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Abstract. We assess the validity of “microscopic” approaches of glass-forming liquids based on the sole
knowledge of the static pair density correlations. To do so, we apply them to a benchmark provided by
two liquid models that share very similar static pair density correlation functions while displaying distinct
temperature evolutions of their relaxation times. We find that the approaches are unsuccessful in describing
the difference in the dynamical behavior of the two models. Our study is not exhaustive, and we have not
tested the effect of adding corrections by including, for instance, three-body density correlations. Yet,
our results appear strong enough to challenge the claim that the slowdown of relaxation in glass-forming
liquids, for which it is well established that the changes of the static structure factor with temperature are
small, can be explained by “microscopic” approaches only requiring the static pair density correlations as
nontrivial input.

1 Introduction

Despite decades of intensive research, the connection be-
tween dynamics and structure in glass-forming liquids re-
mains elusive. As a matter of fact, this is likely one main
reason that explains the difficulty in producing a compre-
hensive theory of the glass transition [1]. The structure of
glass-forming liquids, as experimentally probed through
the static structure factors or equivalently the pair cor-
relation functions, does not appear to change much when
temperature is decreased toward the glass transition while
under the same condition, the relaxation time dramati-
cally increases by orders of magnitudes. To incorporate
this, rather central, observation, several working hypothe-
ses have been proposed: i) do away with the statics and
assign the slowdown of relaxation to purely dynamical fea-
tures such as emerging kinetic constraints [2–4], ii) focus
on structural quantities that go beyond the pair density
correlations and represent higher-order and subtler corre-
lations between particles [5–12], iii) put forward mecha-
nisms by which the small modifications of the static pair
density correlations can be extremely amplified to pro-
duce spectacular dynamical changes. The theories based
on i) and ii), such as those involving dynamical facili-
tation [3,4], structural frustration [13–15] or a random
first-order transition [5,16,17], usually require some sort of
phenomenological input, either because they involve some
coarse-graining that introduces effective parameters only
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indirectly related to microscopic details or because they
are intractactable in their full-blown generality and need
approximate treatments. The paradigm of a type iii) the-
ory is the mode-coupling theory of the glass transition [18]
that predicts a freezing of the dynamics through a nonlin-
ear feedback effect affecting the fluctuations of density.

The appeal of so-called “microscopic” theories is that
they are able to make predictions from the knowledge of
the molecular properties, among which the interaction po-
tentials [19]. In the case of glass formation where it seems
likely that some form of collective or cooperative behav-
ior is at work and, correlatively, that some form of in-
dependence from the molecular details characterizes the
phenomenology, it is not clear that this should neces-
sarily be the best route to follow. In addition, “micro-
scopic” theories of the glass transition involve strong, un-
controlled approximations that are usually not justified at
a microscopic level. Nonetheless, such theories are at least
amenable to crisp tests on atomistic model systems.

In practice, “microscopic” approaches of the dynamics
of glass-forming liquids are built on the knowledge of the
static two-body density correlation functions (the static
structure factors in Fourier space). The latter encode the
microscopic information but represent only a partial de-
scription of the liquid structure. The issue we address here
then boils down to the following question: how far can one
go with the idea that the small observed changes in the
static structure factors are sufficient to describe the slow-
down of relaxation in glass-forming liquids?
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The approaches we consider in this paper, with various
degrees of exhaustivity and depth, are the mode-coupling
theory (MCT), for which we shall mostly summarize the
results obtained in our previous study [20], the “micro-
scopic” implementations of the random first-order transi-
tion (RFOT) theory through density functional theory [21,
22] or replica formalism [23,24], an approach that mixes
aspects of the MCT with thermally activated events [25–
27], and finally a proposed correlation between the dy-
namics of a glass former and its static pair correlation
functions via the two-body contribution to the excess en-
tropy [28,29]. To test these approaches, we have used as
a benchmark the glass-forming systems that we have al-
ready extensively investigated by computer simulation [30,
31]: the Kob-Andersen binary Lennard-Jones model and
its WCA (for Weeks-Chandler-Andersen [32]) reduction
to truncated, purely repulsive potentials. These two mod-
els have been shown to share very similar static pair den-
sity correlation functions while displaying increasingly dis-
tinct evolution of their relaxation times as temperature
decreases. A wide range of densities can moreover be con-
sidered, from low densities near the liquid-gas spinodal of
the full binary Lennard-Jones mixture to high densities at
which the difference between the two models progressively
vanishes, through the conventional liquid/supercooled liq-
uid range.

We find that the approaches based on the pair cor-
relation functions, or equivalently on the static structure
factors, are unsuccessful in describing the difference in the
dynamical behavior of the two glass-forming models, the
binary Lennard-Jones mixture and its WCA reduction.
This is true even after applying for some theories a global
rescaling of the predictions to better fit the simulation
data for one model, say the binary Lennard-Jones one
(in absolute terms, the predictions are indeed never very
good): the difference in the slowdown of relaxation of the
two models is still not correctly accounted for. As already
mentioned, our study is not exhaustive, and we have not
tested the effect of adding corrections to the description in
terms of static pair correlations by including, for instance,
three-body density correlations. In addition, we have cho-
sen to focus on simple glass formers. Yet, our results ap-
pear strong enough to challenge the claim that the viscous
slowing down of glass-forming liquids, for which it is well
established that the changes of the static structure factor
with temperature are small, can be explained by “micro-
scopic” approaches essentially based on the knowledge of
the static pair density correlations.

2 Benchmark system

The glass-forming systems that we consider are the three-
dimensional Kob-Andersen binary Lennard-Jones mix-
ture [33] (denoted LJ in the following) and its reduction to
the purely repulsive part of the pair potentials proposed
by Weeks, Chandler and Andersen [32] (denoted WCA in
the following). These are 80:20 mixtures of A:B atoms

with interatomic pair potentials

vαβ(r) = 4εαβ

[(σαβ

r

)12

−
(σαβ

r

)6

+ Cαβ

]
, for r ≤ rc

αβ

= 0, for r ≥ rc
αβ , (1)

where α, β = A or B, rc
αβ is equal to the position of the

minimum of vαβ(r) for the WCA model and to a conven-
tional cutoff of 2.5σαβ (merely introduced for practical
reasons with no impact on the physical quantities) for the
standard LJ model; Cαβ is a constant that is fixed such
that vαβ(rc

αβ) = 0. The Molecular Dynamics simulations
have been performed in the NV E ensemble, after equili-
bration at the chosen temperature, with N = 1000 parti-
cles, and we have studied a broad range of densities ρ from
1.1 to 1.8 (a detailed description of the phase diagram is
given in ref. [31]). Lengths, temperatures, and times are
given in units of σAA, εAA/kB , and (mσ2

AA/48εAA)1/2,
respectively.

These systems form a benchmark for the kind of inves-
tigation that we want to carry out as their equilibrium pair
structure is very close, while their dynamics strongly di-
verge as temperature is lowered [30,31]. Note that the two
models should be considered at the same density (pressure
is very sensitive to the presence or absence of attractive
forces). The observables that we measure in the simulation
are the partial static structure factors Sαβ(q) and pair cor-
relation functions gαβ(r) as well as the self-intermediate
scattering functions Fα

s (q, t), with q near the position of
the peak of the static structure factor at the most com-
monly studied liquid density ρ = 1.2 (qσAA � 7.2); we
extract the relaxation time from the latter, with the con-
ventional choice Fα

s (q, t = τ) = 1/e.

3 Tested “microscopic” approaches

The “microscopic” approaches of the dynamics of glass-
forming liquids that we assess by comparing to simulation
data on the above benchmark systems comprise first what
can be taken as bona fide theories, the mode-coupling
theory (MCT) [18] and the random first-order transition
(RFOT) theory [16,17].

The MCT (for more detail, see our previous arti-
cle [20]) is based on a nonlinear differential equation for
the time evolution of the two-point correlator of the den-
sity fluctuations. It can be derived for a Newtonian or for
a Brownian dynamics, and, since the latter is somewhat
simpler and leads to the same behavior at long times, this
is the one that we have used. The time dependence of the
intermediate scattering functions (two-point correlator of
the density fluctuations) for the liquid mixture is then
governed by

∂

∂t
F(q, t) = −D0 q2 S−1(q)F(q, t)

−
∫ t

0

dt′M(q, t − t′)
∂

∂t′
F(q, t′), (2)
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where D0 is the diffusion coefficient of an isolated Brow-
nian particle and F(q, t) is the matrix formed by the
intermediate scattering functions Fαβ(q, t) (such that
Fαβ(q, t = 0) = Sαβ(q)). The physics is contained in the
so-called memory kernel M(q, t) whose explicit form is
derived through a series of approximations from the ex-
act but intractable formal expression; it is a functional of
the intermediate scattering functions F(q, t) (taken at the
same time t) and, in the common implementation of the
theory, of the static structure factors S(q):

Mαβ(q, t) =
∑

γγ′δδ′

∫
d3k

(2π)3
Mαγδ,βγ′δ′

q,k [S(q),S(|q − k|)]

×Fγγ′(|q − k|, t)Fδδ′(k, t), (3)

where the expression of Mαγδ,βγ′δ′

q,k is given in ref. [34].
(Note that in principle this expression involves the static
triplet correlation function but the latter is almost always
considered in a factorized approximation.) In this formula-
tion, the only nontrivial input is therefore the partial static
structure factors Sαβ(q). An equation can also be derived
for the intermediate scattering functions Fα

s (q, t) [35,36].
However, it is known that for wave vectors corresponding
to typical interatomic distances the temperature depen-
dences of the relaxation times associated with the col-
lective and the self-intermediate scattering functions are
similar and, moreover, that the predicted critical temper-
atures Tc at which the dynamics freezes are identical [18].

The second type of theory that we shall test are mi-
croscopic implementations of the random first-order tran-
sition (RFOT) theory. The latter builds on an analogy
with the behavior of mean-field spin glasses without re-
flection symmetry [37–40]. It provides a scenario for the
slowdown of relaxation in glass-forming liquids that fo-
cuses on the free-energy landscape, which is postulated
to be characterized by an exponentially large number of
“metastable” states and the associated configurational en-
tropy (or complexity), and on an entropy-driven activated
relaxation, which leads to a heterogeneous “mosaic” liquid
state [16,17]. Microscopic implementations of the RFOT
theory can be realized at a mean-field level, where free-
energy “metastable” states have an infinite lifetime and
are therefore properly defined. They can be formulated ei-
ther in terms of a density functional approach (DFT) [21,
22,41,42] or within a replica formalism [23,24,43,44]. In
these mean-field-like approaches, one does not have a di-
rect access to the dynamics of the system but indirect
information is provided through the configurational en-
tropy and the two critical temperatures, Td at which the
complexity jumps to a finite value and TK at which the
complexity vanishes.

In the DFT treatment, one looks for the density pro-
files that minimize some appropriately derived (mean-
field) density functional. The main steps are the formula-
tion of the density functional itself and the a priori char-
acterization of the structure of the metastable states in
terms of trial (amorphous or “aperiodic” [45]) density pro-
files. The commonly considered Helmoltz free-energy func-
tional is the Ramakrishanan-Yussouff [46] approximation

which involves a Taylor series expansion (truncated after
the quadratic term) of the excess free energy around the
liquid phase with mean density ρ0. For a one-component
liquid, it is expressed as

F [ρ] =
∫

dr ρ(r)
(
ln[Λ3 ρ(r)] − 1

)
+ Fex(ρ0)

−1
2

∫
dr1

∫
dr2 c(|r1−r2|; ρ0)[ρ(r1)−ρ0][ρ(r2)−ρ0], (4)

where the first term of the right-hand side is the ideal-gas
functional, with Λ the thermal wavelength, and Fex(ρ0) is
the excess free energy of a homogeneous liquid of density
ρ0; c(r; ρ0) is the direct correlation function of the homo-
geneous liquid and is related to the pair correlation func-
tion g(r; ρ0) through the Ornstein-Zernike integral equa-
tion [47]. The density profiles ρ(r) of the metastable states
are generally described through a sum of Gaussian func-
tions centered about a given amorphous (or aperiodic) lat-
tice, with the width of the Gaussians characterized by a
variational localization parameter on which the minimiza-
tion of the free energy is then performed. In practice, the
amorphous lattice is chosen from a random close packing
of hard spheres with some effective diameter. Additional
approximations can also be introduced in order to further
simplify the computations [21,22,41,42].

An alternative approach uses the replica formalism,
which allows one to directly study the statistical proper-
ties of the metastable states and the configurational en-
tropy. To this end, one introduces m replicas of the original
liquid system and, if one is only interested in the liquid
above the putative RFOT to an ideal-glass phase, one con-
siders the difference between the free energy in the limit
m → 1+ (after having taken the thermodynamic limit)
and the homogeneous liquid value obtained for m = 1 [23,
43]. At low enough temperature, one expects the atoms in
the m copies to cluster around common positions in space,
thereby forming a “molecular bound state” and one can
use a “small cage expansion” around typical liquid con-
figurations in the spirit of the Einstein description of a
crystal (in the DFT context, this would correspond to the
self-consistent phonon approximation [48]). Truncated to
quadratic (harmonic) order, this approximation leads to
the following free energy per particle:

φ(m,A;T ) =
3(1−m)

2m
kBT [ln(2πA)+1]−mACliq(T/m)

− 3
2m

kBT ln(m) +
1
m

φliq(T/m), (5)

where A is the cage size, whereas Cliq(T ) and φliq(T ) are
the expectation value of the Laplacian of the potential
and the free-energy density for the equilibrium liquid (i.e.
with m = 1) at temperature T . The free energy in the
above equation should be minimized with respect to A (in
the glass phase which we shall not consider here one also
has to minimize with respect to m). The complexity (or
configurational entropy per particle) in the equilibrium
liquid is given by

Σ(T ) =
m2

kBT

∂

∂m

[
φ(m,A∗(m;T );T )

m

]∣∣∣∣
m→1

, (6)
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where A∗(m;T ) is the cage size at the minimum of eq. (5).
Because we only study the temperature range above the
ideal glass transition where m = 1, an expression of the
complexity in this range is easily obtained by expanding
eq. (5) around m = 1, such that the definition in eq. (6)
yields

Σ(T ) = Sliq(T ) − 3
2

[
1 + ln

(
3T

2〈ΔV (r)〉(T )

)]
, (7)

where 〈ΔV (r)〉 = 2πρ
∫ ∞
0

drΔV (r)g(r) and Δ is the La-
placian. This expression shows that the complexity is ob-
tained by subtracting from the total entropy a “vibra-
tional” term requiring the sole knowledge of the pair cor-
relation function g(r).

Whereas the two approaches give in principle the same
information, namely the complexity, the DFT is more de-
manding as it requires a choice of trial configurations to
describe the density profiles corresponding to the glassy
metastable states. Except for some comments on the DFT,
we shall therefore illustrate the ability of such calculations
to reproduce the differing behavior of the WCA and LJ
models by studying the complexity and TK via the replica
formalism and the small cage expansion. We only seek to
give an idea of what the approach can or cannot do (with
the commonly used approximations) and we therefore fur-
ther simplify the computation by obtaining the g(r) for the
WCA and LJ models via the HNC integral equation for a
one-component system. Of course, the choice of the HNC
integral equation may have some quantitative impact on
the results.

We next consider an approach that mixes microscopic
input and phenomenological considerations. Schweizer
and coworkers [25–27] have proposed a somewhat heuristic
extension of the MCT that incorporates activated mecha-
nisms allowing ergodicity to be restored at temperatures
below the Tc of MCT. It focuses on single-particle dy-
namics and boils down to a stochastic nonlinear Langevin
equation for the displacement of a particle r(t). The
central quantity is the “nonequilibrium free-energy func-
tional” which gives rise to the effective force exerted by
the surrounding on a tagged particle. For a one-component
liquid, this functional reads

Feff(r)/(kBT ) = −3 ln(r)

−
∫

d3q

(2π)3
(S(q) − 1)2

ρ(S(q) + 1)
exp

[
−q2r2

6
(1 + S−1(q))

]
, (8)

where S(q) is the static structure factor. In the viscous
liquid regime, the competition between the two terms in
eq. (8) produces a minimum at small r and a maximum at
a larger value. The relaxation time is given by the hopping
time to escape from localization in the minimum and is
expressed following the standard Kramers theory as

τ(T ) = τ0 exp
[
Fb(T )
kBT

]
, (9)

where Fb is the height of the barrier between the maximum
and the minimum of Feff(r) and the prefactor τ0 includes,

in addition to the short-time friction constant, information
about the curvature around the minimum and the maxi-
mum. Since it has been shown to be weakly dependent on
temperature and density, we take it as a constant.

Finally, we also assess a correlation between dynamics
and static pair density correlation that has recently been
put forward, mostly on an empirical basis. Building on
Rosenfeld’s work [49,50], Truskett and coworkers [28,29,
51] have proposed a direct connection between thermo-
dynamics and dynamics in liquids. In their picture, the
transport and relaxation properties of a liquid are deter-
mined by the thermodynamic excess entropy (the entropy
in excess to that of the ideal gas, not to be confused with
the “configurational entropy” in excess to that of the crys-
tal). For simple atomic liquids in which only translational
degrees of freedom are relevant, Truskett and coworkers
went further to replace the excess entropy by its two-body
contribution s2 and therefore proposed a functional rela-
tionship between the diffusivity or the relaxation time and
the static pair correlation function g(r) [28,29,52]. For a
one-component system, the two-body excess entropy is in-
deed defined as

−s2(T )/kB =
ρ

2

∫
d3r [g(r) ln[g(r)] − g(r) + 1] , (10)

which for a binary mixture is generalized to

−s2(T )/kB =
ρ

2

∑
αβ

xαxβ

∫
d3r [gαβ(r) ln[gαβ(r)] − gαβ(r) + 1] , (11)

where xα is the concentration of species α. We only focus
here on the application of these ideas to the viscous liquid
regime.

The authors [28,29] moreover suggested that a good
empirical expression to link transport and relaxation prop-
erties to two-body excess entropy is of the form

τ(T ) ∝ exp[−Ks2(T )], (12)

with K an adjustable parameter. (It should be stressed
that the above equation is quite different from the much
used Adam-Gibbs formula [53], as the entropy comes in
the numerator of the term in the exponential whereas
the configurational entropy comes in the denominator in
the Adam-Gibbs expression.) Note that this connection
between excess entropy and relaxation has already been
shown to fail in the case of associated liquids (square-well
fluids [54] and water models [55,56]) and for confined liq-
uids [57] in the supercooled regime.

All of the above descriptions of the dynamics of glass-
forming liquids, at the level of approximation which is that
commonly used but could in principle be improved (see be-
low), involve only the static pair correlation functions as
nontrivial input, as shown by eqs. (2, 3), (5, 6), (8, 9),
and (10–12). In the following, we confront these ap-
proaches to the benchmark systems described above.
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Fig. 1. Comparison of the relaxation times obtained by MCT
(lines) and simulations (symbols) for the LJ (full lines) and the
WCA (dashed lines) models at a density ρ = 1.2.

4 Results

A difficulty in assessing the ability of the microscopic ap-
proaches based on the knowledge of the static pair den-
sity correlations to reproduce the differing behavior of the
WCA and LJ glass formers is that, when tested in simula-
tion studies of glass-forming liquid models, these descrip-
tions anyhow never provide a very accurate account of the
dynamical data. This is somewhat expected as the approx-
imations involved in the theoretical formulations are quite
uncontrolled and serious, while the phenomenology to be
described is quite rich and complex. In approaches such
as the MCT and the RFOT theory, a way to get around
this is to implement some rescaling procedure to make
predictions and simulation data on one type of observable
fare as well as possible and use this rescaling to compare
the predictions for other observables or phenomena. This
is for instance what is usually done in test studies of the
MCT: the critical temperature Tc is rescaled in order to
better match the simulation data on the relaxation time
and comparisons are then made at relative distance from
this temperature [58]. In the following, we shall allow for
a possible rescaling of the theoretical predictions for one
model, the LJ one, and use the same rescaling parame-
ter for the WCA model. Doing otherwise by allowing for
different rescaling parameters would completely side step
the issue of comparing these two systems, which have very
close static structure factors and very different dynamics
at the same (ρ, T ) state point.

We first consider the results for the MCT. A detailed
account has been given in ref. [20] and we illustrate here
our findings for the sake of completeness. We have solved
numerically eqs. (2), (3) by using as input the partial static
structure factors obtained in our simulation of the WCA
and LJ models. From the solution for the intermediate
scattering functions Fαβ(q, t), we have extracted a relax-
ation time τ (defined from Fαα(q, t = τ)/Sαα(q) = 1/e for
the majority species α = A and for qσAA � 7.2) and we
have determined the critical temperature Tc.

To begin with, we give in fig. 1 an example of the
difficulty mentioned above: on an Arrhenius plot of the

Fig. 2. Comparison between the predictions of the MCT
and of the replica-RFOT approach and the simulation results.
Squares: ratio of the critical temperatures Tc for the LJ and
WCA models as predicted by MCT (open symbols) and esti-
mated from fits to the simulation data (closed symbols). Cir-
cles: ratio TLJ

K /TWCA
K predicted in the replica approach (open

symbols) and of the ratio TLJ
0 /TWCA

0 estimated from the Vogel-
Fulcher-Tammann fit to the simulation data for the relaxation
time (closed symbols).

relaxation time at ρ = 1.2, the MCT predictions are quan-
titatively inaccurate even for the LJ model and one must
rescale the temperature to obtain a more acceptable de-
scription. From the bare data, one can clearly see that
the difference between the slowdown of relaxation of the
WCA and the LJ models is considerably underestimated
by the theory. To disentangle this from the overall quanti-
tative inaccuracy, we plot in fig. 2 the ratio of the critical
temperatures Tc of the LJ and the WCA models (which
automatically accounts for a rescaling of temperature that
is the same for the two models) as predicted by the theory
(see preceding section) and obtained from a fit to the sim-
ulation data in the range of temperature where this fit is
possible [20]: the trends as function of density are similar
but the theory is unable to capture the wide difference in
the dynamics of the two models at typical liquid density
(ρ � 1.4).

For the replica (mean-field) approach of the RFOT
theory, we have solved the HNC integral equation for the
WCA and LJ models and used the resulting pair corre-
lation function as input in eqs. (5), (6) to compute the
complexity as a function of temperature and density as
well as the associated TK(ρ) at which the complexity goes
to zero. The results showing the complexity as a function
of temperature for several densities are given in fig. 3. One
observes that the curves for the WCA and LJ models are
always very close (the difference is slightly bigger when
one lowers the density to values close to the spinodal
of the LJ liquid). To give some elements of comparison
between theory and simulation, we have fitted the tem-
perature dependence of the relaxation data of the WCA
and LJ liquids with a Vogel-Fulcher-Tammann expression,
τ = τ0 exp[BT0/(T −T0)]. As often done, we take T0 as an
estimate for the TK of the “entropy crisis”. We are not in-
terested here in the absolute values but in the ratio of the
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Fig. 3. Temperature dependence of the predicted complexity
(from the replica formalism and the small-cage expansion) of
the LJ (full lines) and WCA (dashed lines) one-component
models for several densities. A vanishing complexity defines
the ideal glass transition temperatures, Σ(TK) = 0.

temperatures for the WCA system and for the LJ one. We
plot in fig. 2 the evolution with density of the theoretical
prediction for the ratio TLJ

K /TWCA
K and of the simulation

result for the ratio TLJ
0 /TWCA

0 . Without any doubt, the
theory completely misses the widening gap between the
two models as density decreases.

Concerning the DFT approach to the RFOT theory,
which we have not examined in detail, we just make the
following remark. If, as done, e.g., in ref. [22], the approxi-
mation to the DFT approach relies on a WCA-like separa-
tion of the pair potentials with i) the equilibrium structure
(i.e., both the pair correlation function g(r) and the refer-
ence aperiodic lattice) determined by the truncated repul-
sive component and ii) the attractive interaction treated
in a mean-field-like fashion, then, essentially by construc-
tion, it cannot describe the difference in behavior between
the two models, with (LJ) and without (WCA) attractive
tails. The fact that Hall and Wolynes [22] use a some-
what different choice of cutoff than the conventional WCA
one does not change this conclusion. The modified KRR
truncation [59,60] that they consider is equivalent to the
WCA one for typical liquid densities (here ρ ∼ 1.2); as
implied from fig. 5 of ref. [22], the predictions fare bet-
ter at lower densities (corresponding here to ρ = 1.1) but
they do worse at larger densities where they even fail to
recover the merging with the LJ data found for the WCA
truncation.

To test the Schweizer-Saltzman approach for binary
liquid mixtures, one should in principle consider a two-
dimensional extension of eq. (8) which takes into account
the displacements of particles of both species. However,
this is numerically very demanding. We have taken in-
stead a shortcut that uses an effective one-component de-
scription focusing on the majority component A of the
80:20 binary mixture. To do so we have implemented the
procedure developed in ref. [61] in a different context of
a mixture of attractive and repulsive spheres. This ap-
proximation amounts to replacing ρ and S(q) in the one-
component expression in eq. (8) by ρA and SAA(q), re-

Fig. 4. Arrhenius plot of the relaxation time for the LJ and
WCA models as predicted from the Schweizer-Saltzman ap-
proach (open symbols) and obtained from simulation (filled
symbols). For the theory, we show both the results of the
effective one-component approximation with static structure
data from simulation as input (lower curves) and those for
the one-component models with pair correlation function ob-
tained from the HNC integral equation (upper curves). Note
that both theoretical predictions evolve with an unphysical
sub-Arrhenius manner with temperature.

spectively. Thus, we can directly feed the theory with the
structure factors measured in the numerical simulations,
much as we did to study mode-coupling theory. Addition-
ally, we have solved the HNC integral equation for the one-
component LJ and WCA potentials at the density ρ = 1.2,
which we then directly use in eq. (8).

We plot in fig. 4 the predictions for the relaxation time
as a function of 1/T at the density ρ = 1.2, together with
the simulation data. The striking observation is that the
theoretical predictions fail completely on two key aspects.
First they fail to reproduce the super-Arrhenius behavior
with its marked curvature. Second, they also fail to pre-
dict any significant difference between the WCA and the
LJ models. Puzzled by this major breakdown of the ap-
proach, we have checked our implementation in the case
of a hard-sphere system already studied by Schweizer and
Saltzman [25–27]. The results are presented in more de-
tail in appendix A and confirm the trends observed for
the LJ system: the slowdown of relaxation as one cools
or compresses a glass-forming system is strongly under-
estimated by the Schweizer-Saltzman approach. It is true
that the effective one-component treatment introduces an
additional approximation, but considering that we apply
it to the majority component of the LJ and WCA mix-
tures which comprises 80% of the atoms, it seems more
likely that the observed failure is intrinsic to the theoret-
ical approach.

Finally, we come to the correlation between the relax-
ation time and the two-body part of the excess entropy.
We have computed the latter from the simulation data for
the partial pair correlation functions according to eq. (11).
The plot of τ versus −s2/kB is shown in fig. 5 for the
typical liquid density ρ = 1.2. The data for the WCA
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Fig. 5. Relaxation time τ versus two-body excess entropy
−s2/kB for the LJ (circles) and WCA (squares) liquids at den-
sity ρ = 1.2 (from simulation data).

Fig. 6. Relaxation time τ (normalized by a high-T value τ∞ ∝
ρ1/3T−1/2) versus two-body excess entropy −s2/kB for the LJ
and WCA liquids at several densities (from simulation data).
Note the good collapse of data for the LJ model (filled symbols)
and its absence for the WCA one (open symbols).

and LJ models collapse at high temperature (smallest val-
ues of −s2/kB) but markedly deviate as T decreases (and
−s2/kB increases), clearly showing the absence of master-
curve. We note that the growing gap between the WCA
and LJ data is somewhat reduced when plotted versus
s2 in place of 1/T but the results nonetheless demon-
strate that the two-body excess entropy does not uniquely
determine the dynamics. Similar conclusions have been
previously reached concerning supercooled associated liq-
uids [54–56] and liquids under confinement [57].

We have also studied the evolution with density of the
proposed correlation. It is expected, and indeed found,
that the curves τ versus −s2/kB for the WCA and LJ
models converge as density becomes high enough. We have
plotted in fig. 6 the relaxation time (normalized by a high-
temperature value τ∞ which has a small residual depen-
dence on density and temperature) versus −s2/kB for the
two models. Besides showing the above-mentioned conver-
gence at high density, one observes that the data for the

LJ liquid at all densities collapse quite well on a master-
curve, whereas a markedly different behavior is seen for
the WCA liquid. This illustrates that the two-body excess
entropy does not capture the difference in the density evo-
lution of the slowdown of relaxation, which can be rescaled
in the case of the LJ model but not for the WCA one [30,
31]. This can be easily understood. Roughly speaking, and
as far as fluctuations are concerned, the LJ liquid behaves
as a soft-sphere model [62,63] with power law repulsive
interactions characterized by an effective exponent γ. The
relaxation time is then a function of the scaling variable
ργ/T only (as already shown [30,62–64]), but this should
also be true for the two-body excess entropy: one then
expects a collapse of the τ versus −s2/kB data, as in-
deed observed in fig. 6 (this indicates that the adjustable
parameter K in eq. (12) is essentially independent of den-
sity). However, as the pair correlation functions of the
WCA and LJ models are very close, the two-body excess
entropy of the WCA liquid has also an approximate scal-
ing in ργ/T . It is then obvious that the strong violation
of density scaling which is observed in the slowdown of
relaxation for this model [30,31] cannot be accounted for
by the two-body excess entropy. This is what we see in
fig. 6.

5 Discussion

The so-called “microscopic” approaches of the dynamics
in glass-forming liquids that rely on the sole knowledge of
the static pair density correlations fail when tested against
the benchmark provided by two glass-forming liquid mod-
els with very similar static pair structure and strongly
different dynamics. This is so even if one adjustable rescal-
ing parameter, the same for the two models, is introduced
to improve the overall quantitative accuracy with respect
to simulation data. Of course, by introducing more ad-
justable parameters, one would end up with a better de-
scription but this would obviously be at the expense of the
“microscopic” character of the approaches. Our demon-
stration is not flawless, as we have introduced in some
cases an additional assumption in the form of an effective
one-component description of the binary mixture. How-
ever, we believe it is strong enough to seriously question
the use of theoretical or empirical descriptions of the dy-
namics of glass-forming liquids that are based on the static
pair density correlations only. This finding echoes with ex-
treme theoretical models which have been devised where
the slowdown of relaxation takes place in the complete
absence of pair correlations among particles [65–68].

Some of the approaches studied here could in principle
incorporate more information on the structure than just
the pair correlation function. This is not what is done in
their common implementations, and this would certainly
increase the complexity of the computations while reduc-
ing the simplicity of the message. Although we feel that
merely introducing corrections due to the triplet correla-
tion functions in the MCT or the DFT approach of the
RFOT theory would not be sufficient, we cannot exclude
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that considering more involved approximations that ac-
count for higher-order structural correlations would lead
to a better description of our benchmark systems [69]. In
the DFT approach of the RFOT theory, one could, for
instance, envisage considering trial amorphous configura-
tions that already account for the subtle structural dif-
ferences between the WCA and the LJ liquid; or, in the
sought correlation between dynamics and excess entropy,
one could consider the exact excess entropy as in ref. [51]
in place of its two-body contribution. It remains to be
seen whether this improves the predictions, and we hope
that the present work will stimulate further investigations
along these lines.

We would like to stress again that the above conclu-
sions apply to glass-forming liquids, for which it is well es-
tablished that the dramatic slowdown of relaxation comes
with only minor changes in the equilibrium pair density
correlations. For fluids able to be taken at low temper-
ature and low density, such as systems interacting with
truncated repulsive potentials, possibly supplemented by
short-ranged attractive interactions, a wide thermody-
namic range can be covered within which the static pair
correlation functions may show marked and nontrivial evo-
lution [70–72]. The ability of theories based on the static
pair structure to grasp some qualitative and quantitative
trends is then less challengeable in this case.

Finally, we note that the present study has obviously
nothing to say about theories of glass formation that rely,
at least in principle, on more than the static pair den-
sity correlations, involving either higher-order static cor-
relations or kinetic constraints (see Introduction). Such
theories, however, are not microscopic in the sense that
phenomenological input is necessary, either because the
full blown theory is intractable (at present) or because
some pieces connecting to the microscopic details are still
missing. A crisp test of the type proposed here is therefore
harder to envisage.

Appendix A. Schweizer-Saltzman approach
for hard spheres

In this appendix, we check our implementation of the
Schweizer-Saltzman approach for the binary LJ and WCA
liquids by applying it to the hard-sphere model already
extensively studied by these authors [25–27].

We obtain the static pair structure using three meth-
ods: we solve both the HNC and PY integral equations
for a monodisperse system of hard spheres to get S(q),
or we follow the same procedure as in the main text and
measure SAA(q) for the majority component of a binary
mixture of hard spheres to use the same effective one-
component approximation. We then inject this structural
information into eq. (8) to obtain a prediction for the re-
laxation time which we represent either as a function of
the volume fraction φ, or as a function of the reduced
pressure (or compressibility factor), Z = P/(kBTρ). The
latter is evaluated from the Carnahan-Stirling equation of
state, which is quite accurate even in the high-φ regime
that we wish to discuss [73].

Fig. 7. Top: logarithmic plot of the relaxation time τ versus
packing fraction φ for the hard-sphere systems. Predictions
from the Schweizer-Saltzman approach with the g(r) obtained
from the PY (squares) and the HNC (circles) closures for the
monodisperse system, as well as from simulation of the binary
mixture using the effective one-component treatment (trian-
gles). We also display the simulation data (filled symbols) from
ref. [77] for the binary mixture. Bottom: same data plotted as
a function of Z = P/(kBTρ).

The results of the two theoretical approaches using
HNC and PY are displayed in fig. 7, and they fully match
published results [25–27], which shows that we have cor-
rectly implemented the Schweizer-Saltzman approach. It
should be noted that when plotted in the representation
log(τ) versus Z, these data appear almost linear, which
seems to suggest that in the φ regime relevant to most
simulations and experiments, the Schweizer-Saltzman ap-
proach seems to yield results similar to the free-volume
approach τ ∼ exp(Z), and that the asymptotic regime
predicted by Schweizer [74], τ ∼ exp(Z2), is not entered.

It is not possible to obtain numerical results for a
monodisperse system of hard spheres to assess these theo-
retical predictions directly because the system crystallizes
too easily. However, it is well known that slightly poly-
disperse systems and binary mixtures can easily be com-
pressed toward the glass transition with no sign of crys-
tallisation and very little effect of polydispersity on the
actual location of the glass “transition” [75,76]. Thus, we
use numerical results [77,78] obtained for a 50:50 mixture
of hard spheres with diameter ratio 1.4, and present them
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along with the theoretical results in fig. 7. This comparison
appears reasonable as Schweizer and Saltzman themselves
compare their predictions with results obtained from sim-
ulations and experiments performed on polydisperse sys-
tems. The comparison with numerically measured relax-
ation times confirms the conclusions drawn from the study
of the LJ potential that the Schweizer-Saltzman expres-
sion of the free-energy barrier considerably underestimates
the slowing down of the dynamics. This is more easily
seen in the bottom panel which shows that numerical data
have a much larger “kinetic fragility” (they are well de-
scribed [78] by τ ∼ exp(Zα) with α ≈ 6) than the theo-
retical ones, as also found for the LJ/WCA systems. We
note that the use of integral equations as input for the
theory has two conflicting effects: on the one hand, inte-
gral equations tend to overestimate the structure of the
fluid (which should yield larger barriers), but on the other
hand they are not sensitive to the proximity of the jam-
ming transition, a transition which is not captured by sim-
ple liquid-state approaches (close to jamming this would
imply that barriers are underestimated).

Finally, as for the LJ and WCA models in the main
text, we use the numerically measured structure factor
SAA(q) for the main component (larger particles) and the
effective one-component approximation for the free energy
barrier. Although the approximation is expected to be less
accurate in this 50:50 mixture than for the 80:20 LJ/WCA
systems, we find a trend very similar to the one reported
in the main text, namely that integral equations seem to
largely overestimate the evolution of the structure and
that direct use of the “exact” structural information yields
theoretical predictions in even stronger disagreement with
the simulations.

This short study of the hard-sphere systems therefore
validates our implementation of the Schweizer-Saltzman
approach for the binary LJ and WCA liquids in the main
text, and, as a way of consequence, the conclusions we
have drawn from fig. 4.
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