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Structure and dynamics of coupled viscous liquids

Andrea Ninarello, Ludovic Berthier* and Daniele Coslovich
Laboratoire Charles Coulomb UMR 5221, Université de Montpellier and CNRS, Montpellier, France
(Received 23 February 2015, accepted 4 April 2015)

We perform Monte-Carlo simulations to analyse the structure and microscopic dynamics of a viscous Lennard-Jones liquid
coupled to a quenched reference configuration of the same liquid. The coupling between the two replicas is introduced via a
field & conjugate to the overlap Q between the two particle configurations. This allows us to study the evolution of various
static and dynamic correlation functions across the (g, 7) equilibrium phase diagram. As the temperature is decreased, we
identify increasingly marked precursors of a first-order phase transition between a low-Q and a high-Q phase induced by the
field e. We show in particular that both static and dynamic susceptibilities have a maximum at a temperature-dependent value
of the coupling field, which defines a “Widom line’. We also show that, in the high-overlap regime, diffusion and structural
relaxation are strongly decoupled because single-particle motion mostly occurs via discrete hopping on the sites defined by
the reference configuration. These results, obtained using conventional numerical tools, provide encouraging signs that an
equilibrium phase transition exists in coupled viscous liquids, but also demonstrate that important numerical challenges must

be overcome to obtain more conclusive numerical evidence.

Keywords: glass transition; structure of liquids; dynamic correlation functions

1. Introduction

‘Cloning’ or ‘replicating’ configurations in glassy systems
has a long history, which parallels the use of replica calcula-
tions to deal with systems defined by interactions containing
quenched disorder [1], such as spin glasses or disordered
ferromagnets [1,2]. The relevance of replicas in the context
of the glass transition of supercooled liquids has emerged
more recently, and it originates from the proposal that disor-
dered spin glass models and supercooled liquids belong to
a unique universality class and undergo at low temperature
a random first-order transition (RFOT) between a liquid
phase and an ideal glass phase [3]. Whereas this identifica-
tion holds rigorously at the mean-field level [4], much re-
mains to be understood regarding the applicability of these
concepts in finite dimensions, where a variety of fluctuation
effects could drastically modify the mean-field picture [5].

In recent years, it has been realised that the relevance of
the RFOT construction can be assessed using ‘extended’
phase diagrams, where an additional control parameter
is introduced to probe the RFOT physics in temperature
regimes that are more easily accessible to simulations and
experiments. The general idea is that precursors of the pu-
tative thermodynamic glass transition develop as the tem-
perature is lowered in a bulk liquid, the glass phase being
‘metastable’ with respect to the liquid phase [6]. Therefore,
the addition of well-chosen external fields could potentially
stabilise this phase at temperatures well above the equilib-

rium glass transition and induce equilibrium phase tran-
sitions which are direct byproducts of the RFOT physics.
In other words, external constraints might reveal growing
structural correlations characterising viscous liquids ap-
proaching the glass transition in a way that is not accessible
to the standard tools used for simple liquids [7]. Studying
constrained systems thus might be useful to reveal infor-
mation about bulk systems, and constrained phase transi-
tions may exist even in systems where no finite temperature
Kauzmann transition exists [8], the two issues being log-
ically independent. Among the possible choices for such
external constraints, the idea of pinning the position of
a set of particles has received considerable attention re-
cently [9,10], in a variety of geometries [11] from finite
cavities [12—14], to fully random pinning [15-21] or amor-
phous walls [22,23].

In this article, we analyse the case where an external
coupling to a quenched reference configuration is intro-
duced via a field € conjugate to the overlap Q between the
two copies of the system. This situation has been studied
analytically in mean-field models [6,19,24-26] and finite
dimensional liquids [27], and it was also studied in com-
puter simulations [27-31]. The ‘annealed’ situation where
the coupling is between two evolving copies of the sys-
tem has also received attention from a number of groups
[25,30,32-36]. For the quenched coupling of interest in
this work, the phase diagram in the (¢, 7) plane has been
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established in the mean-field approximation [6]. In that
case, an ordinary first-order transition line emerges from
the bulk glass transition temperature, which separates a
low-overlap (uncorrelated) phase from a large-overlap (lo-
calised) phase. This first-order transition line ends at a
second-order critical point which, if present, should be
in the same universality class as the random field Ising
model [25,26].

Our central goal is to use standard computational tools
to explore the high-temperature region of the (¢, T) phase
diagram where conventional Monte-Carlo simulations are
sufficient to achieve thermalisation of the coupled system.
By analysing several static and dynamic correlation func-
tions, we find a number of distinctive precursors of the
first-order transition line, which allow us to define a ‘Widom
line’ for our system. We also find that the microscopic dy-
namics in the high-overlap regime is markedly different
from the one of bulk supercooled liquids, because single-
particle motion occurs mostly via spatially uncorrelated,
discrete hopping on the sites defined by the reference con-
figuration. Because this diffusion process is very slow, we
conclude that an equilibrium exploration of the two phases
of the model at lower temperatures is impossible using con-
ventional means.

Our paper is organised as follows. In Section 2, we
briefly present the model and our numerical methods. In
Section 3, we analyse the static properties of the model,
whereas Section 4 presents results for dynamic correlation
functions. Section 5 closes the paper with some perspectives
for future work.

2. Model and numerical methods

We performed Monte-Carlo simulations [37] of the Kob—
Andersen glass-forming model [38], which is a 80:
20 binary mixture of particles interacting via the Lennard-
Jones potential

wo-ta(@ -] o

where «, 8 = {4, B} denotes the particles’ species. The
potential is shifted to ensure its continuity at the cut-off
distance 7. = 2.5. In the following, all quantities will be
expressed in reduced units, selecting € 44 and o 44 as units
of energy and distance, respectively, and the Boltzmann
constant is kg = 1. The interaction parameters are o 44 =
1.0, Oy = 08, OBR = 088, €Eqq = 1.0, €qB = 1.5 and
epg = 0.5. They have been chosen to prevent the mixture
from crystallising at high densities and low temperatures.
We have studied this particular model because it is a well-
studied and well-characterised glass-forming system [37—
39]. Exploratory runs performed using molecular dynamics
methods instead of Monte-Carlo suggest that the dynamical

results that we report do not depend qualitatively on the
specific choice of a microscopic dynamics.

We studied a system of N = 1000 particles in each
copy. We work in three spatial dimensions using periodic
boundary conditions at a number density p = N/V = 1.2,
where V' is the volume of the simulation box. In our Monte-
Carlo simulations, we perform sequential single-particle
displacements by drawing random displacements within a
cube of linear size Arpa centred on the particle’s posi-
tion. The proposed displacement is accepted according to
the Metropolis criterion. We chose Arp,x = 0.12, which
maximises the diffusion constant of the system in the un-
constrained mixture at 7 = 1.0, which represents the onset
temperature for the bulk Lennard-Jones system. The time
unit in our Monte-Carlo simulations is defined as N attempts
to move a particle.

To study the coupled system, we first define the overlap
01, between two configurations, 1 and 2, as

1
O = v ;9(61 —|r; —ral), )

where O(x) is the Heavyside function, ¢ = 0.3 is a
coarse-graining distance for comparing the density pro-
files, and r,_; denotes the position of particle i in the copy
ae{l,2}.

Our numerical procedure to study the coupled glassy
problem is to draw a series of equilibrium configurations
{ry} at temperature T}, which serve as reference configu-
rations. We then study a second copy of the system, {r,},
which evolves at temperature 7 and is coupled to a given
reference configuration via a field ¢ conjugate to the over-
lap between the two configurations. Only the second copy
is allowed to evolve in this step. The total Hamiltonian thus
reads

Hiy(fr2}) = Hu(re}) — eQ1a, 3)
where
1 N, Np
Hu(ir)) = 5 YD vup(riy) (4)
ap i=l j=1

denotes the Lennard-Jones Hamiltonian for a single copy
{r}, and & > 0 biases the coupled system towards higher
values of the overlap. In our study, we use equal temper-
atures for the quenched reference configurations and the
system under study, 71 = T, = T, although other choices
are possible [6,31]. The Hamiltonian (3) contains quenched
disorder, because the positions of all particles in copy 1,
{ry}, are held fixed. Therefore, after thermal average is
performed at temperature T for a given realisation of the
disorder, we need to perform an average over independent
configurations of the quenched copy. We found that the
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disorder average plays a negligible role for the system size
and the temperature range studied in this work. Therefore,
we only needed to average over a small number of indepen-
dent quenched configurations to obtain accurate static and
dynamic properties of the system. A much more demand-
ing disorder averaging procedure would be needed at lower
temperatures [30,31].

Finally, we find that thermalising the constrained sys-
tem defined by the Hamiltonian (3) becomes increasingly
difficult when ¢ is large and/or temperature is low. For a
given state point defined by (&, 7), we consider that a sys-
tem is equilibrated if the two following criteria are met.
First, we require that the average of the overlap evaluated
over a time window of the order of 10°, displays no system-
atic drift. Second, we require that particles move an average
distance of about three particle diameters. These empirical
criteria are chosen so that both single-particle dynamics and
overlap fluctuations are accurately sampled in our simula-
tions. Remark that even when the overlap value is large and
the system explores a limited part of the configurational
part close to the reference configuration, it is important to
perform very long simulations to ensure that both static
and dynamic quantities are probed accurately. As a conse-
quence, we have not been able to study meaningful parts of
the (e, T) phase diagram for temperatures below 7 = 0.7
(our data at 7 = 0.6 barely satisfy our criteria). Note that
this temperature only represents a modest degree of super-
cooling for the unconstrained system and is far above the
mode-coupling temperature 7y, & 0.435, but this already
represents a challenging situation for the coupled system.

3. Static properties

We start by studying the static properties of the system de-
fined by Hamiltonian (3), varying ¢ and 7. Intuitively, we
expect that large values of ¢ will localise the particles close
to the sites defined by the position of the particles in the
quenched reference configuration in order to increase the
overlap Q between the two replicas. In Figure 1(a), we show
the probability distribution of the overlap, P(Q), along the
representative isotherm 7 = 0.8 for increasing values of
the coupling field €. This temperature is slightly below the
onset temperature (7 &~ 1.0) of slow dynamics in the un-
constrained system with ¢ = (. As the coupling ¢ increases,
we find indeed that P(Q) becomes centred around increas-
ingly larger values of Q. As discussed in Section 1, we may
expect that the system undergoes a first-order phase transi-
tion between a low-Q phase and a high-Q phase when the
temperature is low enough. Clearly, the data in Figure 1(a)
show that the overlap increases smoothly with ¢ at this tem-
perature and the phase transition, if present, must occur at
lower temperatures.

However, we notice that the distributions are narrow for
both small and large values of ¢ but broaden considerably at
intermediate values corresponding to intermediate overlap
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Figure 1. (a) Probability distribution of the overlap P(Q) at sev-
eral ¢ values along the isotherm 7'= 0.8. (b) Typical time series of
the overlap Q(¢) for the same parameters (the bulk alpha-relaxation
time at 7 = 0.8 is about 7 & 2 - 10%). The overlap fluctuations are
broader and slower near ¢* ~ 0.7.

values, Q &~ 0.5. Such a broadening of the distributions for
intermediate values of ¢ is consistent with the idea that the
system approaches the critical temperature from above.

A confirmation of this intuition is shown in Figure 1(b),
which illustrates the typical time evolution of the order pa-
rameter Q(¢) in the course of the Monte-Carlo simulations.
We observe that the overlap displays slow fluctuations of
large amplitude for intermediate values of &, whereas tem-
poral correlations and large excursions are strongly sup-
pressed when the replicas are strongly coupled in the high-
0 regime, or nearly uncorrelated at low ¢. These qualita-
tive observations suggest that the dynamics of the coupled
system display a non-trivial variation as a function of the
coupling. The large fluctuations of the global overlap O
represent a first source of dynamic slowing down for the
coupled system, which we interpret as a form of critical
slowing down, expected in the vicinity of a second-order
critical point. Notice that the time series shown in Figure 1
cover a window of about 107 timesteps, whereas the
bulk alpha-relaxation time of the unconstrained system
at the same temperature is T ~ 2 - 10°, which already
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Figure 2. (a) Average overlap (Q) and (b) overlap susceptibil-
ity x as a function of ¢ for various temperatures. The crossover
from uncorrelated to localised regimes occurs at lower € when T’
decreases, and becomes sharper.

demonstrates that accessing the properties of the coupled
system in conventional numerical simulation is challeng-
ing, even at temperatures far above the critical point.

In Figure 2(a), we show the average overlap (Q) as a
function of ¢ for all studied temperatures, where the mo-
ments of the distribution are defined as

1
(0" =/0 dQP(0)Q". 5)

We find that the coupling needed to localise the system in
the high-overlap regime decreases rapidly upon decreasing
the temperature. This directly implies that the thermody-
namic driving force which allows the system to escape from
a randomly chosen reference configuration also decreases
with the temperature. This observation is at the core of the
RFOT description of the glass transition [3].

Moreover, we observe that the crossover from the low-
0 regime to the high-O one becomes sharper and better
defined as T decreases. This is again consistent with the
approach to a first-order phase transition separating a nor-
mal, low-Q phase and a localised, high-Q phase. To iden-

tify this crossover more precisely, we evaluate the overlap
susceptibility,

x = N[(Q*) — (0)*]. (6)

The results are shown in Figure 2(b). For each studied tem-
perature, x displays a well-defined maximum at a cou-
pling ¢* = ¢*(T), which we identify as the location of the
crossover. The locus of ¢*(7) in the (e, T) plane represents
the equivalent of the Widom line [40] for conventional
phase transitions, as it represents the continuation of the
transition line above the critical point. It should be clear
that our interpretations are consistent with the mean-field
calculations, but that our numerical results do not estab-
lish that an equilibrium phase transitions actually exists for
this system. An alternative view is that the clear crossover
line that we detect remains a smooth crossover at any finite
temperatures [16]. Deciding which is the correct scenario
is beyond the scope of this work.

The coupling parameter ¢ in the Hamiltonian, Equa-
tion (3), allows one to bias the system towards higher values
of the overlap Q. The small value a = 0.3 used to evaluate
the overlap leads to the formation of ‘dimers’ formed when
a particle in the liquid is localised close to a particle in the
reference configuration. We note that higher order clusters
(such as trimers) have an enormous energy cost in the stud-
ied range of temperatures and couplings, and do not form.
To investigate this point more quantitatively, we have eval-
uated the radial distribution functions between quenched
and liquid replicas at various 7 and ¢,

N, Ng

1
8ap(r) = VNN, DX 80 —Iry -1 (7

i=1 j=1

In Figure 3(a), we show the radial distribution function
between the large particles in the two copies, while Fig-
ure 3(b) shows correlations between large particles in the
liquid and small particles in the reference configuration.
As ¢ increases, a well-defined peak develops near r =~ 0,
which quantifies the increasing localisation of particles near
the sites defined by the reference configuration. The global
overlap Q is in fact directly related to the area under these
peaks, and the pair correlation functions shown in Figure 3
are the natural outcomes of integral equation approaches
for the problem of coupled glassy systems [27,33]. The
pair correlation functions develop a clear minimum near
r & 0.6, indicating the formation of tight dimers of liquid
and quenched particles. This phenomenon resembles the
formation of clusters in suspensions of neutral [41] and
charged [42] ultrasoft colloidal particles. Finally, we note
that the kink at » = a is a direct result of the Heavyside func-
tion used to couple the two replicas and would be absent
if a smoother coupling (for instance, a Gaussian function)
had been used.
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Figure 3. Radial distribution functions between quanched and
fluid replicas g44(r) and g45(r), see Equation (7). Both functions
develop a clear maximum near » = 0 as ¢ increases, reflecting
the global increase of the overlap via the formation of ‘dimers’.
Whereas the probability to form A4 dimers increases with ¢, AB
dimers are more numerous near ¢* &~ (.7, but are suppressed at
larger coupling.

The comparison between g.4(7) and g45(r) shows that
the peaks at short distance in these functions behave some-
what differently. First, the overall amplitude of the two
peaks is very different, as testified by the different verti-
cal scales used to represent these two functions in Figure 3
(the amplitude at » = 0 is about 10 times larger for A4 than
for AB pairs). This shows that particles in the liquid replica
tend to localise to a site of the reference configuration oc-
cupied by a particle of the same type when the coupling
is strong, although the probability to form ‘defective’ 4B
dimers is not negligible. A more careful analysis of the
peaks also shows that the peak amplitude in g4 increases
monotonically with ¢ whereas the one in g4z is maximum
near the crossover value ¢* = 0.7. This observation sug-
gests that the large fluctuations of the overlap revealed in
Figure 1 when ¢ =~ ¢* likely correspond to a large variety of
localised configurations, where dimers of various kinds can
be formed. When the coupling becomes stronger, the sys-
tem resembles increasingly to the reference configuration
and 4B dimers are suppressed, at the expense of A4 and

BB dimers. Indeed, we find that ggg(r) essentially tracks the
behaviour of g44(7). The conclusions are also supported by
the decomposition of the global overlap into contributions
coming from the various species.

4. Microscopic dynamics

Close inspection of the time series of the overlap in
Figure 1(b) suggests that the dynamics of the liquid replica
becomes increasingly sluggish upon increasing the cou-
pling. In the previous section, we (tentatively) attributed
this slowing down to the crossing of a Widom line where
overlap fluctuations are very broad. However, we also no-
ticed that dimers of like-particles form with increasing cou-
pling, which corresponds to an increasing localisation of the
liquid particles on the quenched sites defined by the refer-
ence configuration. In this section, we will show that this
localisation dramatically impacts the available relaxation
pathways.

To characterise the single-particle dynamics of the lig-
uid replica, we evaluate the self-part of the intermediate
scattering function

1
Filk.t) =~ <Z explik - (r;(t) - ri<0)]> L®

and the mean-squared displacement

5r2(1) = %<Z () — r,»(0>|2>. ©)

2

Both time correlation functions are evaluated for the large
A particles (the majority species) along the representative
isotherm 7= 0.8. The results are displayed in Figure 4.

The unconstrained system displays practically no
caging at this temperature, in agreement with the results
of Ref. [37] on the Monte-Carlo dynamics of the same
model. Upon increasing &, however, the dynamics slows
down significantly. The relaxation of F(k, ¢) at long times
becomes increasingly stretched and eventually develops a
clear plateau at intermediate times for the highest values
of €. A similar plateau is observed in the mean-squared
displacement 87%(f). A comparison of the mean-squared
displacement for 4 and B particles (not shown here) reveals
that in the high-Q regime, the smaller B particles are some-
what less strongly localised on the quenched sites and can
flow more easily than the large particles. The distinct dy-
namics between large and small particles is also observed
in the bulk system at low temperatures [38].

As usual, we define the structural relaxation times 7,
from the condition F(k, t,) = 1/e and the diffusion coef-
ficients D from the Einstein relation lim, _, »87%(r) = 6Dt.
In Figure 5, we show the s-dependence of 7, and D!
for A particles. For each studied temperature, we observe



Downloaded by [E R F 1] at 04:56 19 October 2015

2712 A. Ninarello et al.

) o—o£=0.0
L " =—=a (0.4 1
. 0.6
08 —07 -
0.75
| 08 |
. 0.9
os @ —10
- 12
o
041 .
02} .
ol vl vl P i oSS,
10° 10" 10° 10° 10" 100 10° 10’
t
103: A B A B AL I A R AL A
F T=0.8 A
s
10°F
10'E b 4
Vo ]
s f 1
vVor 1
10°F 4
10" 3
102 t‘x/f'xnml AT BT R T R
10' 10° 10° 10" 10° 10° 10’

t

Figure 4. (a) Self-part of the intermediate scattering function
F(k, t) evaluated at k = 7.4 along the isotherm 7 = 0.8 and var-
ious & coupling values. (b) Mean-squared displacement 872(¢) for
the same state points. The single-particle dynamics slows down
monotonically by increasing ¢, revealing the increasing localisa-
tion of the particles.

a marked increase of both 7, and D~! as the coupling
approaches the crossover value &*, determined from the
analysis of the overlap susceptibility (see Section 3). Upon
further increasing e, both quantities continue to increase
steadily, and the single-particle dynamics slows down dra-
matically. Note that all data points in Figure 5 are fully
equilibrated according to the criteria detailed in Section 2.

An inspection of Figure 5 suggests that the diffusion
and structural relaxation both slow down dramatically in
the high-Q regime, but their behaviour is also strongly de-
coupled, as D! appears to change less than t,. This is
demonstrated more clearly in Figure 6, where we show the
product Dz, for the 4 particles. We observe that Dt re-
mains constant until ¢ reaches ¢*, above which it starts to
grow significantly. Interestingly, the deviation is visible for
both species, but it is less pronounced for the small particles
(not shown).

Such violation of the Stokes—Einstein relation, D1, ~
Dn ~ cst, is expected in systems whose dynamics is highly
heterogeneous, such as supercooled liquids [43], although

10°E 1 1 3
F e T=0.6 E
r 0.7 1

6 0.8
10" 10 E
; " ;
10°¢ 3
WS ]
10'g 4
(@ 3
PR T IS Nt |
14 16 18 2

Lo

P

P

(b

Cnl

Figure 5. Evolution of the (a) structural relaxation times t,
and of (b) the diffusion coefficients D for large particles as a
function of ¢ for different temperatures. The dynamics slows down
dramatically when the crossover ¢*(7) (shown with arrows) is
crossed. Note that the change in 7, and D~! is quantitatively
different, as demonstrated in Figure 6.

Figure 6. Decoupling of the diffusion constant and the structural
relaxation is established since the product Dz, increases dramat-
ically with e. The arrows mark the crossover £*(7).
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other sources of decoupling have been identified in simple
fluids [44]. The coexistence of slow and fast particles in
the sample leads to a decoupling between 7, and D, be-
cause the former is mostly dominated by the slow particles,
whereas the latter is dominated by the fast ones. We re-
mark, however, that the Stokes—Einstein violation at large
¢ is more pronounced than the one observed by decreasing
temperature in the unconstrained model. This suggests that
the physical origin of this decoupling might be somewhat
different in the constrained model than in the bulk.

A first hypothesis to explain the decoupling is the ex-
istence of large-scale spatial correlations in the dynam-
ics [45]. This hypothesis is reasonable, since static correla-
tions are promoted by the coupling field ¢, as testified by
the maximum in the static susceptibility x in Figure 2.

To quantify spatially heterogeneous dynamics in a more
precise manner, we evaluate the four-point dynamic suscep-
tibility [46—48],

xa(t) = N [{fs(k, 1)) = (fi(k, 1)*], (10)

where fi(k,t) = % > explik - (r;(t) — r;(0))] represents
the instantaneous value of the self-intermediate scattering
function. In supercooled liquids, y4(¢) is characterised by
a single peak, located around 7., whose height yx; pro-
vides a simple measure of the degree of heterogeneity of
the dynamics (it scales roughly as the dynamic correlation
volume). We find that the constrained system displays sim-
ilar peaks in x4(f), and we represent the variation of x; as
a function of ¢ in Figure 7 for all studied temperatures.
Athigh temperature, y; is essentially constant and prac-
tically independent of ¢. When T < 1.0, the behaviour
changes and y; varies non-monotonically as a function
of ¢, with a maximum located very close to the crossover
coupling &¢* defined from the maximum of the static over-
lap fluctuations. This shows that spatial correlations in the

o— T=0.6 —
0.7
== (0.8 =

a2 4

Figure 7. Evolution of the maximum of the four-point dynamic
susceptibility x,; as a function of e. Spatial correlations are max-
imum near the static crossover ¢*(7) (indicated by arrows).

dynamics are essentially slaved to the spatial fluctuations
of the static overlap. In particular, we find that x; decreases
rapidly as ¢ is increased beyond £*(7). This implies that
the collective dynamics in the localised regime is actu-
ally strongly suppressed and that particles move instead
in a spatially uncorrelated manner. Therefore, the strong
decoupling reported in Figure 6 does not stem from the
coexistence of dynamically correlated domains.

Nevertheless, it is interesting to note that the behaviour
of the static and dynamic susceptibilities x and y 4 is sim-
ilar only when ¢ is large, but it differs dramatically when
& — 0 where dynamic fluctuations increase rapidly as 7 de-
creases whereas static ones are essentially independent of
temperature for the unconstrained system at & = 0. The fact
that static and dynamic fluctuations have distinct temper-
ature dependences in the moderately supercooled regime
was noted before [11,17,22].

A final notable feature of our data is observed at the
lowest studied temperature at 7 = 0.6 in Figure 7. Despite
the limited dynamic range we can access, the data reveal
an additional feature, since x; is a decreasing function of &
at small e. Such a decrease of y is reminiscent of the one
observed with randomly pinned particles [20,49]. For such
systems, the relevant order parameter is the concentration
of pinned particles, which plays an analogous role to the
coupling ¢ in the present model. In the randomly pinned
systems, however, there was no trace of a subsequent in-
crease of x, as a function of the concentration of pinned
particles [20], presumably because the crossover line can-
not be easily approached in the time window available to
conventional computer simulations in the case of random
pinning.

The analysis of the four-point dynamic susceptibility
shows that the particle dynamics becomes essentially un-
correlated in the high-overlap regime. Therefore, the expla-
nation of the strong decoupling behaviour between diffusion
and alpha-relaxation time should be sought in the proper-
ties of single-particle motion. To elucidate this aspect, we
evalute the self-part of the van-Hove correlation function,

G(r,1) = <Z 8(r — Iri(t) — r,-<0)|)>. (11)

In Figure 8, we show the evolution of the distribution of
single-particle displacements for increasing ¢, adjusting for
each value of ¢ the timescale such that F(k, f) ~ 0.2 (this
allows us to probe displacements that are large enough to
better reveal the structure of the van-Hove function). The
distributions of displacements are essentially featureless
and close to a Gaussian for small &, but they broaden consid-
erably when ¢ > ¢*(7). This considerable broadening sug-
gests that at any given time, the system is composed of fast-
moving and slow-moving particles that coexist in space.
This feature alone is sufficient to account quantitatively
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Figure 8. Self-part of the van-Hove correlation function
4w’ Gy(r, t) for large particles for several ¢ at T = 0.8. The
distributions are evaluated at times ¢ such that F(k, £) = 0.2.
They broaden considerably as ¢ increases, and the tails develop a
multi-peak structure resulting from discrete particle hopping.

for a strong decoupling phenomenon [50]. It is interest-
ing to note that the coexistence in space of fast and slow
particles with increasingly heterogeneous dynamics is not
associated to growing spatial correlations of the dynamic
relaxation; this is instead a purely local phenomenon.

The data in Figure 8 not only show that the distribu-
tions broaden with &, since the shape of the distributions is
also changing qualitatively. The distributions are strongly
non-Gaussian at large ¢, and the emergence of secondary
peaks is also obvious. These peaks suggest that the particle
dynamics evolves from a continuous diffusive process at
small ¢, to a slow, intermittent, hopping process at large €.
Physically, this means that particles jump mostly from one
site to another, where the ‘sites’ are defined by the positions
of'the particles in the reference configuration. This interpre-
tation is harmonious with the observation of the formation
of dimers discussed in Section 3. Finally, we note that the
particles of both species are involved in the hops, although
the behaviour seems less pronounced for small particles,
whose van-Hove functions are less structured than for large
particles (data not shown). This observation contrasts with
the behaviour of the unconstrained model at low tempera-
tures around T, Where the jump dynamics mostly involve
the smaller B particles.

5. Conclusions

We have used conventional Monte-Carlo simulations to
study a viscous liquid coupled to a frozen reference con-
figuration of the same liquid at the same temperature. Our
exploration of the high-temperature portion of the (e, T)
phase diagram reveals a “Widom line’ of thermodynamic
and dynamic anomalies signalling the crossover from an un-
correlated liquid regime to a localised one, in which parti-
cles of the system are strongly constrained to reside near the

sites of the reference configuration. These results as com-
patible with the existence of a line of first-order transitions
at lower temperature terminating at a second-order critical
point. Our results show that computational approaches to
this problem suffer from two distinct sources of dynamic
slowing down. First, as in any phase transition, the order pa-
rameter (here the global overlap) displays large fluctuations
near coexistence, reflecting the emergence of a non-trivial
free-energy profile. Second, the single-particle motion be-
comes very slow in the high-overlap region because parti-
cles must hop on the sites of the reference configuration in
a highly constrained manner in order for the global over-
lap to remain large. Altogether, this means that at least two
distinct strategies need to be implemented in order to study
the phase diagram at lower temperatures to overcome both
the free-energy barriers near the phase transition and the
slowing down of the particles motion in the high-overlap
regime. Work is in progress in this direction [31], which
will hopefully allow for a direct study of the equilibrium
phase diagram of coupled viscous liquids.

Acknowledgements

We are very pleased and honoured to contribute an article to this
Special Issue in honour of J.-P. Hansen whose work, career and
integrity set an admirable example to all of us.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding

The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh
Framework Programme [FP7/2007-2013/ERC grant agreement
no. 306845].

References

[1] M.Meézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory
And Beyond: An Introduction To The Replica Method And
Its Applications (World Scientific, Singapore, 1986).

[2] A.P. Young, Spin Glasses and Random Fields (World Sci-
entific, Singapore, 1998).

[3] T.R. Kirkpatrick, D. Thirumalai, and P.G. Wolynes, Phys.
Rev. A 40, 1045 (1989).

[4] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F.
Zamponi, Nature Commun. 5, 3725 (2014).

[5] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).

[6] S.Franz and G. Parisi, Phys. Rev. Lett. 79, 2486 (1997).

[7]1 J.P. Hansen and I.R. McDonald, Theory of Simple Liquids,
2nded. (Academic Press, London, 1986).

[8] L.Foini, F. Krzakala, and F. Zamponi, J. Stat. Mech. P06013

(2012).

[9] JP. Bouchaud and G. Biroli, J. Chem. Phys. 121, 7347
(2004).

[10] A. Montanari and G. Semerjian, J. Stat. Phys. 125, 23
(2006).



Downloaded by [E R F 1] at 04:56 19 October 2015

[11]
[12]

[13]
[14]
[15]

[16]
[17]

(18]
[19]
[20]

[21]

[22]
[23]
[24]

[25]
[26]

[27]

[28]
[29]

Molecular Physics 2715

L. Berthier and W. Kob, Phys. Rev. E 85, 011102 (2012).
G. Biroli, J.P. Bouchaud, A. Cavagna, T.S. Grigera, and P.
Verrocchio, Nature Phys. 4, 771 (2008).

A. Cavagna, T.S. Grigera, and P. Verrocchio, J. Chem. Phys.
136, 204502 (2012).

G.M. Hocky, T.E. Markland, and D.R. Reichman, Phys.
Rev. Let. 108(22), 225506 (2012).

C. Cammarota and G. Biroli, Proc. Natl. Acad. Sci. 109,
8850 (2012).

R.L. Jack and L. Berthier, Phys. Rev. E 85, 021120 (2012).
B. Charbonneau, P. Charbonneau, and G. Tarjus, Phys. Rev.
Lett. 108, 035701 (2012).

W. Kob and L. Berthier, Phys. Rev. Lett. 110, 245702
(2013).

C. Cammarota and G. Biroli, J. Chem. Phys. 138, 12A547
(2013).

C.J. Fullerton and R.L. Jack, Phys. Rev. Lett. 112, 255701
(2014).

M. Ozawa, W. Kob, A. Ikeda, and K. Miyazaki, Equilib-
rium phase diagram of a randomly pinned glass-former.
arXiv:1412.4911 (2014).

W. Kob, S. Roldan-Vargas, and L. Berthier, Nature Phys. 8,
164 (2012).

G.M. Hocky, L. Berthier, W. Kob, and D.R. Reichman,
Phys. Rev. E 89, 052311 (2014).

J. Kurchan, G. Parisi, and M.A. Virasoro, J. Phys. I 3, 1819
(1999).

S. Franz and G. Parisi, J. Stat. Mech. P11012 (2013).

G. Biroli, C. Cammarota, G. Tarjus, and M. Tarzia, Phys.
Rev. Lett. 112, 175701 (2014).

M. Cardenas, S. Franz, and G. Parisi, J. Chem. Phys. 110,
1726 (1999).

S. Franz and G. Parisi, Physica A 261, 317 (1998).

C. Cammarota, A. Cavagna, [. Giardina, G. Gradenigo, T.S.
Grigera, G. Parisi, and P. Verrocchio, Phys. Rev. Lett. 105,
055703 (2010).

[30]
[31]

[32]
[33]
[34]
[33]
[36]
[37]
[38]
[39]
[40]
[41]
[42]

[43]
[44]

[45]
[46]

[47]

(48]

[49]
[50]

L. Berthier, Phys. Rev. E 88, 022313 (2013).

L. Berthier and R.L. Jack, Evidence for a disordered crit-
ical point in a glass-forming liquid. arXiv:1503.08576
(2015).

M. Mézard, Physica A 265, 352 (1999).

J.M. Bomont, G. Pastore, and J.P. Hansen, Europhys. Lett.
105, 36003 (2014).

J.M. Bomont, J.P. Hansen, and G. Pastore, J. Chem. Phys.
141, 174505 (2014).

G. Parisi and B. Seoane, Phys. Rev. E 89, 022309 (2014).
J.P. Garrahan, Phys. Rev. E 89, 2014 (2014).

L. Berthier and W. Kob, J. Phys. 19, 205130 (2007).

W. Kob and H.C. Andersen, Phys. Rev. E 51, 4626 (1995).
L. Berthier and D. Coslovich, Proc. Natl. Acad. Sci. USA
111, 11668 (2014).

C. Domb and M.S. Green, Phase Transitions and Critical
Phenomena (Academic Press, London, 1972), Vol. 2.
B.M. Mladek, D. Gottwald, G. Kahl, M. Neumann, and C.N.
Likos, Phys. Rev. Lett. 96, 045701 (2006).

D. Coslovich, J.P. Hansen, and G. Kahl, J. Chem. Phys. 134,
244514 (2011).

M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).

B. Charbonneau, P. Charbonneau, Y. Jin, G. Parisi, and F.
Zamponi, J. Chem. Phys. 139, 164502 (2013).

G. Tarjus and D. Kivelson, J. Chem. Phys. 103, 3071 (1995).
C. Toninelli, M. Wyart, L. Berthier, G. Biroli, and J.P.
Bouchaud, Phys. Rev. E 71, 041505 (2005).

L. Berthier, G. Biroli, J.P. Bouchaud, W. Kob, K.
Miyazaki, and D.R. Reichman, J. Chem. Phys. 126, 184503
(2007).

L. Berthier, G. Biroli, JP. Bouchaud, W. Kob, K.
Miyazaki, and D.R. Reichman, J. Chem. Phys. 126, 184504
(2007).

W. Kob and D. Coslovich, Phys. Rev. E 90, 052305 (2014).
L. Berthier, D. Chandler, and J.P. Garrhan, Europhys. Lett.
69, 320 (2005).



	Abstract
	1. Introduction
	2. Model and numerical methods
	3. Static properties
	4. Microscopic dynamics
	5. Conclusions
	Acknowledgements
	Disclosure statement
	Funding
	References



