuration, rNref. We then consider a configuration rN which is
constrained to be equal to the reference configuration outside a
cavity of radius R but can freely fluctuate inside the cavity. There-
fore, the constraint from the reference configuration is now only

FIG. 10. Sketch of the cavity construction to determine the point-to-set lengthscale.
The positions of the particles outside a cavity of radius R are given by a reference
equilibrium configuration and are frozen, while particles inside the cavity evolve
freely at thermal equilibrium in the presence of the frozen amorphous boundaries.
The overlap profile Q(r) is defined by comparing the density profile inside the cavity
to the reference configuration.

felt at the frozen amorphous boundary of the cavity. By varying
the cavity size R, one can then infer how far the constraint propa-
gates inside the cavity. As quantified below, one expects a crossover
between small cavities where the constraint is so strong that particles
inside the cavity can only remain close to the reference configura-
tion, whereas for very large cavities particles inside the cavity will
explore a large number of distinct states. The crossover between
these two regimes is used to define the point-to-set correlation
length.68,225,226

Why is this crossover length directly connected to the con-
figurational entropy? This can be understood following a simple
thermodynamic argument. Suppose the particles inside the cavity
explore states that are very different from the reference configura-
tion. This will allow them to sample states that have a low over-
lap Q with the reference configuration. The free energy gained by
this exploration is directly given by the Franz-Parisi free energy,
∆F− = V(Qglass)vdRd, where vd is the volume of the unit sphere in
spatial dimension d. There is however a free energy cost to explore
those states as the radial overlap profile inside the cavity Q(r) will
present an interface between Q(r = 0) ≈ 0 and Q(r = R) ≈ Qglass.
This interface in the profile of the order parameter has a free energy
cost, and a simple estimate is given by ∆F+ = Y sdRd−1, where sd
is the surface area of the unit sphere in dimension d and Y is a
surface tension between two distinct glass states. In many disor-
dered systems, the interfacial terms take a more general expression,
∆F+ = ΥRθ, where Υ is a generalized surface tension and the non-
trivial exponent θ ≤ d − 1 accounts for additional fluctuations in
directions transverse to the interface.18,227 Physically, these fluctu-
ations arise because the system can decrease the interfacial cost by
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allowing the position of the interface to fluctuate and take advantage
of the weakest spots.

The competition between exploring many states, which
decreases the free energy by ∆F−, and the interfacial cost of an inho-
mogeneous overlap profile, which increases the free energy by ∆F+,
leads to a well-defined crossover radius for the cavity where the two
terms balance each other,

∆F = ΥRθ − V(Qglass)vdRd = 0. (47)

This crossover radius defines the point-to-set correlation lengthscale
ξpts, given by

ξpts = ( Υ
V(Qglass)vd

)
1/(d−θ)

. (48)

This equation directly connects the decrease in the Franz-Parisi free
energy to the growth of a spatial correlation lengthscale. It is impor-
tant to note that sinceV (Qglass) is unambiguously defined and can be
measured in computer simulations, the same is true for the point-to-
set correlation lengthscale whose existence and physical interpreta-
tion do not require any type of approximation. In particular, there is
no need to assume the existence of long-lived free-energy metastable
states.

A connection between the point-to-set correlation lengthscale
defined in Eq. (48) and the configurational entropy can be estab-
lished by using Eq. (45) expressing the Franz-Parisi free energy
V(Qglass) as an estimate of the configurational entropy. We realize
that the growth of the point-to-set correlation lengthscale as tem-
perature decreases is equivalent to a decrease in V(Qglass) and thus
to a decrease in the Sconf, assuming a modest temperature depen-
dence of Υ.18,228 Therefore, the growth of the point-to-set correlation
lengthscale is a direct real space consequence of the decrease in the
configurational entropy.18,68 If a Kauzmann transition where Sconf
→ 0 occurs, then it must be accompanied by a divergence of the
point-to-set correlation lengthscale, ξpts →∞.

The relation between the point-to-set lengthscale and the con-
figurational entropy can be used both ways.138 First, it provides a
useful interpretation of the entropy crisis in terms of a diverging cor-
relation lengthscale, as put forward in the early development of the
random first order transition theory.18 We find it equally convenient
to use this connection in the opposite direction and deduce from the
growth of the point-to-set correlation length a quantitative deter-
mination of the variation of the configurational entropy.16,138 Using
the above scaling relations, the measurement of ξpts provides another
estimate of the configurational entropy

Sconf = N( ξ0

ξpts
)
d−θ

, (49)

where ξ0 is an unknown factor that results from conversion between
entropy and lengthscale. At this stage, the value of the exponent θ
is undetermined. It could be measured by comparing measurements
of Sconf following Eq. (49) to an independent estimate, for example,
from Eq. (45). The two supported values for the exponent are the
simple value θ = d − 1228–230 and the renormalized value θ = d/218,231

stemming from the random interface analogy. They, respectively,
lead to Sconf ∼ 1/ξpts and Sconf ∼ 1/ξd/2pts , which are equivalent in d = 2

and not very different in d = 3, given the relatively modest variation
of the configurational entropy reported in experiments.

B. Computational measurement
To determine the point-to-set correlation length numeri-

cally,137,232–235 we essentially follow the theoretical construction
described above and illustrated in Fig. 10. First, an equilibrium ref-
erence configuration rNref is prepared. We define a cavity of radius
R, centered on a randomly chosen position in the reference con-
figuration. We then define a configuration rN : the particles lying
outside the cavity are frozen at the same positions as in the reference
configuration, whereas particles inside the cavity can thermalize
freely.

The key observable is the overlap profile Q(r) between config-
urations rN and rNref inside the cavity. It is numerically convenient
to focus on the value of the overlap at the center of the cavity
Qcenter ≡ Q(r = 0), which depends both on the cavity size R and
the temperature T. Figure 11(a) shows the evolution of Qcenter with
the cavity size R for polydisperse soft disks in d = 2.16 At small R,

FIG. 11. Measurement of the point-to-set lengthscale in a 2d system of polydis-
perse soft repulsive spheres.16 (a) Evolution of the overlap at the center of the
cavity, Qcenter, with the cavity radius R for different temperatures. (b) Evolution of
the probability distribution of the overlap, P(Qcenter), with cavity radius R for a given
low temperature T = 0.035 ≈ 0.3Tg.
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Qcenter ≈ Qglass meaning that the system is constrained to remain
in the same state as the reference configuration. The overlap is
not strictly one because thermal fluctuations allow small deviations
around the reference configuration rNref. At larger R, however, Qcenter
decays to a small value, which implies that the system can freely
explore states that have different density profiles. The cavity size at
which the transition from high to low overlap occurs determines the
point-to-set lengthscale ξpts. In practice, one can define ξpts when
Qcenter reaches a specific value or from an empirical fitting of the
whole function, such as Qcenter ≈ exp[−(R/ξpts)b], where b is a fitting
parameter. The temperature evolution of Qcenter(R) is very interest-
ing as it directly reveals that the amorphous boundary condition
constrains more strongly the interior of the cavity as the tempera-
ture decreases. Physically, it indicates that as temperature decreases,
the point-to-set correlation lengthscale grows, or equivalently that
the configurational entropy decreases, in virtue of Eq. (49).

An interesting alternative view of the free-energy competition
captured by Eq. (47) emerges by considering the evolution of the
free-energy gain ∆F− of the configuration rN inside the cavity, as
the cavity size is decreased at constant T. For a very large cavity,
the particles in rN are pinned at the boundaries, but those at the
center of the cavity evolve as freely as in the bulk equilibrium sys-
tem. Since the free-energy gain ∆F− scales as Rd, it decreases as the
cavity size decreases, making it increasingly difficult for the configu-
ration rN to explore other states inside the cavity. As the cavity size
approaches the point-to-set lengthscale, the entropic driving force
to explore many states inside the cavity becomes comparable to the
free energy cost ∆F+ of the amorphous boundary. For even smaller
cavities, the system is frozen in a single state. The scenario that we
have just described for the cavity is nothing but the entropy crisis
predicted by the random first transition theory for the bulk system
as T → TK . In other words, decreasing the cavity size for a given
T > TK has an effect similar to approaching the Kauzmann transi-
tion in a bulk system. The qualitative difference is that the Kauz-
mann transition is a sharp thermodynamic transition happening for
N → ∞ in the bulk, whereas the entropy crisis in the cavity takes
place for a finite system comprising N ∼ ξdpts particles. The crossover
from small to large overlap observed around R ∼ ξpts(T) in the pro-
files of Fig. 11(a) is conceptually analogous to a Kauzmann transition
rounded by the finite size of the system.20

This analogy is even more striking when the fluctuations of the
overlap are recorded235 and not only its average value. Figure 11(b)
shows the probability distribution of Qcenter, denoted P(Qcenter), for
a fixed temperature as R is varied. For large R, the distribution peaks
at low values of the overlap, whereas for small R it peaks near Qglass.
Interestingly, at the crossover between these two regimes, P(Qcenter)
is clearly bimodal, which is reminiscent of the distribution of the
order parameter near a first-order phase transition in a finite sys-
tem. These observations suggest that it is interesting to monitor the
variance of these distributions, which is a measure of the susceptibil-
ity χ associated with this rounded Kauzmann transition. For a given
T, it is found that χ has a maximum when R = ξpts, which provides
a fitting-free numerical definition of the point-to-set correlation
lengthscale.235

Despite the conceptual simplicity of the measurements
described above, it is not straightforward to obtain statistically
meaningful numerical measurements of the overlap and of its fluc-
tuations inside finite cavities. There are several reasons for this. First,

to obtain a value for ξpts at a given temperature, one needs to ana-
lyze a range of cavity sizes that encompasses the crossover shown
in Fig. 11. For each cavity size R, a large number of independent
cavities need to be studied, and the overlap in each individual cav-
ity needs to be carefully monitored to ensure that its equilibrium
fluctuations have been properly recorded. All in all, the number of
required simulations is quite substantial.

The second major computational obstacle naturally stems from
the physics at play as R is reduced. Because the confined system
undergoes a finite-size analog of the Kauzmann transition, a major
slowing down arises in the thermalization process. This amounts
to studying an “ideal” glass transition in equilibrium conditions, an
obviously daunting task. This is however possible in the present case
because only a finite number of particles are contained in the cavity.
This allows the use of parallel tempering (or replica exchange) meth-
ods, first developed in the context of spin glasses to overcome ther-
malization issues in systems with complex landscapes.219 With these
techniques, the study of a given set of parameters (T, R) requires
simulating a large number of copies of the system interpolating
between the original system and a state point at which thermaliza-
tion is fast. During the course of the simulations, exchanges between
neighboring states are performed so that each copy performs a ran-
dom walk in parameter space. This method, developed in Ref. 235,
has proven sufficiently efficient and versatile to analyze point-to-set
correlations in a broad range of model systems down to very low
temperatures.138

VI. PERSPECTIVE
We presented a short review of the configurational entropy

in supercooled liquids approaching their glass transition. We first
described why and how configurational entropy became a central
thermodynamic quantity to describe glassy materials, both from
experimental and theoretical viewpoints. We then offered our views
on several paradoxes surrounding the configurational entropy. In
particular, we explained that there is no reason to try to avoid an
entropy crisis, that available data neither discard nor disprove its
existence, and that there exists no fundamental reason, published
proof, or general arguments showing that it must be avoided. In
other words, the Kauzmann transition remains a valid and use-
ful hypothesis to interpret glass formation. We also insisted that
this is still a hypothesis but in no way a proven or necessary
fact.

The biggest paradox of all is perhaps that the configurational
entropy, which represents the key signature of the entropy crisis
occurring in the modern mean-field theory of the glass transition,
cannot be rigorously defined in finite dimensions as a complex-
ity that enumerates free energy minima. We have presented several
computational schemes which are meant to provide at the same time
an estimate of the configurational entropy in numerical models of
glass-forming liquids and a physical interpretation that is valid in
finite dimensions.

We started with the historical method based on inherent struc-
tures, which enumerates the number of potential energy minima
as well-defined, but incorrect proxies, for free energy minima. It
is unclear that the inherent structure configurational entropy can
in fact vanish at a Kauzmann transition, and Stillinger provided
arguments that it cannot. This method is a computationally cheap
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method to remove a vibrational contribution to the total entropy,
but it cannot be used for simple models such as hard spheres or
continuously polydisperse glass-formers.

We then showed that a generalized method elaborating on ear-
lier ideas introduced by Frenkel and Ladd for crystals provides a
better estimate of the configurational entropy as it naturally includes
both the glass mixing entropy and finite temperature anharmonic-
ities. Additionally, the method can be applied to all types of mod-
els, including hard spheres, at a relatively cheap computational
cost.

More recent methods were developed as direct applications of
the mean-field theory to computer works, which both bypass the
need to mathematically define free energy minima. Free energy mea-
surements, based on the Franz-Parisi free energy, provide an esti-
mate for the configurational entropy that is the closest to the original
mean-field definition. This method relies on the definition of a global
order parameter for the glass transition, the overlap, which quan-
tifies the similarity between pairs of configurations. Conventional
methods employed in the context of equilibrium phase transitions
are combined to these measurements.

Finally, we showed that the decrease in the entropy can be
given a real space interpretation in terms of a growing correlation
lengthscale that is directly related to the configurational entropy.

This brief summary shows that there now exist conceptually
solid estimates of the configurational entropy that could truly pro-
vide a direct access to the thermodynamic behavior of supercooled
liquids. Given the recent progress of computer simulations to effi-
ciently equilibrate model systems down to temperatures that are
matching, and in several cases, outperforming experimental work,
we feel that this is an exciting moment for glass physics since a direct
demonstration of the relevance and connection to slow dynamics of
an entropy crisis and increasingly precise location of the putative
Kauzmann transition appear possible.
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