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Abstract
Normalizing flows can transform a simple prior probability distribution into a more complex
target distribution. Here, we evaluate the ability and efficiency of generative machine learning
methods to sample the Boltzmann distribution of an atomistic model for glass-forming liquids.
This is a notoriously difficult task, as it amounts to ergodically exploring the complex free energy
landscape of a disordered and frustrated many-body system. We optimize a normalizing flow
model to successfully transform high-temperature configurations of a dense liquid into
low-temperature ones, near the glass transition. We perform a detailed comparative analysis with
established enhanced sampling techniques developed in the physics literature to assess and rank the
performance of normalizing flows against state-of-the-art algorithms. We demonstrate that
machine learning methods are very promising, showing a large speedup over conventional
molecular dynamics. Normalizing flows show performances comparable to parallel tempering and
population annealing, while still falling far behind the swap Monte Carlo algorithm. Our study
highlights the potential of generative machine learning models in scientific computing for complex
systems, but also points to some of its current limitations and the need for further improvement.

1. Introduction

One of the most important methodological revolution in science in the last century is scientific
computing [1]. Numerical simulations represent a way, complementary to experiments, to study physical
systems, thus providing a unique lens on the microscopic mechanisms underpinning macroscopic physical
phenomena [1–4].

A major application of numerical simulations, from the very beginning, has been sampling physical
configurations at thermal equilibrium [5]. This was initially done by using either Monte Carlo Markov
chains [5, 6] or molecular dynamics [7, 8]. Both methods can be viewed as ways to implement some physical
dynamics to ergodically explore the configuration space, just as the physical system does. The basic challenge
is to run those dynamics long enough to be able to generate a large set of uncorrelated configurations to
perform accurate ensemble averages of physical observables [2].

When the system is characterized by large relaxation times, for instance near phase transitions or in
disordered media, sampling can become so challenging that conventional methods may fail [2, 4]. In such
cases, the only solution, so far, consists in devising alternative dynamics that ensure equilibrium sampling
while being characterised by substantially smaller decorrelation times. Such strategies are described in many
standard textbooks on computer simulations and statistical physics [3, 4, 9, 10]. In the context of off-lattice
molecular simulations, we can mention non-local [11–13], lifting [14], or collective [15–17] Monte Carlo
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algorithms, parallel tempering [18–21], population annealing [22–24], or irreversible Langevin
dynamics [25].

However, there exist physical systems in which equilibrium sampling remains a difficult open problem
even with enhanced sampling methods. Among them, glassy systems [26] stand as one of the most difficult
to simulate in condensed and soft-matter physics. Molecular, colloidal and spin glasses are in fact known to
display an extremely slow physical dynamics, which creates a major challenge to standard simulation
algorithms [27, 28]. Glassy systems can in fact serve as a severe test of any newly proposed method, and can
be seen as a paradigm for complex systems.

The recent discovery of generative models in artificial intelligence (AI) able to generate large structured
data such as images, sound, 3D-video, and text has the potential to induce a second revolution in scientific
computing [29–33]. These AI models are not only able to accurately produce complex data, but are also very
fast. Speed is a central requirement in the realm of scientific computing. Several applications appeared
already. In 2019, Noé et al proposed the usage of normalizing flows (NFs) [34], and independently Wu et al
variational autoregressive models [35], for Boltzmann sampling in statistical and condensed matter physics.
These works have found numerous applications for sampling [36–40] and free energy calculations [41, 42].
However, despite these interesting premises, a clear view on when, where and how these methods work, and
in particular their limitations and efficiency against known algorithms, is currently lacking. For standard
phase transitions, promising results have been obtained in [43, 44]. However, for hard computational
problems such as complex and glassy systems, it is unclear whether they can circumvent the problem of large
relaxation times. Positive results have been reported in [45, 46] for spin-glasses. On the other hand,
theoretical and numerical analysis of mean-field models for structural glasses [47, 48], related to other hard
problems in computer science [49], has shown that several generative models do not, and sometimes can
not, have good performances. Worse, they sometimes perform less efficiently than conventional algorithms,
such as local Monte Carlo [47]. These results provide a rather pessimistic view of the potentiality of machine
learning (ML) techniques in the field of glassy systems. A last difficulty is that the performance of generative
models is generically expected to scale very badly with the size of the system, so that applications to study
phase transitions and collective effects in many-body systems appear out of sight.

Given the rapid progress made in ML studies [50–54], we feel that there is room for hope and progress.
At the moment, there is a clear need of further studies to develop and test generative models in hard
computational problems, and benchmark their performances against the ones of existing algorithms. The
aim of this work is to perform such analysis for atomistic models of glass-forming liquids [27]. Contrary to
[47, 48], we study an off-lattice, finite-dimensional glassy model which displays an extremely slow dynamics,
associated to a super-Arrhenius evolution of relaxation and sampling times. It is challenging to perform
numerical simulations in realistic experimental conditions for this model, as the physical relaxation time
increases by more than 14 orders of magnitude towards the experimental glass transition temperature [55].

We focus on a specific two-dimensional glass-forming model that shows conventional signatures of
glassy dynamics [56, 57], and represents therefore a relevant and challenging test bench for enhanced
sampling methods. At low temperatures, molecular dynamics becomes rapidly unable to perform an
equilibrium sampling of the configuration space, even for modest system sizes. Given the challenges
mentioned above, we intentionally study a relatively small system size to separate the capabilities of NFs to
tackle complex landscapes from its potentially problematic scaling with system size.

We optimise a ML technique based on NFs [33, 34], which we carefully benchmark against several
advanced techniques introduced in the physics literature, such as parallel tempering [19], population
annealing [23], and swap Monte Carlo [58]. By studying and comparing their abilities to produce an
ensemble of equilibrated low-temperature configurations, we provide the first quantitative analysis of the
performance of ML methods to sample realistic supercooled liquids at low temperatures. Surprisingly, our
results demonstrate the great potential of such method which turns out to be much more efficient than
conventional molecular dynamics and achieves performances comparable to parallel tempering and
population annealing. Finally, we assess current limitations of these new methods and provide guidelines for
further studies, in particular to improve the parametrization of the NF and to extend this technique to larger
system sizes.

The paper is organised as follows. In section 2 we define the numerical glass-forming model and explain
how to assess the performance of sampling algorithms. In section 3 we benchmark various known
algorithms: molecular dynamics, swap Monte Carlo, parallel tempering and population annealing. In
section 4 we introduce, optimize, and study the performance of a NF model. Finally, in section 5 we collect
our results, and discuss the implications for future research.
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Figure 1. Snapshot of a typical amorphous glassy configuration of the two-dimensional model at temperature T= 0.205. Colors
indicate different types of particles. The goal of this study is to produce a large number of independent configurations drawn
from the Boltzmann distribution in equation (1).

2. Setting the stage: model and sampling task

2.1. A two-dimensional ternary Lennard-Jones mixture
We study a two-dimensional (d= 2) model introduced and developed in [56]. This is a variation of the
binary Lennard-Jones mixture introduced long ago by Kob and Andersen [59] in which a third component is
introduced to both improve the glass-forming ability (i.e. to prevent easy crystallization) and enable a more
efficient use of the swap Monte Carlo algorithm, a strategy proposed in [58, 60]. We refer to [56, 57] for all
details regarding the model parameters and simulation details.

We investigate systems with N = 43 particles using periodic boundary conditions with box length
L= 6.0, in reduced units (see figure 1 for a snapshot). The unit of length is σ, which corresponds to the
diameter of the large particles. When using molecular dynamics, the unit of time is the Lennard-Jones
timescale τ =

√
mσ2/ϵ wherem is the particle mass, and ϵ the interaction strength between large particles.

For different algorithms, we express times in units of τ , in order to carefully reflect the actual computational
cost of each method.

The relatively small system size is actually comparable to previous studies using NFs for sampling in
complex systems [34, 36, 39]. The total dimensionality of the problem is D= Nd= 86. The main goal of this
work is to benchmark the efficiency of NFs in sampling such small glassy systems according to the
Boltzmann distribution,

ρ∗ (x) = Z−1
∗ exp(−β∗U(x)) . (1)

Here, Z∗ is a proportionality constant, β∗ is the target inverse temperature and U(x) = Epot(x) is the total
(potential) energy. For each configuration, we measure the total potential energy, Epot =

∑
i ̸=jV(rij), where

V(r) denotes the short-range repulsive pair interaction potential, as defined in the supp. mat. I of [56], and
rij the relative distance between particles i and j.

Results for a larger system size, N = 172, are presented in appendix C. Scaling to larger systems
introduces additional challenges that have to be considered separately and are left for future work. While
N = 43 seems a small number of particles, we emphasize that this is large enough to produce glassy dynamics
and local structure for this dense fluid that are nearly equivalent to those of much larger systems [61] (see
also figure 1). This implies in particular that equilibrium sampling even for this modest system size is already
a difficult computational challenge.

2.2. The specific heat as a sampling task
In order to assess and compare the properties of various algorithms, we first need to define a specific
sampling task to be able to test how well and how fast that task is achieved by the various algorithms.

In supercooled liquids approaching their glass transition, changes in many structural quantities are
typically very modest, and deciding whether or not a given configuration is equilibrated is not
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straightforward. The standard solution is to measure time correlation functions, as glassy dynamics is
extremely sensitive to small temperature changes, so that lack of equilibration, insufficient sampling, or small
drifts are more easily detected using dynamic quantities. This approach is however not available to parallel
tempering, population annealing and NFs which output a set of low-temperature configurations that are not
connected by any obvious dynamics.

To solve this problem we analyse the statistics of energy fluctuations measured in an ensemble of
configurations. We define the average potential energy over this ensemble, ⟨Epot⟩, and the variance of its
fluctuations, which is directly connected to the specific heat as [3]

cV =
CV

N
=

⟨E2pot⟩− ⟨Epot⟩2

NkBT2
. (2)

Here, T denotes the temperature of the system and kB the Boltzmann constant (kB = 1 in our units). A
correct estimate of the specific heat at a given temperature thus requires the production of several
independent equilibrium configurations in order to correctly assess the fluctuations around the mean ⟨Epot⟩.
We conclude that the determination of the specific heat represents a well-defined task that is able to probe
the capability of a given algorithm to (i) reach thermal equilibrium, (ii) sample a large number of
independent configurations x representative of the Boltzmann distribution. Another advantage is that cV
does not require knowledge of a dynamics between configurations, and is thus broadly applicable to any
sampling technique. Due to the generality of this sampling task we therefore believe that it is similarly suited
to benchmark enhanced sampling techniques for various different complex systems.

In practice, we additionally define a convergence timescale which quantifies the computational time it
takes for a given algorithm to correctly approach the equilibrium value of the energy at a given temperature.
This timescale will thus allow us to rank the different algorithms by their efficiency to accomplish the
requested sampling task.

We also studied alternative, previously-proposed determination of equilibration, such as different
definitions for the specific heat related by a fluctuation-dissipation relation, the radial distribution function,
histograms of potential energies, and density of states. See appendix B for more details on these other
approaches. We found that none of these measures can reliably be used, as they often overestimate the degree
of equilibration and are blind to small deviations from equilibrium. Therefore, we focus on cV as our main
observable.

3. Benchmarking known sampling algorithms

In this section we analyse the sampling performances of four distinct algorithms: swap Monte Carlo (SMC),
molecular dynamics (MD), parallel tempering (PT) and population annealing (PA).

3.1. SwapMonte Carlo (SMC)
A major problem for benchmarking enhanced sampling techniques is usually the absence of a reference
solution and therefore of a clear performance measure. Here, this issue is easily settled by using SMC [13, 58,
62]. The algorithm adds non-local Monte Carlo moves on top of conventional molecular dynamics
simulations [63]. The Monte Carlo moves are swap moves, in which a pair of particles with different types
are randomly selected and their radii are swapped. This swap move is accepted according to a Metropolis
scheme. This algorithm is extremely efficient and can be used to equilibrate supercooled liquids at extremely
low temperatures, including below the experimental glass transition temperature [56, 58, 60]. A detailed
introduction and discussion of this algorithm can be found in [63].

Anticipating that SMC is the most efficient sampling method, we therefore perform SMC simulations to
provide a benchmark for the following analysis of other sampling methods. In detail, we perform 105 swap
attempts every 50 MD steps. This is the highest swap frequency that we could use without inducing small,
but noticeable energy shifts, which were then affecting the quality of the benchmarking performed below.
Since swap moves are not frequent, it is pertinent to use the Lennard-Jones MD time unit τ as the time unit
also for the SMC method.

We first equilibrate the system for roughly 105 − 107 τ starting from temperature Tinit = 0.5. During
equilibration, we monitor the non-equilibrium potential energy, ⟨Epot(t)⟩neq. Here, the average, ⟨· · · ⟩neq, is
taken over Ns = 64 independent simulations, all starting from different equilibrium configurations sampled
at Tinit at t= 0. Afterwards, we perform SMC sampling for another tsamp = 107 − 108 τ (depending on the
temperature) to extract the ensemble average as introduced in section 2.2. During sampling, we also extract
the time-dependent average ⟨X⟩t =

∑
ts<tX(ts), from which we obtain the time-dependent specific heat

cV(t) = (⟨E2pot⟩t −⟨Epot⟩2t )/(NT2). In the limit t→ tsamp we then recover the long-time average ⟨X⟩t → ⟨X⟩.
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Figure 2. Sampling with swap Monte Carlo (SMC). (a) Equilibration of the potential energy ⟨Epot(t)⟩neq (Tinit = 0.5 at t= 0). (b)
Sampling of the specific heat cV(t), which no longer reach a plateau for temperatures T< 0.12< Tg.Horizontal dashed lines
show the long-time averages. (c) Long-time average of the potential energy ⟨Epot⟩ and (d) the specific heat cV. The vertical line
marks TSMC = 0.12. which is the temperature below which SMC sampling fails.

We have ensured that the measured timescale reflects the actual computational cost for these SMC
simulations to enable quantitative comparison of equilibration and sampling timescales.

Results for the time dependence of different observables during equilibration and then during sampling
are shown in figure 2. The potential energy ⟨Epot(t)⟩neq decays strongly during equilibration until it reaches a
plateau. Only for temperatures significantly below the estimated glass transition temperature (Tg ≈ 0.15) we
observe that the potential energy continues to decay even beyond t> 107, suggesting that SMC falls out of
equilibrium at these temperatures.

We also investigate the time dependence of the specific heat measured after the long equilibration run.
Here and in the following, error bars are calculated from the variance over several independent runs. Starting
from a small value at short time (when a single configuration has been probed), cV(t) rapidly accumulates on
short time scales contributions from vibrations within one state (leading to cV ≈ 1, since we work in d= 2
space dimensions). At much later times, the system visits a manifold of different states to eventually correctly
sample the Boltzmann distribution. Different from the equilibration discussed above, reaching a plateau in
cV(t) requires much longer times for cV than for ⟨Epot⟩: it takes longer to explore enough configurations to
estimate cV than simply reaching an energy value close to the equilibrium one.

5
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Explicitly, we can deduce from figure 2(b) that the system does not reach a plateau anymore for
temperatures T< TSMC = 0.12 during sampling of cV(t). We therefore identify TSMC as the temperature
below which SMC is no longer able to perform the assigned sampling task. Notice that near TSMC the energy
can reach a plateau, indicating that the system is very close to equilibrium, but the simulations are
nevertheless not sufficiently long to sample a large enough number of independent configurations to provide
the correct estimate of the specific heat.

The corresponding long-time averages of ⟨Epot⟩ and cV are shown in figure 2. We observe that the
potential energy decays monotonically for decreasing temperature. Furthermore it can be seen that above
T> TSMC the results for cV are monotonically increasing with decreasing temperature. Once the system falls
out of equilibrium near TSMC ≈ 0.12, there is a strong decrease of cV, as found previously in many
experiments and simulations in cases where the system falls out of equilibrium [64].

In the following, we will consider the SMC results down to TSMC as reflecting the correct equilibrium
behavior, in order to test and benchmark the performance of the alternative techniques.

3.2. Molecular dynamics (MD)
MD simulations consist in solving Newton’s equations of motion with an added thermostat to control the
temperature [3]. Consequently, the dynamic relaxation proceeds through realistic dynamics. Our
simulations use a Nose–Hoover thermostat with relaxation time τNH = 1.0 and time step of∆t= 0.005.
Identical to SMC we create high temperature configurations at Tinit = 0.5 and then quench the temperature
to the desired value T to monitor the relaxation of the potential energy towards equilibrium. After
thermalization for t> 107 τ , we investigate ⟨Epot⟩t and its fluctuations to measure cV(t). In order to perform
a fair comparison, we use the same range of timescales and report the same averaged quantities for MD, SMC
and all other sampling methods.

Results for MD dynamics are shown in figure 3. Since SMC provides equilibrium measurements down to
low temperatures, we can study the difference∆Epot = ⟨EMD

pot ⟩− ⟨ESMC
pot ⟩ to better quantify differences to the

established SMC results which are equilibrated down to TSMC. For MD, the potential energy starts to
systematically deviate from the expected SMC result already for temperatures T< 0.3, see figure 3(a). This is
confirmed in figure 3(b) which shows that the specific heat measured by MD simulations shows a peak near
TMD = 0.3, indicating lack of sampling for lower temperatures.

While equilibrium dynamics can easily be measured for MD using for instance time correlation
functions, we show instead how the energy decay after a quench from Tinit = 0.5 and the time dependence of
the specific heat measured during equilibrium sampling in figures 3(c) and (d). Compared to SMC, we show
a narrower regime of temperatures down to T= 0.205. In figure 3(c) we observe an increasing time scale to
reach the correct value of the energy which becomes impossible for T< TMD over the simulated time
window. The lack of sampling becomes more severe when considering the specific heat which can only reach
its plateau value for T= 0.32 but not below. Our data confirm that MD is much less efficient than SMC, as
expected. More importantly perhaps, since MD follows the physical dynamics of the system, the data in
figure 3 in fact serve as a benchmark in order to assess how much gain over the physical dynamics any
enhanced algorithm can achieve [17].

3.3. Monte Carlo in temperature space: parallel tempering (PT)
Parallel tempering [20], also known as replica exchange [19, 21], is a popular enhanced sampling technique
applied in a wide range of fields, including spin glasses [19, 21], protein folding [65, 66], polymer melts [67],
and solid state physics [68]. In the field of glass-forming liquids, it has been used to create equilibrium
structures of deeply supercooled liquids [69, 70], characterize point-to-set length scales [71, 72], and analyze
the physics of randomly pinned systems [73].

The key idea is to perform several MD simulations in parallel, each using the same MD parameters as
explained in section 3.2 but running with a set of n different temperatures T0, . . .Tn−1. Each of these
simulations is called a replica. In addition to MD steps, every Nex MD steps we attempt to exchange the
configurations between two replicas with adjacent temperatures. The exchange of the configuration in
replica j with the one in the neighbor j ± 1 is accepted according to a Metropolis scheme,

Pacc ( j ↔ j ± 1) = exp
(
−
(
βj −βj±1

)
∆U

)
, (3)

with energy difference∆U= Epot(xj)− Epot(xj±1) between the two configurations and inverse temperatures
βj = (kBTj)

−1. An extended derivation of this equation and efficient implementation can be found in chapter
14.1 of [2]. Using this algorithm configurations evolve both by the physical MD dynamics but also by
performing a random walk in temperature space. Low-temperature configurations can therefore follow an
‘easy’ relaxation path by being exchanged with replicas from higher temperatures, then evolving faster at
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Figure 3. Benchmarking MD dynamics. (a) Difference to the SMC potential energy,∆Epot = ⟨EMD
pot ⟩− ⟨ESMC

pot ⟩, where ⟨EMD
pot ⟩ is

the long-time average of the MD dynamics. (b) Long-time average of the specific heat cV. The vertical lines mark TMD = 0.3,
below which MD sampling fails. (c) Equilibration of the potential energy characterized by the quantity
∆Epot(t) = ⟨EMD

pot (t)⟩neq −⟨ESMC
pot ⟩. (d) Sampling of the specific heat cV(t). cV(t) does not reach a plateau anymore for

temperatures T< TMD. Dashed horizontal lines mark the long-time SMC results. Color code in (c) and (d) as in figure 2.

these high temperatures and subsequently being exchanged back to the low temperature. This may avoid
configurations being stuck for extremely long times in deep minima at low temperatures. Physically, if the
basins relevant at low temperature are also sampled at high temperature, PT can become a very efficient
method [27].

The most important factor to optimize PT simulations is the choice of the replica temperatures. On the
one hand, large temperature differences will significantly reduce the acceptance rate for exchange events and
therefore slow down the exploration of the temperature space. On the other hand, a large number of replicas
implies a larger computational effort. After trial and error, we finally use n= 8 replicas with temperatures
T= 0.4,0.359,0.32,0.287,0.256,0.229,0.205,0.183. To arrive at this choice, we have started with a small
number of replicas and systematically increased their number until we found the optimal result in the given
computational time. This choice is rationalized by a significant overlap between energy distributions at
neighboring temperatures and therefore a large acceptance rate ⟨Pacc⟩> 0.25 for all replicas. We also checked
that smaller temperature steps do not improve the results. We optimized the maximal and minimal
temperatures in the above range to finally settle on this list of n= 8 replicas. We also choose Nex = 5000
which is a reasonable choice between too frequent or too infrequent temperature swaps, but the results are
not very sensitive to this specific choice.

The results for the benchmarking of PT are shown in figure 4 using the same organization as for MD.
Comparing to figure 3 shows that PT is superior to MD. Within errorbars, PT predicts the correct potential
energy in a temperature regime in which MD is already substantially out of equilibrium. Using the specific
heat as a sharper test for sampling in figure 4(b), we conclude that PT succeeds in the sampling task down to
TPT = 0.23, below which cV decreases as a result of insufficient sampling. This temperature is considerably
lower than TMD = 0.3, but much higher than TSMC = 0.12.

7
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Figure 4. Benchmarking parallel tempering (PT) simulations. The description is the same as for figure 3. The vertical dashed line
in (b) represents TPT = 0.23 below which PT sampling fails.

To understand better the efficiency and limits of the PT sampling we turn to the energy decay after a
quench from an initial condition where all n replicas are initialized at a high temperature Tinit = 0.5, see
figure 4(c). Interestingly, the relaxation time of∆Epot(t) is only weakly dependent on the temperature. This
behavior is qualitatively different from the MD results. Therefore, while PT accelerates dynamics at low
temperatures, it also slows down the dynamics at higher temperatures compared to MD. This is the direct
result of the nature of PT exchange events: since replicas travel across the entire temperature spectrum, there
is a nearly unique emerging timescale controlling the approach to equilibrium of the entire simulation
composed of n replicas. In other words, different temperatures are no longer independent when using PT,
and the relaxation is in effect slaved to the slowest replica. This conclusion also explains why we did not
include replicas with even lower temperatures into the PT dynamics as it negatively impacts the performance
of the PT simulations.

The time dependence of the specific heat, cV(t), is more interesting, see figure 4(d). Here, the equilibrium
plateau in cV is reached faster for higher temperatures, and the corresponding timescale becomes longer than
our simulation time for T< TPT, explaining the spurious peak in the measured specific heat in figure 4(b).
The time dependent relaxation can thus be used to quantify the speedup offered by PT simulations over MD,
and this will be discussed in section 5.1.

3.4. Population annealing (PA) and reweighting (RW)
Population annealing (PA) is deeply rooted in the reweighting (RW) technique known from statistical
mechanics, which we recap first.

Given a set of R configurations, {xi}, with i = 1, . . .,R taken from the Boltzmann NVT ensemble at
temperature T1, it is possible to reweight these configurations to perform an equilibrium average at a
different temperature T2 [74]. To this end, one assigns a new Boltzmann weightWi = exp(−(β1 −β2)U(xi))
to each configuration i. The ensemble average of an observable A(x) at T2 is given by

⟨A⟩T2 =

∑
i WiA(xi)∑

i Wi
. (4)

8
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Reweighting is used extensively for free energy calculations in molecular simulations [75, 76]. The method,
however, only works efficiently for small enough temperature steps so that the weightsWi remain
meaningful.

In PA, a large set of configurations is used to perform small temperature steps to gradually anneal the
temperature to the target low-temperature, while reweighting their Boltzmann weights at each step [22–24,
77–79]. In practice, the PA algorithm works as follows. We first create R configurations at an initial, high
temperature β1 = (kBT1)

−1 and evaluate the Boltzmann weight of each configuration xi as
Wi = exp(−(β1 −β2)U(xi)). Here, T2 should be slightly smaller than T1. We then create on average τ i
copies of each configuration i, where τ i is given by

τi = R
Wi∑R
k=1Wk

. (5)

Recently, different schemes were compared to numerically implement equation (5) [79]. We apply the
‘systematic resampling’ scheme, which was the most efficient for a constant population size R. Following
resampling, we finally performM MD steps on each copy at temperature T2 to help thermalize the
configurations at the new temperature T2. This ends the annealing from T1 to T2. This annealing step
T1 → T2 is then repeated several times until the final target temperature T is reached. Each annealing step
consists in (i) resampling the population (ii) a small number ofM MD steps for each configuration. More
extended derivations of the technique and algorithms can be found in [23].

For the choice of annealing temperatures in PA, we use the same series T1, . . . ,Tn−1 used for PT in
section 3.3. This is reasonable since the PT temperatures were optimized to provide good overlaps between
the probability distributions of potential energy, which also controls the quality of the reweighting in
equation (4). Contrary to PT, the annealing procedure in PA is unidirectional as the population flows from
T1 to Tn−1 but no information is carried backwards. As a result, including lower temperatures is harmless (at
worse, PA sampling fails) and so we include two lower temperatures Tn = 0.164 and Tn+1 = 0.148. We
perform high temperature MD simulations at T1 = 0.359 and save configurations every 104 τ, which
corresponds roughly to the MD structural relaxation time at this T1. This choice ensures that within a similar
computational effort invested into PT we can create an initial set of R= 2× 105 statistically independent
configurations. In addition, this comparison enables us to assign a computational time t= R× 104τ to the
PA task, as the annealing steps themselves can be efficiently performed. None of the above choices critically
affects the result when reasonably changed. The most critical parameter is the numberM of MD relaxation
steps. A too small numberM< 103 leads to tiny but systematic differences in the observed ⟨Epot⟩ and cV.We
therefore chooseM= 5× 103. Since the creation of the initial set of R configurations is the computational
bottleneck, such a largeM value does not significantly increase the computational effort.

It is instructive to compare the gradual population annealing from T1 to a given target temperature T
with a direct reweighting performed in a single step T1 → T directly using equation (4) applied to the entire
initial population of configurations created at T1, see figure 5. We observe that RW is already much more
efficient than MD dynamics with correct energy and specific heat obtained down to TRW = 0.25. The effect
of the gradual annealing and resampling performed within PA improve the RW results dramatically, and
nearly-correct energy values are predicted down to the lowest temperature. A more careful inspection of the
cV data shows however that PA sampling fails below TPA = 0.19.

Different from MD and PT, there are no separate equilibration and sampling procedures within PA.
Nevertheless, it is possible to provide an equivalent time dependence to both∆Epot(t(R)) and cV(t(R)) by
following the evolution of the PA performance as a function of the population size R produced at the initial
temperature T1, because by definition correct sampling is obtained in the limit R→∞, just as correct
sampling is performed in the large time limit for any of the other algorithms. Convergence in the large time
or population limit is obvious, since system size and thus energy barriers are finite. However, our problem is
to reach convergence in a tractable computational timescale. We can then convert the population size R into
a computational timescale using the dictionary t= 104R, which corresponds to the effective computational
time invested into creating the set of R configurations.

The results are shown in figures 5(c) and (d) which illustrate the convergence of the energy and its
fluctuations to the correct values as R is increased. Differently from PT, we see that the equilibration of the
potential energy slows down with temperature, see figure 5(c). We can still observe the relaxation of cV(t)
towards its equilibrium plateau value. In fact the R dependence of cV, and its eventual convergence to a
plateau at large R, serves as a stringent test of the quality of sampling with PA. In particular, we confirm that
PA sampling fails below TPA = 0.19. This result shows that PA performs slightly better than the two previous
sampling methods: TPA < TPT < TMD, a result that could not be anticipated based on previous efforts. An

9



Mach. Learn.: Sci. Technol. 5 (2024) 035053 G Jung et al

Figure 5. Benchmarking population annealing (PA) and reweighting (RW). The description is the same as for figure 3. The time
dependence shown in panels (c) and (d) is obtained by using different numbers of initial configurations R. The vertical dashed
line in (b) represents TPA = 0.19 below which PA sampling fails.

additional advantage of PA is that the task of sampling an initial set of R independent samples at the high
temperature T1 can be easily parallelized, by running several independent simulations in parallel.

4. Sampling by normalizing flows

In section 3 we established benchmarks for enhanced sampling techniques known from physics. This sets the
stage for a thorough analysis of the performance of the ML method of normalizing flows (NFs) [33, 80].
Since NFs are relatively new methods, we first provide a general introduction before describing our
implementation and the main results.

4.1. Continuous normalizing flows
The general idea of NFs is to learn an invertible mapping between two probability distributions: a prior
distribution ρP(x), from which we can sample easily (Gaussian random numbers, high temperature liquids),
and a target distribution, ρ∗(x), in our case the Boltzmann distribution [34]. The mapping is in general only
approximate, so one needs to reweight the configurations obtained by the NF. A more accurate mapping
leads to lower rejection. NFs found applications in computer vision [81], sampling via Markov Chain Monte
Carlo [37, 82, 83], lattice field theories [84] and condensed matter physics [34, 40].

Boltzmann generators are the first application of NFs for sampling of complex systems in condensed
matter [34]. Compared to applications such as image generation, a specific property of Boltzmann generators
is that the target distribution is known and corresponds to the Boltzmann distribution (see equation (1)).
The challenge for Boltzmann generators in statistical physics is to efficiently sample from this distribution
using the learned NFs. For a general introduction to Boltzmann generators see references [34, 39].

Here, we use equivariant, continuous NFs [85]. This specific NF has the advantage of being equivariant
to translations, rotations and permutations and thus mirrors the fundamental symmetries of the underlying
physical system. In [85] detailed benchmarking compared to discrete NF layers and gradient flows has been
performed on a similar problem showing the superiority of the equivariant continuous NF for particle
systems over discrete ones. Continuous NFs transform the prior distribution into the target distribution by
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learning a time- and space-dependent vector field, v(xv(t), t), t ∈ [0,1], which can be interpreted as force
field,

d

dt
xv (t) = v(xv (t) , t) , xv (0) = x0 drawn from ρP (x) . (6)

We define the invertible transformation F, as xv(t= 1)≡ Fx0 [86]. Importantly for the calculation of the loss
function for training, we can evaluate the transformation of the prior probability distribution [85],

logρF (Fx0) = logρP (x0)−
ˆ 1

0
dt div v(xv (t) , t) . (7)

For a given transformation F, the NF thus produces a ‘push-forward’ probability distribution ρF(x) given by
equation (7), which is different from the target ρ∗(x) if the transformation is not perfect. Similarly, ρF̄(x)
emerges from the inverse transformation F̄ when applied on the true distribution ρ∗(x).

The model used for the force field is a sum of pairwise potentials which depend on the distance between
particle pairs [85],

v(x(t) , t) =∇xΦ(x(t) , t) , (8)

Φ(x(t) , t) =
∑
ij

Φ̃
(
dij (t) , t

)
, (9)

with dij(t) = |xi(t)− xj(t)|. The learnable weights {w} of the NF are the parameters of the potential field
Φ̃(d, t), which is parameterized using Gaussian radial basis functions in both distance d and time t. The
calculation of the divergence terms is numerically exact and stable, as detailed in [85]. Our implementation is
based on the public code bgflow provided by the authors of this publication. In the following, our goal is to
transform an easy-to-sample high-temperature distribution, ρP, at inverse temperature βP into a
low-temperature target distribution.

4.2. Loss function and training
NFs can be trained using the Kuhlback–Leibler divergence as minimizable loss function L, which quantifies
the similarity between the target distributions and the transformed NF distributions,
L= αDKL(ρF||ρ∗)+ (1−α)DKL(ρ∗||ρF̄).We differentiate in L between two different training contributions.
The first term [85],

DKL (ρF||ρ∗) =
ˆ
Ω

[β∗U(x)+ logρF (x)]ρF (x)dx, (10)

is based on having provided a set of high-temperature configurations, {x0}, which are transformed using
F, x= Fx0. A loss based on DKL(ρF||ρ∗) is called ‘variational’ or ‘energy-based’ training. This equation can
be discretized as a sum over individual configurations i,

DKL (ρF||ρ∗) =
∑
i

[
β∗U

(
xi
)
−
ˆ 1

0
dt div v

(
xiv (t) , t

)]
, (11)

where we have dropped βPU(xi0) from equation (7) since it is a constant that does not influence the loss
function.

It has been found in many studies that the training can be improved using a small set of low temperature
configurations, {x∗} sampled from ρ∗(x). The second term [85],

DKL (ρ∗||ρF̄) =
ˆ
Ω

[−β∗U(x∗)− logρF̄ (x∗)]ρ∗ (x∗)dx∗ (12)

quantifies the similarity between the transformed low-temperature configurations, x= F̄x∗, and the prior
distribution. This second contribution is also known as ‘maximum likelihood’ training. We also discretize
this equation to use it for training the NF.,

DKL (ρ∗||ρF̄) =
∑
i

[
βPU(F̄x∗)−

ˆ 1

0
dt div v

(
xiv (t) , t

)]
. (13)

We have systematically analyzed the optimal value for α, as discussed in detail in appendix A. We find that
α= 0.5 leads to the most stable training procedure and the best final result (see figure 9). In particular, this
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figure also highlights the importance of including the maximum-likelihood training. We also tested
protocols in which α changes during the training procedure as suggested in [85], but this did not affect the
results qualitatively.

Using a set of high- and low temperature configurations, {x0} and {x∗}, enables the optimization of the
learnable parameters {w}, which quantify the strength of the force field v(x(t), t). This step is achieved using
the above-defined loss function and stochastic gradient decent. The errors are backpropagated using
automatic gradient differentiation of the discretized NF in equation (6) implemented by PyTorch, which
replaces the typical backpropagation known from artificial neural networks [85].

In our case, however, we face the problem that we do not have access to any low temperature
configurations, because generating them is the whole purpose of the NF. We bypass this contradiction by
using an iterative procedure. We use reweighting to generate some approximate low-temperature
configurations. Using these configurations, we train a NF in the first iteration and apply it to create an
improved set of low-temperature samples. In a second iteration we then utilize this improved set for the
training of a second NF, which finally produces the low-temperature configurations that are analysed below.
We can iteratively improve the performance of the NF with this iterative procedure but using more than two
iterations did not lead to significant changes. In fact, we have tested that using low-temperature
configurations prepared with SMC for training only marginally improved the performance of the NF, which
thus confirms the efficiency of the proposed iterative procedure. In fact, our approach is similar in spirit to
[87] which also avoids the usage of target configurations by applying annealed importance sampling.

There are many hyperparameters that can be tuned to parameterize the NF and optimize the training
procedure, including the number, location and time-discretization of the radial basis functions, training
parameters and batch sizes. However, we found that the results are not very sensitive to the explored choices
of these parameters. See appendix A for more details.

4.3. Unbiasing the NF distribution
After training the NF, we obtain a transformation F, which is used to transform all available
high-temperature configurations, xi = Fxi0. Because the mapping performed by the NF is only approximate,
the resulting set of configurations are biased, i.e. they do not exactly sample the Boltzmann distribution at
temperature T. This can be corrected by performing an unbiasing step. We calculate the statistical weight of
each transformed configuration as

Wi = exp

[
βPU

(
xi0
)
−β∗U

(
xi
)
+

ˆ 1

0
dt div v

(
xiv (t) , t

)]
. (14)

Similar to RW, we then use the weightsWi to create a set of low temperature configurations that can sample
the Boltzmann distribution. The NF therefore not only provides transformed configurations, but also their
statistical weightsWi, which describe the effective weights of each configuration i at the low temperature β∗.
In direct RW, only the second step is performed, and thus NF has the potential to provide a large
improvement over RW by first transforming the original configurations, resulting in larger statistical weights
in equation (14).

4.4. Results: sampling efficiency of NF
We now show the performance of the NF in figure 6 using the same metrics introduced for the other
sampling methods, comparing long-time averages for the energy and the specific heat to SMC results.
Regarding efficiency and timescales, we can analyze NFs in much the same way as we did for PA in
section 3.4. In particular, the NF inherits the computational time t= R× 104τ of PA since it uses the same
initial samples. Just as for PA, the sampling part of the NF is computationally significantly more expensive
than the subsequent transformation and unbiasing steps.

We first compare the NF to conventional MD results. From figures 6(a) and (b), we conclude that the
results for NF are much closer to the SMC groundtruth than what is achieved by MD simulations (see
figure 3). From figure 6(b) we conclude that NF produces an equilibrium ensemble down to TNF = 0.2,
which is significantly smaller than TMD = 0.3. Thus, the NF generative modeling approach is indeed an
enhanced sampling method, in the sense that it works better than the physical dynamics in sampling low
temperature configurations of the glassy system under study. Given published results regarding generative
models for atomistic [39] or glass [47] models, this is an interesting result.

It is interesting to compare NF also with the direct RW approach studied in section 3.4 as both methods
use the same high-temperature configurations to predict low-temperature properties. The key step
distinguishing the two methods is the NF transformation in equation (6) itself. The fact that NF performs
much better than RW implies that the NF is able to efficiently transform the high-temperature
configurations so that the transformed configurations are much closer to equilibrium than the original ones.
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Figure 6. Benchmarking machine-learned NFs. Description is the same as for figure 5. For long-time averages in (a) and (b) we
also show results for the combination of population annealing and normalizing flow (NF/PA). The vertical dashed line in (b)
represents TNF = 0.2 below which NF sampling fails.

As for PA, we can follow the approach to equilibrium of the potential energy, see figure 6(c), and the
specific heat, see figure 6(d) when the size of the initial population R is increased, which can be translated
into timescale. These data allow us to define and measure a growing timescale for equilibration and sampling
which becomes longer than the simulated time for T< TNF.

Since NF outperforms MD simulations, it is pertinent to compare its performances with known
enhanced techniques, which justifies our efforts to carefully benchmark various methods in section 3.
Broadly speaking we find that all techniques (PA, PT, NF) perform nearly similarly, with NF and PA being
slightly better than PT with the rough hierarchy, TPA ≲ TNF < TPT. This detailed comparison and ranking of
several techniques is one of the main results of this work: it provides evidences of the usefulness of NF for the
difficult sampling problem of finite dimensional glassy systems.

Given the success of NF over direct RW, it is tempting to combine the NF method with the successful PA
approach in section 3.4, in order to possibly improve the performance of both these methods. In this
combined approach, we use the global framework of PA, but we replace the second step in the PA algorithm
(where copies are created from weightsWi calculated using the Boltzmann distribution) by the usage of a
trained NF to transform the configuration and calculate the new weightsWi.We refer to this mixed method
as ‘NF/PA’.

The results shown in figure 6 are however disappointing. Although they are slightly better than NF,
showing that multiple small steps are better handled than a large one, they are not better than PA. This is
surprising, since NF clearly performs better than RW in the one-shot annealing procedure and PA is based on
consecutive RW steps. Our interpretation is that for very small temperature steps, RW becomes actually
superior to NF, presumably because it uses the exact expression of the Boltzmann distribution.

4.5. Analysis of the effective sample size
Different from population annealing and parallel tempering, NFs have the capacity to produce
low-temperature configurations in one shot, without the introduction of a large number of intermediate
temperature steps.
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Figure 7. Effective sample size Reff, as defined in equation (15), for the PA and NF results shown in figures 5 and 6, respectively.
The corresponding symbols on the x-axis mark the temperatures at which the sampling of each given method starts to fail.

One practical consequence of such one-shot annealing is the possibility to define an interpretable
effective sample size based on Kish’s formula [88],

Reff =

(∑R
i=1Wi

)2

∑R
i=1W

2
i

, (15)

using the statistical weightsWi introduced in equation (14). The effective sample size describes roughly how
many independent configurations have been produced during the annealing procedure. The physical idea
behind equation (15) is clear: the effective sample size Reff ≈ R if all weightsWi are comparable, whereas
Reff ≪ R when a few samples have a much larger weight than all others, indicating poor sampling.

Starting from an initial set of R= 2× 105 samples we observe for NFs an exponential decay of the
effective sample size with temperature T in figure 7. At the temperature TNF = 0.2, identified before as the
temperature at which NF sampling starts to fail, the effective sample size is 102 < Reff < 103. This order of
magnitude is consistent with our empirical findings that at least 100 independent samples are required for a
proper representation of the equilibrium ensemble at temperature T. This analysis suggests that the effective
sample size Reff can be used as an independent and easy tool to check for equilibration when using NF as an
enhanced sampling technique.

In figure 7, we show the evolution of Reff evaluated during the gradual annealing employed for PA in
section 3.4. We observe a much slower decrease when temperature is reduced, with an effective size that
remains quite large, Reff ∼ 104 when crossing the temperature TPA, indicating that the sample size is a poor
indicator of adequate sampling in that case. This presumably results from the resampling of the algorithm
whereby the samples that eventually dominate the low temperature behavior are replicated more often than
others, which introduces strong correlations in the population. These correlations make the use of Kish
formula inefficient. Other independent measures have been suggested for PA to test equilibration, but they
require more involved analysis [89].

5. Discussion: what is the most efficient sampler?

5.1. Quantitative comparison between techniques
For each technique, we have obtained a temperature below which the assigned sampling task, i.e. measuring
the specific heat, starts to fail. This allowed us to rank the various techniques. For the particular glass model
studied here, we find that SMC is by far the best technique, with TSMC = 0.12. Then come the three enhanced
algorithms, PA, NF and PT with TPA = 0.19, TNF = 0.2, TPT = 0.23, which all perform much better than
conventional MD with TMD = 0.3. For comparison, we recall that the mode-coupling crossover is near
T= 0.3 and the experimental glass transition temperature near T= 0.15 [56].

This ranking does not easily translate into an actual computational speedup, or efficiency gain, which
may depend on the temperature. For each algorithm and each temperature, we showed that the approach to
equilibrium of the energy or the convergence timescale for the specific heat can both be recorded to assign a
representative sampling timescale. In practice, we use the former and define a timescale τ c as
⟨∆Epot(τc)⟩neq = 0.5. As a rule of thumb, a smaller τ c implies a smaller computational cost and thus
improved performance of the technique.
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Figure 8. Temperature evolution of the efficiency timescale for all algorithms. In practice, τ c quantifies the approach to
equilibrium of the potential energy. We compare swap Monte Carlo (SMC), molecular dynamics (MD), parallel tempering (PT),
population annealing (PA), and normalizing flows (NF). The corresponding symbols on the x-axis mark the temperatures at
which the sampling of each given method starts to fail.

We collect the results for the evolution of τ c for all algorithms in figure 8. This provides a more detailed
comparison between algorithms. Starting with very high temperatures, we observe in figure 8 that MD is
more efficient than the three enhanced sampling techniques, PT, PA and NF. In section 3.3 we explained this
finding for PT by the coupling between low and high temperatures through the temperature swap exchanges.
The explanation is different for PA and NF which are less efficient due to the quite coarse sampling
performed at high temperatures with a time 104τ between each stored configurations, see section 3.4. This
time scale was the best compromise we found empirically between the time invested into the annealing and
efficient sampling for the lowest temperatures. This could clearly be reduced if the focus was on higher
temperatures. Given that MD is very efficient in this regime, this is not a crucial endeavour.

When temperature decreases, figure 8 shows that the MD timescale increases more rapidly than any other
technique, and MD sampling is therefore the first to fail. The relaxation times of the three enhanced
sampling methods, PT, PA and NF seem to roughly follow the same temperature dependence, with minor
differences between them. Their behavior appears to be approximately Arrhenius, but the apparent energy
barrier is much smaller than for MD. Notice that for PT the timescale τ c does not take into account the fact
that n replicas need to be simulated in parallel. In the same vein, we note that the computational time for PA
and NF is mostly due to the preparation of a large population of independent configurations at relatively
high temperatures. This task can trivially be parallelized by running a large number of independent
simulations, thereby making PA and NF potentially much more efficient than PT where no additional
parallelization can be implemented.

Interestingly, SMC seems to follow the same Arrhenius dependence of the three enhances methods, at
least in this temperature regime, but with a prefactor that is considerably smaller by about four orders of
magnitude. This large difference quantitatively explains why SMC is the most efficient sampling technique
for this system.

Despite the success of SMC, it is encouraging that NF can truly compete with state-of-the-art sampling
techniques such as PT and PA, with a significant speedup over MD dynamics. At the lowest temperature
where NF still operates, TNF = 0.2, the speedup over MD dynamics is about four orders of magnitude in
relaxation time.

5.2. Perspectives
In this work we compared state-of-the-art enhanced sampling techniques for equilibrating supercooled
liquids with a new method based on the machine learning technique using NF. Our results demonstrate the
potentiality of ML methods to equilibrate model supercooled liquids at low temperature. In fact, the NF
method applied to small systems at very low temperatures has a performance comparable to the sampling
methods developed for complex systems, such as parallel tempering and population annealing. This very
good result is obtained despite the fact that NF does not introduce a large set of replica (as in PT) or
intermediate annealing temperatures (as in PA) and directly targets low temperatures in one shot. This
positive conclusion suggests that all important modes of the low temperature states are already present,
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although affected by thermal fluctuations, in the high-temperature regime. However, NF are, like PT and PA,
suboptimal with respect to the SMC technique.

We have focused on small systems with N = 43 at very low temperatures in d= 2. As demonstrated, this
provides a challenging setting for all sampling methods for an atomistic model with realistic interactions.
Applying the sampling methods to larger system sizes introduces new challenges for all of them. SMC and
MDmethods do not suffer too much with larger N, since the computational time increases linearly with N
while their performances do not degrade. The situation is different for PT, PA and NF, for different reasons.
We provide in appendix C results with a system that is four times larger with N = 172, showing poorer
performances. Addressing the challenge of scaling these algorithms to larger system sizes should be the focus
of a dedicated future work. In fact, even a very accurate NF method would eventually lead to an increasing
level of rejection in the reweighting step for large sizes, as the statistical weight should scale as exp(−cN) with
c a finite constant, which account for a small difference between the generated distribution and the
Boltzmann target. This generic argument does not take into account the complex nature of the glassy
configuration space, which may very well lead to additional sampling issues at larger system sizes.

Still, the observed performance of NF should encourage further work towards the development of
improved techniques. For instance, it would be interesting to study more complex parametrization of the
flow than the one we used. Possible candidates are: equivariant coupling flows [90], which combine the
efficiency of coupling flows while maintaining equivariance, equivariant flow matching [91, 92], which uses
alternative loss functions for training [93], annealed flow transport Monte Carlo [94], or approaches based
on diffusion models [95–97]. Additionally, it might be possible to combine NF layers with intermittent
periods of SMC dynamics to create a stochastic NF as in [98].

The benchmarks outlined in this manuscript aim to accelerate and simplify the development of such
sophisticated machine learning methods for sampling of complex systems. It is anticipated that any
enhancement will manifest directly in the resulting relaxation time. Similar benchmarking for other complex
system would be very valuable. We therefore believe that this manuscript marks an important step on the
quest of finding methods that outperform traditional enhanced sampling techniques and, potentially, even
the SMC technique.
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Appendix A. Details on the NFmethod

We provide more information on the hyperparameters used in the NF method. Our implementation is based
on the bgflow library [34, 85] (https://github.com/noegroup/bgflow), which was extended to include
periodic boundary conditions and multiple particle types. Thus any detail provided in [85] similarly applies
to the present manuscript.

A.1. Hyperparameter
Most notably, we discretize the differential equation flow in equation (6) using just Nt = 1 (first iteration) or
Nt = 3 timesteps (second iteration) in a multi-step fourth order Runge-Kutta scheme [85]. This is a strong
reduction of the complexity of the NF, but we have empirically found that larger values of Nt do not improve
the results. A consequence of this choice is that the transformation of the configurations amounts to quite
small displacements∆x≪ σ within the particle cages, rather than large-scale rearrangements. We have tried
intensively to learn more general models, starting from T→∞ (uniformly distributed particles), but none of
these models was able to propose acceptable configurations for low temperatures and reach accuracies
comparable to the results presented in the main text.
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Figure 9. Effective sample size Reff, as defined in equation (15), for different values of α at T= 0.205. The result for normalizing
flows (NF) is compared to reweighing (RW), see section 3.4.

We include 80 independent Gaussian radial basis functions centered non-uniformly at distances d in the
range 0.65⩽ d⩽ 2.8. In total this adds up to 966 learnable parameters (1938 for Nt = 3). The gradient
decent is based on an Adam optimizer with accuracy 10−4. For the first iteration we train on 512 different
structures using only one epoch, the second iteration uses four epochs and 4096 different structures. The
batch size is always 64 structures.

A.2. Ablation study for mixing parameterα
We have introduced in section 4.2 the parameter α in the loss function which interpolates continuously
between energy-based training (α= 1) and maximum-likelihood training (α= 0). Which is the best choice
for α?

To answer this question we have performed different training procedures for different values of α. We
report in figure 9 the effective sample size Reff which we have identified in the main manuscript as an
important factor to quantify the performance of the NF. The figure highlights a maximum near α≈ 0.5,
which is our final choice. For all other choices, the effective sample size is significantly lower.

In particular, figure 9 rules out the possibility to perform pure energy-based training (α= 1) which
would avoid the iterative procedure of finding low temperature training configurations described in
section 4.2. In fact, we find that the problem with α= 1 is not mode-collapse as in other studies in the field
of computer vision. For example, we have attempted the β−NF approach in which the entropy term (i.e. the
second term in equation (11)) is scaled by a factor β > 1 [99, 100] and we did not find any improvement.
Instead the only solution we found to increase Reff for α ̸= 0.5 is early stopping, which hints to some
instabilities in the learning. Nevertheless, even with early stopping Reff(α) never reaches the the value
Reff(α= 0.5).

In conclusion, this analysis shows that α= 0.5 is the optimal choice for the mixing parameter.

Appendix B. Additional criteria for equilibration

In the main text we state that the best way to validate sampling is by verifying whether cV(t) attains a plateau.
During our research, we have tested several different possibilities, which we briefly describe.

B.1. Fluctuation-dissipation theorem for specific heat
A popular way to validate equilibrium sampling is by calculating the specific heat using two different
formula. The first one is used throughout this work and corresponds to the variance of fluctuations in
potential energy, cVARV = (⟨E2pot⟩− ⟨Epot⟩2)/NT2. A second definition is based on the temperature derivative
of the average potential energy, cDERV = N−1∂⟨Epot(T)⟩/∂T. For equilibrium samples, these two definitions
yield the identical result by virtue of the fluctuation-dissipation theorem. Any difference between these two
quantities can therefore reveal a departure from equilibrium.

The results in figure 10 show that this indicator does not clearly signal departure from equilibrium. In
fact, it seems that when a given sampling technique departs from the SMC solution both definitions of the
specific heat depart similarly at the same temperature, but remain consistent with each other within the error
bar. A slightly better indicator of departure from equilibrium is the notable increase of the error bars, which
indicate increasing correlations between configurations, indirectly revealing lack of ergodicity. It is however
difficult to transform this observation into a clear-cut criterion for equilibration.
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Figure 10. Specific heat cV calculated for various sampling techniques using two different definitions, cVARV from fluctuations and
cDERV from derivative. In equilibrium both are related by a fluctuation-dissipation theorem. The data indicate however that when
the system falls out of equilibrium the fluctuation-dissipation theorem remains valid and both expressions similarly depart from
equilibrium.

B.2. Probability distribution of potential energy
We have analyzed in detail the average potential energy, ⟨Epot⟩ and its variance in the form of the specific
heat, cV.Here we investigate whether the full probability distribution of potential energies gives additional
information, in particular on whether equilibrium sampling has been achieved.

We observe that histograms do not yield much more information compared to the first two moments, see
figure 11. At T= 0.256 where equilibrium sampling already fails for MD, the energy histograms remain quite
close, with small deviations only visible in the left tail at low energy values. At T= 0.205, the MD dynamics
are completely out-of-equilibrium which can be observed by a clear shift compared to the SMC result.
However, by rescaling the first and second moment of the SMC distribution (dashed line) we observe nearly
perfect overlap with the MD results (blue squares).

We further exploit these data and evaluate the density of state G(Epot)∝ P(Epot,T)exp(βEpot). The
interest of the density of state is that it is a temperature independent quantity which is only accurately
obtained if proper equilibrium sampling of energy fluctuations is performed. As such it has been used as a
tool to assess the degree of equilibration [69].

Our results are shown in figure 12. Since the density of states is only known up to a prefactor, each set of
curves is arbitrarily shifted to maximize the overlap between estimates of the density of states stemming from
different temperatures for a given algorithm. In addition, the result for each method is shifted independently
for better visualization.

The excellent data collapse for the SMC data confirms that equilibrium sampling is achieved down to
very low temperatures. The expected temperature-independent mastercurve is obtained when stitching
together the data from P(Epot,T) obtained at different temperatures.

Interestingly, the MD data indeed reveals, that the ensemble falls out of equilibrium since no perfect
overlap can be achieved. This shows that the low-energy tails of the energy distribution are not properly
sampled, in a way that is perhaps clearer than in figure 11.

In contrast, even at T= 0.148, the data extracted from PA sampling shows perfect overlap although we
know that they do not perfectly represent the equilibrium ensemble, as identified above. The reason for the
qualitative difference between MD and PA is two-fold: (i) MD falls out of equilibrium much more violently,
in particular when investigating the potential energy, while in PA the differences are much smaller even when
the system is out of equilibrium. (ii) The number of samples used to create the histograms is much smaller in
PA, since each sample needs to be treated independently, making it impossible to maintain a huge set. The
very subtle difference in G(Epot) observed for MD is therefore nearly invisible for PA.

We conclude that G(Epot) can detect non-equilibrium properties, but it requires significant departure
from equilibrium and huge datasets. In other words, this is not a very sensitive test of equilibrium sampling.

B.3. Radial distribution function
There are also two different ways to calculate the radial distribution function, g(r), in particle systems at
thermal equilibrium. The first traditional approach is based on histograms, and measures the density profile
around a tagged particle. The second is based on forces, as recently proposed in [101]. The identity between
both methods is based on the assumption that the system is in thermal equilibrium. Therefore, any difference
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Figure 11. Probability distribution function of the potential energy, P(Epot,T), calculated for various sampling techniques at
different temperatures T.

Figure 12. Density of states, G(Epot), calculated for various sampling techniques. For each technique, estimates of the G(Epot)
obtained at different temperatures are stitched together to form a mastercurve. Each mastercurve is vertically shifted, for clarity.

between the two expressions can be taken as the sign that the system is not equilibrated, but this approach
has not be tested before.

Overall, we find that the relative difference between the two expressions for the pair correlation are
extremely small, typically smaller than 1%, see figure 13. A small systematic signal is observed when
calculating the difference between both techniques. However, this signal depends on the discretization and
binning of the histograms and is thus observable independently of the temperature. Apart from this signal,
no systematic difference between the two computation methods can be observed. This method therefore
cannot be used to detect non-equilibrium properties.

This result is reminiscent of similar findings for the configurational temperature, which is shown to
decay instantaneously to the thermal temperature during equilibration [102]. The relationship between the
histogram and the force methods for g(r) corresponds roughly to a space-dependent generalization of the
global configurational temperature.

Appendix C. Scaling with system size

In the main text, we concentrate on a small system size, N = 43, and we only briefly mention how the results
may change with system size.
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Figure 13. Relative difference between two expressions of the radial distribution function g(r), calculated using either the
traditional histogram method and the force method [101], for various temperatures. The small systematic differences are due to
discretisation issues and do not depend on the degree of equilibration.

Figure 14. Scaling the results to a larger system size, N= 172. (a) Difference in potential energy from the SMC result
∆Epot = ⟨Epot⟩− ⟨ESMC

pot ⟩. (b) Specific heat cV. The open symbols show the SMC results for N= 43, for comparison.

We repeated sampling with SMC, MD, PT, PA and NF for a larger system size, N = 172. As in the main
text, we then use the SMC results as a benchmark and report in figure 14(a) deviations of the average energy
with respect to SMC. In figure 14(b) we show results for the specific heat for the various sampling methods.
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Compared to N = 43, the performance of the MD approach are essentially the same, with deviations
appearing near TMD = 0.3 in both quantities. However, we observe that the efficiency of the three enhanced
sampling techniques (PT, PA, and NF) is significantly reduced in larger systems, as expected [20, 68]. In
detail, we see that PT and PA now have a comparable performance, with a speedup compared to MD that is
much less impressive than for N = 43 particles. This strong decrease in performance for both techniques
stems from the complexity of sampling multiple low-energy states in glassy systems.

We also conclude that the NF suffer from the same reduction in performance with increasing system size.
Therefore, our current implementation of NF does not get more efficient in larger systems compared to
traditional enhanced sampling techniques such as PT and PA. Scaling the NF method to large sizes is clearly a
challenging problem, which therefore deserves further attention in future work.
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