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ABSTRACT

We propose and numerically implement a local probe of the static self-induced heterogeneity characterizing glass-forming liquids. This
method relies on the equilibrium statistics of the overlap between pairs of configurations measured in mesoscopic cavities with unconstrained
boundaries. By systematically changing the location of the probed cavity, we directly detect spatial variations of the overlap fluctuations.
We provide a detailed analysis of the statistics of a local estimate of the configurational entropy, and we infer an estimate of the surface
tension between amorphous states, ingredients that are both at the basis of the random first-order transition theory of glass formation.
Our results represent the first direct attempt to visualize and quantify the self-induced heterogeneity underpinning the thermodynamics
of glass formation. They pave the way for the development of coarse-grained effective theories and for a direct assessment of the role of

thermodynamics in the activated dynamics of deeply supercooled liquids.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086517

I. INTRODUCTION

Glass formation is a universal phenomenon resulting from the
rapid increase of the viscosity or the structural relaxation time 7, (T)
of supercooled liquids when lowering the temperature." The vis-
cosity eventually becomes so large that the liquid no longer flows
on experimental timescales and behaves as a nonequilibrium amor-
phous solid, i.e., a glass: this operationally defines the glass transition
temperature Ty. This slowing down comes with an increasing het-
erogeneity of the dynamics, which is now well characterized in
experiments and computer simulations.”” At low enough temper-
ature, relaxation is not spatially homogeneous and the sample rather
contains domains of a high and low mobility with a typical life-
time of the order of 7,(T) and a size characterized by the dynamic
correlation length &;(74(T)). The latter grows upon decreasing the
temperature T."’

The Random First-Order Transition (RFOT) theory, first
developed by Kirkpatrick, Thirumalai, and Wolynes,” describes glass
formation in finite dimensions d by building on the mean-field pic-
ture of glassiness governed by the properties of an underlying rugged

free energy landscape.”” Relaxation slowdown is controlled by the
approach to a thermodynamic glass transition (the RFOT) at a tem-
perature Tx < Tg, which is characterized by a diverging lengthscale,
&ps(T). This static correlation length has been identified as the point-
to-set-correlation length and represents the average linear size R
over which the density profile of the liquid at a given point x is
constrained by the set of particles at a distance R from it.'""'* It
can be interpreted as resulting from the competition between a bulk
free energy gain of entropic nature that comes from the possibility
to explore an exponentially large number of accessible amorphous
states and a surface free energy cost associated with the coexistence
of two different amorphous states.'” The former is given by the con-
figurational entropy per particle, 2(T'), which decreases with the
decreasing temperature T until, at least in the mean-field scenario,
it vanishes at Tk. The latter is associated with a generalized sur-
face tension Y(T'). Due to this free energy competition, the liquid
is assumed to appear, at low enough temperature but still above
Tk, in a “mosaic state.” This can be schematically thought of as the
juxtaposition of different amorphous states extending over a typical
linear size®
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with 6 < d — 1" and p being the number density.

The RFOT theory, then, describes the structural relaxation
of the liquid via the thermally activated dynamics of the mosaic
domains®”'* with a typical free energy barrier scaling as [£y(T)]",
where y < d - 1. This description naturally captures the dynami-
cal slowdown with In7,(T) ~ [1/2(T)]""*?. The mosaic picture
also rationalizes the heterogeneous nature of the dynamics at low
temperature.

The existence of a complex free energy landscape with a multi-
tude of metastable states, which is found at the mean-field level”"”
and is postulated in finite dimensions by the RFOT theory, leads
to nontrivial thermodynamic fluctuations of the overlap order para-
meter, Q[+"; r}’], which represents the degree of similarity between
the liquid configuration, ", and a reference configuration ) of the
same liquid. As a result, equilibrium phase transitions are expected
when the global overlap is linearly coupled to a field €'° or when a
fraction ¢ of particles are pinned,'” '’ with associated critical points
in the universality class of the random-field Ising model (RFIM).”*'

The predictions of the RFOT approach for the dynamics
remain difficult to precisely assess beyond a general qualitative
agreement with the phenomenology of glass-forming liquids and
empirical correlations.”'”**** By contrast, the predictions for the
statics have received substantial support from numerical studies.
Generally speaking, the fluctuations of the overlap order para-
meter are found to behave in small systems as in the mean-
field theory.'”®**”" It has also been shown that a point-to-set
length can, indeed, be measured by considering cavities with
frozen boundaries'”'' and mildly grows upon decreasing the
temperature,”” *” and through finite-size scaling, evidence has been
provided for the existence of a transition in the presence of an
applied field € that terminates in a critical point in the RFIM uni-
versality class.”"""® In addition, signatures of a nonzero surface
tension between amorphous states have been obtained” *' and the
configurational entropy has been measured by a variety of tech-
niques,*” which all report a modest decrease with the decreasing
temperature.”*””*""* Note, however, that the connection between
the measured configurational entropies and the mean-field construct
is far from trivial: see, e.g., Refs. 42 and 47.

This accumulation of results concerning the macroscopic ther-
modynamical behavior of glass-formers provides encouraging signs
that the RFOT theory is a solid starting point. Despite this impor-
tant progress, many open questions remain in connection with the
RFOT theory. The very notion of a mosaic picture requires going
beyond macroscopic evidence and deals with local scale fluctuations.
Our work is an effort in this direction. In particular, the real-space
characterization of the mosaic itself remains rather fuzzy, to say the
least.”® Next, the configurational entropy, the surface tension, and
the point-to-set length are all expected to be random variables' """~
that fluctuate in space. These fluctuations, which are associated with
some kind of static heterogeneity of glass-forming liquids, can be
interpreted as resulting from a self-induced disorder.”> This termi-
nology comes from the quantitative analogy, at the mean-field level,
between liquids in infinite dimensions and fully connected spin glass
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models, which both exhibit a rough free energy landscape at the ori-
gin of their glassy slowdown. For the latter, the quenched disordered
interactions introduced in the Hamiltonian are directly responsible
for the emergence of a rugged landscape. In supercooled liquids,
particle interactions are not random, but frustration, nevertheless,
leads to similar complex free energy landscapes, which are then an
emerging physical property: hence, the term “self-induced.” This
should not be confused with the more obvious static heterogeneity
emerging from the aperiodic nature of liquid configurations.

The self-induced disorder is responsible for the RFIM univer-
sality class found for overlap fluctuations, and accordingly, they
imply that Tk =0 in 2d and that Tx >0 may exist in 3d only if
these fluctuations are weak enough.”’ The characteristics of the
self-induced disorder are, then, important to assess whether a ther-
modynamic glass transition exists in 3d glass-forming liquids or,
more ambitiously, to build an effective theory of the glass tran-
sition with parameters directly obtained from actual supercooled
liquids.” " Roughly speaking, the spatial fluctuations of the config-
urational entropy are the source of the emergent random field and
those of the surface tension are the source of an emergent random-
bond disorder.””"** Tt would be desirable to have direct access to
these fluctuations.

Finally, one would, of course, like to make a causal connection
between the static properties associated with the overlap fluctu-
ations, which all seem to be in qualitative agreement with the
mean-field and RFOT theory approaches, and the salient dynami-
cal phenomena observed in glass-forming liquids, super-Arrhenius
activated relaxation, spatially heterogeneous dynamics, nonexpo-
nential behavior of the time-dependent correlation functions, etc.
Our contention is that making empirical correlations between static
and dynamic quantities more significant, and, therefore, more
indicative of an actual causal relationship, requires to go beyond
the investigation of global correlations and to study the local ones
(see also Ref. 56). Local here refers to a mesoscopic scale over
which thermodynamic-like quantities such as a local configurational
entropy can be reasonably defined rather than a purely microscopic,
particle-based, one.

The primary objective of this work is to provide the first steps
in these directions and to shift the analysis of thermodynamic fluc-
tuations toward a more local scale. To this end, we develop a new
probe to directly assess the self-induced static heterogeneity in glass-
forming liquids via local free energy measurements. By free energy,
we mean the setup of the Franz-Parisi potential,'® which charac-
terizes the cost of keeping liquid configurations at a given overlap
with a reference configuration of the same liquid. We also intro-
duce a field e to bias the overlap with a reference configuration rj’
in a spherical cavity of radius R while letting the outside of the cav-
ity evolve without any thermodynamic constraint. By varying the
radius of the cavity and by systematically changing the location of
the cavity, we are, in particular, able to directly probe the spatial het-
erogeneity of the configurational entropy density and we can analyze
its statistics and spatial organization. This gives a real-space descrip-
tion of the emergent local random field and provides the necessary
ingredients for a better understanding of the mosaic picture pro-
posed by the RFOT theory. Our results show that all these quantities
can be defined and accessed numerically, which was not guaran-
teed by the success of macroscopic measurements. Building on our
approach, we believe that connections to structural relaxation can
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be addressed in the future, thus paving the way to answer several
important questions regarding the RFOT theory.

In several previous attempts to characterize the structural het-
erogeneity of supercooled liquids, the system needs to be first
quenched to its inherent state at zero temperature where some
kind of structural property, related to mechanical moduli,”””®
harmonic excitations,” and linear®” or non-linear’ response to a
localized perturbation, is analyzed. By construction, the connec-
tion with finite-temperature physical properties is at best indirect.
A second family of structural studies relies on the analysis of
finite-temperature equilibrium states and mostly uses particle-based
geometric information to reveal spatial fluctuations about the local
ordering of the liquid,"” "’ an approach that is now assisted by
machine learning techniques.”*®” It remains difficult to incorporate
these findings into a generic thermodynamic approach, accounting
for the observed fluctuations and phase transitions described above.

The remaining of this article is organized as follows. In Sec. II,
we discuss several settings that can, in principle, give access to the
spatial fluctuations of the configurational entropy density and of
related quantities, reviewing, in particular, the role played by bound-
ary conditions. The liquid model and the numerical methods are
presented in Sec. III. We describe our results and show illustrative
maps of the self-induced disorder in Sec. IV. We finally provide
conclusions and perspectives in Sec. V.

Il. STRATEGIES TO MEASURE LOCAL
OVERLAP FLUCTUATIONS

In order to access the self-induced disorder characterizing
glass-forming liquids, one needs to consider the overlap fluctua-
tions of mesoscopic subsystems and to characterize their variations
from one position to another. We discuss three different strategies,
corresponding to different boundary conditions applied on the sub-
system, which can be implemented toward this goal. These different
geometries are sketched in Fig. 1.

A. Point-to-set construction with frozen boundaries

The point-to-set construction relies on the study of the
statistical mechanics at a temperature T of a cavity of radius R and
position x in a frozen environment drawn from a reference equilib-
rium configuration ry; """ see Fig. 1(a). This amounts to studying
the thermodynamics of a mesoscopic cavity in the presence of a pin-
ning boundary characterized by a high overlap with the reference
configuration. This boundary condition induces an inhomogeneous
overlap profile, g(r), converging to 1 (or a high value if one does
not constrain the exterior of the cavity to be exactly frozen in the
reference configuration) when r > R; see Fig. 1(b).

Within the mean-field and RFOT theory settings, the thermo-
dynamic state of the cavity, as characterized by its overlap with its
counterpart in the reference configuration, results from the compe-
tition between a configurational entropy gain, -rx® (T;r) )pV4RY,
which drives the cavity to explore different amorphous states, and
a surface free energy cost, Y,(CR)(T; rf)\’ )SdRe, when there is a mis-
match in density profiles at the boundary of the cavity. Here, V; and
S4 = dV 4 are the volume and the area of the unit sphere in d dimen-
sions and 0 < d — 1. The value 6 = d/2 was proposed from a wetting
argument,” while 6§ = d — 1 was obtained in simulations,”**”*" by
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FIG. 1. Sketch of three different settings to investigate the self-induced disorder in
supercooled liquids at the mesoscopic scale. (a) and (b) Point-to-set construction:
a cavity of radius R at position x explores the configuration space in the presence
of a pinning boundary drawn from an equilibrium configuration rg‘ . The overlap at
the center of the cavity significantly decreases when R reaches the local point-
to-set length &sx (T; r{)" ). (c) and (d) Mesoscopic system with periodic boundary
conditions: the global overlap Q with a reference configuration is linearly biased by
an applied field e and its thermal average increases significantly when e reaches
the crossover field ¢ (T;rY). (€) and (f) This work: The overlap Q" in a cav-
ity of radius R is biased with a field e acting only inside the cavity. The overlap
at the center of the cavity significantly increases when e reaches the crossover
field ef (R, T; rg’). In (b), (d), and (f), Qrang << 1 stands for the overlap between
uncorrelated configurations, while Qg ~ 1 stands for the overlap between nearby
configurations (which may also fluctuate).

considering a model spin glass with large but finite-range interac-
tions'? and through instanton calculations.”**” The total free energy
per particle when the cavity is in a different amorphous state than
the reference configuration, then, reads

AF(R, T;r)) = =T (T3 r) ) + YO, @)

de—B
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The coarse-grained configurational entropy density =0 (T;7))
stands for the average of Z,(T;ry) over the cavity of radius R cen-
tered at position x. It crosses over from Z(T;ry ) for R <« & (T)
to the average configurational entropy density X(T) = (Z<(T;ry ))
for R > &;(T), where &5 (T) is the typical correlation length of the
configurational entropy and the brackets denote an average over
the positions of the cavity and over the reference configurations.

The local surface tension Y,(CR) (T;Y) is expected to depend on the
density profile in the reference configuration at the boundary with
the cavity, resulting in a dependence on both x and R. All these
quantities depend on the reference configuration r{ .

Within this point-to-set construction with frozen boundaries,
the radius R of the cavity plays the role of a control parameter and
the overlap at the center of the cavity crosses over from a high
value for R < &ysx(T;ry ) (AFy > 0) when the state in the cavity is
fixed by the boundary to a low value for R > &x(T; 7y ) (AFx < 0)
when the configurational entropy dominates the free energy. One
recovers Eq. (1), with ,((T), Z(T), and Y(T) now replaced by
the fluctuating quantities &yx( T ré\’ ), Z,(‘R) (T rgl ), and Y,(CR) (T ré\] )
with R = &.(T;7) ). The above argument predicts that the spatial
fluctuations of the configurational entropy density and of the sur-
face tension between amorphous states induce fluctuations of the
point-to-set length, which is determined through the self-consistent
equation

0 = (D) (7, Ny

d (§ u(T;rN)) N
+ WY’C P 0 (T, ro ) (3)

In particular, by varying the position x of the cavity and measuring
the local point-to-set length,”””" one should be able to describe some
aspects of the self-induced disorder in glass-forming liquids.

However, this raises conceptual and technical issues. On the
one hand, just from the spatial fluctuations of the point-to-set
length, it is impossible to disentangle the fluctuations of the con-
figurational entropy from those of the surface tension. On the
other hand, numerical measurements of the point-to-set length are
challenging because small cavities are much slower to thermalize
than their bulk counterpart®® and the simulations require enhanced
sampling techniques, such as parallel tempering.”” Despite these
limitations, the analysis of the average overlap profile in cavities
with frozen boundaries has been shown to be consistent with a
Weibull-distributed surface tension.””"’

B. Mesoscopic systems with periodic boundary
conditions

Another way of probing the mesoscopic fluctuations of the
configurational entropy is to consider relatively small systems of
linear size L with periodic boundary conditions and to bias its
overlap with a reference configuration rj with a linear field €; see
Fig. 1(c). This program was recently proposed in Ref. 56. The free
energy of the system now results from the competition between the
configurational entropy contribution TZ(L)(T; )pVaL? and an
energy —epV deQ, which attracts the system toward the reference

configuration; ) (T; 7)) is now the coarse-grained configurational
entropy measured over the simulation box. Then, the free energy
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cost per unit particle associated with the system having a large
overlap with the reference configuration is simply given as

AF(L Tsry) = TEV(T5r)) — ¢, (4)

where for simplicity we have assumed in the last term that the over-
lap is a binary variable, Q = 0, 1. The configurational entropy term is
positive as it tends to push the system away from the reference con-
figuration and it should be overcome by the field ¢, which, instead,
attracts the system toward the reference configuration.

In this construction, the applied field € is the control parameter.
It induces a crossover from a low overlap when the configurational
entropy dominates the free energy (AF > 0) to a high overlap when
the attractive energy wins (AF < 0) at a value e = € (T;ry ) with

e () = =P (T3 ), (5)

as sketched in Fig. 1(d).

Interestingly, due to the periodic boundary conditions, the sur-
face tension does not appear in the free energy in Eq. (4) and one
can directly access the fluctuations of the configurational entropy
density from those of the crossover applied field €} (T;#)). How-
ever, from a conceptual point of view, this method does not permit
to reconstruct a spatially varying field of the configurational entropy
density in a bulk macroscopic system and the boundary conditions
are not well controlled, as the mesoscopic system interacts with itself.
This geometry is, however, well suited to probe correlations with the
local relaxation dynamics.”® From a practical point of view, there is
a lower bound on the system size L: for too small values of L, the
system with periodic boundary conditions tends to crystallize more
easily.”"”

C. Local measurement of the Franz-Parisi potential
with unconstrained boundaries

We introduce a third geometry where we bias the overlap with
a reference configuration via an applied field €, which only acts
inside a mesoscopic cavity of radius R around a position x. Out-
side the cavity, the system freely evolves at thermal equilibrium
with no thermodynamic constraint; see Fig. 1(¢). Compared to the
two previous settings, this amounts to having a small overlap at
the boundary of the cavity, and the field € is, then, used to probe the
overlap fluctuations inside the mesoscopic system. In this case, the
free energy associated with keeping the cavity close to the reference
configuration is given by

AFc(R, T,¢; rg]) = TZ,(CR)(T; rf)\]) + Y,(CR)(T; rf)\]) -¢ (6)

PRd—9

where we have again assumed for simplicity that the overlap takes
only two values, 0 and 1.

The above free energy AF«(R, T, €; rg’ ) results from the compe-
tition between the configurational entropy, which leads the cavity to
explore the configuration space, and the coupling €, which, instead,
forces the cavity to remain close to the reference configuration, and
one further needs to take into account the surface cost when the den-
sity profiles inside and outside the cavity have a mismatch. In this
setting, the control parameter is still the applied field e. At a fixed
cavity size R, the overlap in the cavity crosses over from a low value
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for € < € (R, T;r) ) (AFx > 0) to a high value for € > €} (R, T;r))
(AFx < 0) with

d
YO (), )

er(RT3r0 ) = TESO(T5r)) + PRI0

as sketched in Fig. 1(f). By varying the size R of the cavity, one
can, in principle, access both the configurational entropy density
AR (T;7Y) and the local surface tension y® (T;r)). Varying the
position x of the cavity, then, reveals the self-induced heterogene-
ity in the reference configuration and the spatial fluctuations of both

=™ and Y, thus, in principle, allowing for the reconstruction of
the spatial fields of these two quantities.

One of the main advantages of this scheme is that the fluctua-
tions of the configurational entropy and of the surface tension can
be studied independently by varying R. This gives us a handle on the
distribution of the emergent random-field and random-bond dis-
orders. It should also be possible to extract the typical correlation
length &5 (T) of the configurational entropy that we have introduced
above. This length characterizes the spatial extent of the correlations
in the effective random field. To our knowledge, it has not been pre-
viously discussed in the literature, and its relation to the point-to-set
length &,(T) is not known. From a practical point of view, this set-
ting is also much less demanding in terms of computer resources
than point-to-set measurements because the cavity can more eas-
ily thermalize in the absence of frozen constraints at its boundary;
the outside of the cavity now acts as a reservoir of particles with
unconstrained dynamics.

1. NUMERICAL MODEL AND COMPUTATIONAL
METHODS

A. Numerical model and equilibration

We simulate a well-known size-polydisperse soft-sphere system
of N =576 particles of equal mass m in d = 2 with a distribution
of diameters u(0;) ~ 07 >*"""*" for 0; € [T min> Omax ] With Omax/Tmin
~ 2.225. Two particles i and j interact via the repulsive poten-
tial v(r) = vo(ay/ri)"* + co + c2(rij/03j)* + ca(riifoy)* if their rela-
tive distance r; = |ri — rj| satisfies 7;; / 0ij < xc = 1.25. The constants
co, €2, and ¢4 are chosen so that the potential and its two first deriva-
tives are continuous at the cutoff xc: ¢y = —28uvg/xc'%, ¢z = 48vg/xc,
and ¢; = —21vp/x.'®. This choice of p(0;) and of nonadditive
cross-diameters o = (1 — y|o; — 0| ) (0; + 0;) /2 prevents crystalliza-
tion and fractionation.”* Energies and temperatures are expressed
in units of vo (the Boltzmann constant is set to unity), lengthscales
are expressed in units of the average diameter o of the particles, and
timescales are expressed in units of \/mo?/vo. Using these units, we
set = 0.2, Omin ~ 0.725, and Omax = 1.613 048. The number den-
sity p = N/L equals 1, or equivalently, we set the linear size L of
the system to L = 24. This system has already been well character-
ized, and we report here three conventional temperature scales:’””
the onset temperature of glassy behavior Ton = 0.2, the mode-
coupling crossover temperature Tme = 0.115, and the extrapolated
calorimetric glass transition temperature Tg = 0.068.

We first generate equilibrium configurations used for the ref-
erence configurations rj at a temperature T with the Hamiltonian
H[r)] = Yicjv(rij), where the sum runs over all pairs of particles
with i,j=1,...,N. We use a hybrid scheme combining molecular
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dynamics (MD) with a Nosé-Hoover thermostat’®”® and swap
Monte Carlo moves of particle diameters that have been shown to
drastically speedup equilibration.”*”” The equations of motion in the
MD are solved with a time step dt = 0.005 and a thermostat damping
time 7y, = 0.5 by using a Liouvillian-based reversible integrator.’”"’
After nmp = 50 MD steps, the positions and the velocities of the par-
ticles are kept fixed and Nywap = Hswap N swap Monte Carlo moves are
attempted with ngwap = 10. These two steps are, then, repeated, and
independent configurations are stored every 27," ¥ (T), where 75""*
represents the structural relaxation for the hybrid MD dynamics

with swap moves.

B. Local measurement of the Franz-Parisi potential

We simulate a second configuration # of the system at the
same temperature T using the same scheme but with the modified
Hamiltonian (with d = 2)

AP [N;r ] = AN - pRV4eQP [ 1) ], (8)

following the local construction described in Sec. II C. In the above
expression, the local overlap in the cavity of radius R at position x is
defined as

@y ny T w(lr=riol/a) ¢(|r — x|/R)
x [r;ro] - N

iz1 §(|ri — x|/R)
with w(x) and ¢(x) smooth versions of the Heaviside step

function ©(1 - x) to avoid discontinuities in the forces exerted
on the particles in the course of the molecular dynamics simu-

, &)

lations. For convenience, we choose w(x) =e "2 and é(x)
=O(1-x)+0(x-1)O(1+b-x) x [(e D~y /(1)
+#2(x—1)* + k3(x — 1)*], where the constants «, and «3 enforce
that ¢(x) and its first derivative are continuous at x=1 and

x=1+b, namely, x; = —bks and 3 = 4beib4/(1 - e7b4). These
specific expressions for w(x) and ¢(x) are expected to affect the
results only quantitatively, leaving unchanged the qualitative trends
presented in this work. They involve two lengthscales. The choice
a =0.22 used in the definition of the overlap has been discussed
before,*” while b = 0.07 < R is a very small length defining a bound-
ary layer for the mesoscopic cavity of radius R, thus mimicking the
behavior of the Heaviside function.

For a given reference configuration, given position and radius
of the cavity, we simulate ns ~ 10 different values of € in the
range [€min, €max] and we monitor the histogram of overlap val-
ues in the cavity. The values of € are chosen so that the differ-

ent histograms significantly overlap and fill the entire range QP
€ [0,1]. We, subsequently, use histogram reweighting techniques to
compute the probability distribution of the overlap for any field
€€ [emin €max ], " and we eventually define the crossover field
€y as the field value for which the variance of the overlap
in the cavity is maximum.”® As in previous studies of overlap
fluctuations,”””® we have carefully checked that all distribu-
tions are correctly sampled in fully equilibrium conditions. When
dealing with ensemble averages, we, then, consider a number
nm of independent samples, with nm € [3,13] depending on the
temperature.

The radius R should be taken small enough, ideally smaller than
the correlation length of the configurational entropy to resolve its
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intrinsic fluctuations and smaller than the point-to-set length, but
it should be sufficiently large so that the cavity contains enough
particles to compute well-defined mesoscopic quantities, such as the
overlap in Eq. (9). In the temperature range investigated here, &, is
at most equal to 4.”” We, thus, focus on R = 2 and R = 4 (while the
linear system size is L = 24), respectively, corresponding to 13 and
52 particles on average in a cavity.

For a given reference configuration, we consider cavity cen-
ters on a linear grid of mesh size u = 2, corresponding to (L/u)*
= 144 different positions, and for each of them, we compute the
crossover field €} (R, T; 7Y ). Then, a continuous and coarse-grained
field €x(R, T; rON ) is computed by using a Gaussian window of width
£ =u/2 =1 and by summing over all the positions of the cavities,
namely,

>ew (R T; ,.lo\l)e-\x_x'|z/(uz)
Y e xP/2e)

&R Tsry) = (10)

This allows us to associate with each particle i a local field
@(R, T;r)) obtained from the above equation with x = r; and
resulting from a coarse-grained computation.

This work represents a significant computational effort: each
configuration requires the independent study of a large number of
cavities, and each cavity requires itself a series of lengthy simula-
tions. The additional ensemble average, then, multiplies the needed
effort, which must be repeated for each temperature. Although this
study is trivially parallelized, it requires a large amount of numerical
resources.

IV. RESULTS

We are now in a position to measure the local fluctuations of
the overlap and access the static spatial variations of the Franz—Parisi
potential and of the configurational entropy density across a broad
range of temperatures.

A. Spatial maps of the crossover field in cavities

The basic outcome of the simulations described in Sec. I1I is
the evolution of the local overlap at position x with a local field
also applied at x throughout the entire system. From these over-
lap isotherms, we extract the crossover applied field, which, then,
depends on space for each specific reference configuration. This
can be repeated for independent reference configurations at various
temperatures.

Using the coarse-graining procedure in Eq. (10), we construct
maps representing the crossover field & (R, T; ry ) attributed to each
particle. In Fig. 2, we show representative snapshots of this crossover
field for R = 2 and several reference configurations at temperatures
covering a very broad range from much above the mode-coupling
crossover down to very close to the calorimetric glass transition
temperature.

These snapshots reveal that the field €; fluctuates widely within
a given configuration. Because this crossover field represents an esti-
mate of the configurational entropy density, these images directly
show that the configurational entropy density in an equilibrium
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FIG. 2. Map of the coarse-grained crossover field & (R, T; r} ) for R = 2 in a sys-

tem with L = 24 and an equilibrium reference configuration rg’ sampled at different
temperatures T: (a) T = 0.165, (b) T = 0.125, (c) T = 0.1, and (d) T = 0.07. The
color code is adjusted independently for each panel.

supercooled liquid is a spatially fluctuating quantity. These measure-
ments represent a direct and quantitative visualization of the physi-
cal concept of the self-induced disorder characterizing glass-forming
liquids.*

Despite their apparent visual similarity, note that the color scale
has been independently adjusted in each snapshot to maximize the
color contrast, and both the average level and the spread of the field
are actually temperature dependent. In the following, we quantify
the field fluctuations in detail.

Still, the images do not appear to display a strong evolution
with the temperature of the typical spatial extent of fluctuations.
For this reason, we have not attempted a more precise character-
ization by using a spatial correlation function. Since the field is
already coarse-grained over a domain of diameter 2R = 4 and the
point-to-set length is at most &, ~ 4 in the temperature range under
investigation’’ (and one may anticipate that &, is an upper bound
for all thermodynamic correlation lengths), we do not expect any
detectable variation of the correlation length &5 in this range. An
interesting goal for future work would be to study a temperature
regime in which the point-to-set length becomes much larger than
the coarse-graining length, which should be possible via the swap
Monte Carlo algorithms.”*”” This would allow one to determine
whether §;(T) eventually decouples from &,,(T).
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B. Average configurational entropy and surface
tension

In order to have more insight into the statistics of the spatial
fluctuations of the crossover field shown in Fig. 2, we first consider
its average €* (R, T) = (e} (R, T;r}’)) over reference configurations.
We find that €* (R, T) decreases rapidly with the decreasing tem-
perature. This is consistent with the fact that the attraction between
replicas competes with a driving force of entropic nature, as captured
by Eq. (7). It is, therefore, more convenient to display the tempera-
ture evolution of this average rescaled by the temperature T for R = 2
and R =4 in Fig. 3(a).

We observe that the rescaled crossover field decreases with
the decreasing temperature as could be anticipated from the direct
inspection of the maps in Fig. 2. This is expected if the evolution of
€*/T is dominated by that of the configurational entropy density.
The variation of the latter with the temperature has already been
reported for this system” and, indeed, decreases as T decreases.

The average crossover field €* (R, T) also shifts toward smaller
values when the radius R of the cavity increases at fixed tempera-
ture T. It always lies above its counterpart ¢; (T) measured in the

1.5 ‘
(a) ‘:
1F E ./-/./.;:
& : —
~ [ 1 ]
3 ! /'/
0.5 L e (R=4,T)/T =
! e"(R=2,T)/T
i ! e, (T)/T
: »(T)
I | | |
% 0.05 0.1 0.15 0.2
T
0.09 75— S
0.06 1
§_| L
0.03F i
0 | | | |
0 0.05 0.1 0.15 0.2
T

FIG. 3. (a) Average crossover field e* (R, T) = (e; (R, T;r))) for cavity sizes
R = 2,4 along with the average ¢, (T) in bulk systems of linear size L = 8. All
fields are rescaled by the temperature T. We also represent the estimate of the
configurational entropy 2(T) obtained from Eq. (11). The vertical dashed lines
mark T = 0.182 and T = 0.052 for which the point-to-set length equals R = 2 and
R = 4, respectively. (b) Evolution of the average surface tension from Eq. (12). All
error bars are computed by the jackknife method when averaging over reference
configurations and are not shown when smaller than the symbols.
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system of linear size L = 8 (= 2R for R = 4) with periodic bound-
ary conditions (see Ref. 24 for the methods). These observations are
qualitatively consistent with the fact that an extra free energy cost
due to the mismatch between the density profiles inside and outside
the cavity increases the value of the crossover field. This extra contri-
bution increases when R decreases, suggesting that it does not scale
with the volume R? but, indeed, behaves as a surface tension term.

We rationalize the behavior of ¢ (R, T)/T seen in Fig. 3(a) as
follows. When T is reduced, the configurational entropy decreases,
possibly to zero, while the surface tension is expected to remain
finite.®® The competition between these two contributions to the
free energy is precisely ruled by the growth of the point-to-set
length; see Eq. (7). From Eq. (7), one, then, roughly predicts that
the configurational entropy controls the evolution of ¢*(R,T)/T
at high temperature, while the surface tension dominates at low
temperature. The crossover between the high- and low-temperature
regimes is expected around the temperature for which the radius R
of the cavity is of the order of the point-to-set length. As seen in
Fig. 3(a), € (R=4,T)/T, indeed, roughly follows the evolution of
€1 (T)/T (which is controlled by the configurational entropy den-
sity only) down to a temperature approaching that at which & = 4,
whereas €*(R=2,T)/T deviates already from ¢; (T)/T at the
highest temperatures where &, 2 2.

We can go one step further and assume that Eq. (7), which
qualitatively accounts for our observations, is, in fact, quantitatively
valid. If correct, then €* (R, T) = TE(T) + dY(T)/(pR*™%); Y(T)
here stands for the average surface tension in the case of a spheri-
cal interface and is assumed to be independent of R, which neglects
the curvature effects that may be present at small R*® and the pos-
sible random-field-like interface behavior at large R.%” Under these
conditions, one can extract the average configurational entropy as

270" (R, T) — €* (R/2,T)

T(240-1) (1)

x(T) =

with R=4, d=2, and 6=d-1=d/2=1. The application of
Eq. (11) is shown in Fig. 3(a) and agrees very well with the direct
measurement of e; (T)/T in bulk systems, for which the surface
tension plays no role [recall Eq. (5)]. This agreement supports the
validity of Eq. (7).

One can similarly extract the average surface tension,

pR[*(R/2,T) - €* (R, T)]
d(240-1)

Y(T) - (12)
with R=4, d=2, and 6=1. The result is shown in Fig. 3(b)
as a function of the temperature T. The average surface tension
decreases by ~40% when the temperature decreases, while Y(T)/T
is found to grow. Past works dealing with the surface tension
have reached contradictory conclusions regarding its temperature
evolution. In Refs. 39 and 40, the surface tension was found to
increase with the decreasing temperature in agreement with instan-
ton calculations.”™® Instead, the surface tension is usually taken
proportional to the temperature, as for conventional phase sep-
aration problems, in many analyses performed in the context of
the RFOT theory,”'" suggesting that it is a increasing function of
the temperature. Our simulation data appear intermediate between
these two proposals.
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We can tentatively rationalize the variation of the surface
tension with temperature in Fig. 3(b) by recalling that our esti-
mate may differ from the actual surface tension between states
because of the possibly more complex geometry of the RFOT mosaic.
If the domains composing the mosaic become more compact at
lower temperatures,%“\)” our method could overestimate the surface
tension at high temperatures by neglecting these geometrical effects.

C. Fluctuations of the configurational entropy:
Variance and correlation length

We now go beyond the average behavior and analyze the
fluctuations of the crossover field quantitatively. In Fig. 4(a), we
display the temperature evolution of the standard deviation,

8* (R, T) = \/([e;(R, T;rY) - e* (R, T)]?), (13)

rescaled by the temperature T for the cavity sizes R =2 and R = 4.
We first observe that at fixed temperature, this standard deviation is
larger for R = 2 than for R = 4. This is expected because the fluctu-
ations are generically stronger in smaller systems. In addition, from
Eq. (7), the surface tension term also constitutes a stronger source of
fluctuations for smaller R.

0.16 ; T
(a) |
0.12F 1
%0.08— 1 g
< I | |
0.04/- e (R=4,T)/T |
. 5" (R=2,T)/T
I : 5es (T))T
o005 01 015 02
T
1F b i T i T i a
(b) =
L // i J_\T
¥ /.*'
;F 0.5+ [ |
1/€5(T) =
I 52(T)
1/6ps(T) »
| | | Z(T) |
% 0.05 0.1 0.15 0.2

FIG. 4. (a) Standard deviation de* (R, T) of the crossover field for cavity sizes
R = 2,4 and for a bulk system of linear size L = 8. The vertical dashed lines mark
T =0.182 and T = 0.052 for which the point-to-set length is equal to 2 and 4,
respectively. (b) Evolution of the inverse correlation length 1/&5 (T) from Eq. (16),
of the standard deviation de* (R =2, T)/T = 8=(T), of the inverse point-to-set
length 1/&,,(T) from Ref. 37, and of the averaged configurational entropy =(T)
from Eq. (11). The first three curves have been rescaled by a constant to maximize
their overlap.
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For comparison, we also show in Fig. 4(a) the standard
deviation

8¢ (T) =\/([ef (TsrY) — e (T)2) (14)

of the crossover field measured in a bulk system with L = 8. It is quite
close to the results for d¢* (R = 4, T), especially at low temperature.
This agreement suggests that the fluctuations of the configurational
entropy dominate the fluctuations of €5 and that the surface tension
contribution is subdominant. Therefore, it is reasonable to assume
that

8e* (R, T)/T ~ 82 (T), (15)

where 6Z®(T) represents the standard deviation of =™ This
quantity should cross over from 62(T) = \/([Z«(T3r)) - Z(T)]?)
for R < &5(T), to 8X(T)[£x(T)/R]%? for R > &5 (T).

The temperature evolution of d¢* (R, T)/T is more pronounced
for R = 2 (it decreases when T decreases) than for R = 4 (it is nearly
constant), but both quantities seem to converge for T < 0.07. This
difference in the temperature dependence is naturally explained if
one assumes that & (T) ~ §,(T) and grows with the decreasing
temperature from &y ~ 2 to &y ~ 4 in the range T € [0.07,0.2].”
This would, indeed, imply that for R = 2, the system is always in
the regime R < &5(T), leading to 0e* (R =2, T)/T = 6Z(T). Instead,
for R = 4, one would explore the opposite regime R > &;(T) where
8¢*(R=4,T)]T = 82(T)éx(T)/4 (recall that d = 2). If this assump-
tion is correct, one can, then, combine these two expressions
to obtain an estimate for the entropy correlation length valid
for T > 0.07,

d¢*(R=4,T)

de*(R=2,T) (16)

&(T) =4

From the observation that 8¢ (R=4,T)/T = 62(T)&x(T)/4
is nearly constant, we deduce that §2(T) ~ 1/&;(T). Combining
this with the above remark that & =~ &, we conclude that 62(T)
~ l/fPS(T) ~Z(T). This is in agreement with the RFOT theory,
which predicts that 0%(T) ~ [£(T)]¥24=9 . 5(T)"" in d=2
with 0 = 1.

We test the self-consistency of this series of assumptions in
Fig. 4(b) where we represent four different quantities: (i) 1/&x(T)
obtained by using Eq. (16), (i) 8¢ (R = 2, T) /T, (iii) 1/&,,(T) taken
from Ref. 37, and (iv) the configurational entropy 2(T') estimated
by using Eq. (11). It can be seen that the four quantities evolve
with the temperature in essentially the same way. Quantities (i)-(iii)
are rescaled by a constant factor, as they are defined up to an
arbitrary prefactor. The very good agreement found between these
four quantities confirms our hypothesis that the standard devia-
tion for R = 2 essentially follows the temperature evolution of the
configurational entropy density itself, while its comparison with
the result R = 4 provides an estimate for the entropy correlation
length, which is in good agreement with the known evolution of the
point-to-set-correlation length, &5 (T) ~ £,,(T) in the studied tem-
perature regime. As shown in Fig. 4, the configurational entropy and
the point-to-set-correlation length display a temperature evolution
that is compatible with measurements performed in several glass-
forming models.*” This modest temperature evolution has given rise
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to debates regarding the relevance of thermodynamic fluctuations
to account for the physics of supercooled liquids: see, for instance,
Refs. 90 and 91.

Finally, these considerations about the correlation lengths
rationalize the absence of a qualitative change in the maps of Fig. 2
as the point-to-set length only grows moderately in the tempera-
ture range investigated, and this modest evolution is masked by the
coarse-graining procedure used to represent the random field.

D. Fluctuations of the configurational entropy:
Probability distribution

We finally analyze the full probability distribution of €; for
R = 2 and its temperature evolution; see Fig. 5(a). In agreement with
the snapshots shown in Fig. 2, the distribution narrows and shifts to
lower values with the decreasing temperature. Moreover, the distri-
butions are all asymmetric, with a positive skewness, and display an
extended tail toward large field values.

This is further confirmed by replotting the same data in
Fig. 5(b) with the help of the dimensionless variable

X=[e-€" (R T)]/0¢" (R, T), (17)

which is defined such that the average of X is zero and its vari-
ance is unity. In this representation, all the data collapse on a single
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FIG. 5. Probability distribution p(e; R, T) of the crossover field e
(R=2,T; r{)V) for several temperatures T as a function of (a) e and (b)
X =[e—¢€*(R,T)]/ée* (R, T). The full line corresponds to a generalized Gum-
bel distribution with « ~ 1.5, see Eq. (18), while the dashed line is a Gaussian
distribution.
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temperature-independent mastercurve P(X;R). Clearly, P(X;R) is
not a Gaussian distribution. It decays slowly at large positive X with
an exponential tail and decays much more rapidly at large negative
values.

Empirically, we find that the mastercurve is well fitted by
a generali)de Gumbel distribution with a single free parameter
an~ 15"

o
Vo & e—a[va (X+Aa)+27V"(X+A“)]

I'(a) ’

where T'(«) is the Euler Gamma function and where the para-
meters v, =/(InT)” (&) and Ay = v;'[In & — (InT)’(a)] involve
the first two derivatives of the natural logarithm of I'(«), denoted
with primes. The distributions for R = 4 can also be described by
the same law but with a slightly smaller skewness (about 1.14 and
0.74 for R =2 and R = 4, respectively). It would be interesting to
repeat the analysis for even larger values of R to check if the distribu-
tions p(e; R, T) become Gaussian, as expected from the central-limit
theorem when R > &;(T).

At this stage, the origin of such a Gumbel distribution inde-
pendent of the temperature remains somewhat unclear. The analogy
with the results of Ref. 93 may originate from the fact that we
record the statistics of the fluctuations of an observable defined over
a mesoscopic length, which is smaller than (or comparable to) its
correlation length and, therefore, appears “critical.” It would be valu-
able to repeat the analysis developed in this work with other model
glass-formers in order to assess the universality of this distribu-
tion of crossover fields among dimension and models. In Ref. 56, a
temperature-independent Gaussian distribution was obtained in rel-
atively small three-dimensional hard-sphere systems with periodic
boundary conditions, which either suggests that the distribution of
the configurational entropy density is not universal or that the lin-
ear size of the system in Ref. 56 was sufficiently large with respect to
&5 (T) for the central-limit theorem to hold. A final possibility is that
surface tension fluctuations present in our setting induce a quantita-
tive difference between the probability distributions of the crossover
field and those of the configurational entropy density even though
they do not contribute much to the variance.

P(X;R) = (18)

V. CONCLUSION AND PERSPECTIVES

We have introduced and numerically implemented a new probe
to reveal the static self-induced disorder in glass-forming liquids.
To this end, we have considered the statistics of the local overlap
between pairs of liquid configurations within a mesoscopic cavity
of linear size R located at position x. In particular, we have applied a
field e that is linearly coupled to the overlap inside the cavity, leaving
the outside fully unconstrained. This geometry corresponds to a dif-
ferent setting than the usual point-to-set construction, in particular,
at the level of the boundary conditions. This is also conceptually dif-
ferent from the study of mesoscopic systems with periodic boundary
conditions.

Varying the location of the cavity in a systematic way allows
us to scan the spatial fluctuations of the emergent disorder, which
is expected to take the form of random fields (configurational
entropy density) and random bonds (local surface tension). We
have, indeed, found nontrivial fluctuations in space of the crossover
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field €} (R, T;r) ) needed to induce a large local overlap inside
the cavity. We have also obtained a quantitative insight about the
temperature evolution of the average surface tension.

Although the crossover field e (R T; rf,\’ ) contains information
concerning the local surface tension, the effect of the latter is rather
small for the cavity sizes R that we consider, and in a first approxima-
tion, the fluctuations of €} (R, T; ry ) can be taken as a proxy for those
of the configurational entropy density. The maps in Fig. 2, then, rep-
resent a visualization of realizations of the effective random-field
disorder associated with an equilibrium reference configuration.
Such maps should not be confused with snapshots of the mosaic
state predicted by the RFOT theory. The random-field disorder is
an ingredient for an effective Hamiltonian describing glass-forming
liquids at a coarse-grained level”” (on a lengthscale of the order
of &5), whereas the mosaic state should, in principle, be obtained
from the full statistical-mechanical treatment of this effective Hamil-
tonian. Of course, with the characteristic lengthscales being rather
limited in size, it is not always easy to disentangle the various levels
in practice. One interesting piece of information would be to more
systematically compare the correlation length of the effective self-
induced disorder &5 with the point-to-set length . In the range
of temperature that we have studied, we have found them roughly
equal, but this may change at lower temperature where one would
anticipate a slower temperature variation for {5 than for ¢

From the viewpoint of the RFOT theory, our main contribution
is the development of a concrete numerical method that can directly
probe the existence and the spatial variations of well-defined analogs
of the configurational entropy and of the surface tension between
amorphous density profiles. Having measured the distribution of
the effective random field coupled to the overlap for this model, one
could now imagine building an effective field theory of the overlap
in finite dimensions. This would be useful in order to address central
questions posed by the application of the RFOT theory, in particular,
regarding the possible existence of a finite-temperature Kauzmann
transition in three-dimensional glass-formers.

In future work, it would also be interesting to apply our frame-
work to different model glass-formers and to perform a more sys-
tematic analysis of the fluctuations of the configurational entropy
density and of the surface tension. Extending our work to three-
dimensional models is conceptually simple, and this should also be
done in the future. It would also be useful to compare our approach
to the more mechanistic’’ °' and geometric®**’ studies of structural
heterogeneity mentioned in the Introduction. This would, in partic-
ular, illuminate the conceptual difference between the self-induced
disorder considered here and the more mundane structural disorder
characterizing aperiodic materials.

Another natural direction of the study would consist in assess-
ing the connection between the self-induced static heterogeneity
shown in this work and the well-known dynamic heterogeneity char-
acterizing the structural relaxation of deeply supercooled liquids.
The logarithm of the equilibrium relaxation time from different ini-
tial configurations was found to be positively correlated with the
inverse of the crossover field or of the configurational entropy in
mesoscopic bulk samples,”””” in direct agreement with the REOT
and Adam-Gibbs scenarios.'”*”® Analyzing whether a similar cor-
relation holds at the mesoscopic scale may pave the way toward a
better theoretical understanding of the complex dynamics of glass-
forming materials, which can now be numerically studied in deeply
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supercooled states.”” We consider this question as the most pressing
task to assess the relevance of the RFOT theory description of glassy
phenomena.
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