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Transverse forces and glassy liquids in infinite dimensions
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We explore the dynamics of a simple liquid whose particles, in addition to standard potential-based inter-
actions, are also subjected to transverse forces preserving the Boltzmann distribution. We derive the effective
dynamics of one and two tracer particles in the infinite-dimensional limit. We determine the amount of
acceleration of the dynamics caused by the transverse forces, in particular in the vicinity of the glass transition.
We analyze the emergence and evolution of odd transport phenomena induced by the transverse forces.
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I. INTRODUCTION

As temperature is decreased, the relaxation of a glass-
forming liquid takes an increasingly longer time to unfold
[1,2]. Many liquids actually undergo an impressive dynamical
slowing down, with the viscosity and the structural relaxation
time increasing by many orders of magnitude upon a mild
decrease of the temperature. To explore the dynamics of such
a liquid on a computer, the system has to be brought into an
equilibrium state before its response or relaxation properties
can be investigated [3]. It may happen that simply reaching
this initial equilibrium state is a difficult problem, especially
at low temperatures or high densities. It is thus a challenge
on its own to correctly sample the Boltzmann distribution. A
variety of methods have been used to reach equilibrium in the
most efficient manner [3,4]. A very efficient approach is the
swap Monte Carlo algorithm [5–8], which relies upon unphys-
ical radius exchange moves that are performed respecting the
detailed balance condition. When applied to size polydisperse
mixtures this technique dramatically reduces the equilibration
time by several orders of magnitude [7].

Because there is no need to respect realistic physics during
the equilibration phase, one could utilize detailed balance vio-
lating, i.e., nonequilibrium, dynamics, as long as sampling the
Boltzmann distribution is guaranteed in the steady state [9].
This idea of resorting to tailored nonequilibrium dynamics
originated in the applied mathematical literature: it consists
in inducing an extra current in the system that, while driv-
ing the system out of equilibrium, maintains the Boltzmann
distribution in the steady state. The potential equilibration
speedup results from a theorem that explains the conditions
under which a nonequilibrium drive makes the relaxation
times shorter. This was proven for the first time in Ref. [10]
for overdamped Langevin dynamics in a harmonic potential,
and it was then extended to general confining potentials [11]
and discrete Markov chains [12].

There are many ways by which the out-of-equilibrium
drive can be implemented, but two main families appear in

the literature. A first one [10] consists in applying to the
degrees of freedom of the system a transverse force, perpen-
dicular to the direction of the energy gradient. In the second
one, called lifting, one increases the number of degrees of
freedom of the system, exploiting the extended phase space
to induce the nonequilibrium current [13,14]. Inequalities on
relaxation and mixing times [15,16] can be proven for both
dynamical evolutions, ensuring faster equilibration compared
to the detailed balance satisfying dynamics. However, the
question of how these approaches perform in a challenging
sampling problem, as for instance the equilibration of systems
characterized by rough energy landscapes, is still largely open.
In what follows, we restrict our analysis to transverse forces,
because they represent the minimal nonequilibrium ingredient
to achieve acceleration, thus making the comparison with
equilibrium dynamics easier. This task is more complicated
for lifted dynamics, where the nonequilibrium drive is not
simply added to the original equilibrium evolution, making
it difficult to understand how much of the speedup is due to
the out-of-equilibrium nature of the dynamics.

The physics of dense liquids remains a puzzle because
the microscopic mechanisms controlling the dynamics of
the liquid, as well as the interplay between dynamical evo-
lution and structural changes, are not fully understood in
finite-dimensional systems [17,18]. However, in the infinite-
dimensional limit, a more complete level of understanding
is now available [19,20]. For liquids, the mean-field condi-
tion can be implemented [21,22] by sending to infinity the
number of spatial dimensions of the system, while properly
rescaling the number density so that the average number of
neighbors per particle grows linearly with the dimension. In
this limit, the dynamics of the system can be analytically stud-
ied [23–27], and expressions for transport coefficients such
as the diffusion constant and the viscosity can be obtained.
Below a dynamical transition temperature, Td , the diffusion
constant vanishes, signaling a dynamical ergodicity breaking.
In mean field this dynamical transition can be inferred from
a study of the thermodynamics of the system [20,28,29], as it
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FIG. 1. (a) Ratio between the longitudinal diffusion constant
D‖(γ , T ) in the presence of transverse forces and its equilibrium
counterpart at γ = 0 for different values γ of the strength of the
nonequilibrium drive, as a function of inverse temperature β. (b) Odd
diffusivity in the presence of transverse forces. In both panels, the
memory kernel used is the one obtained via a low-density expansion
for the case of a linear potential, as given in Eq. (28).

corresponds to the temperature below which infinitely long-
lived metastable glassy states appear [30,31].

The theoretical framework developed to obtain the afore-
mentioned results makes liquids in high dimension a suitable
testbench for the question we ask, namely how efficiently
a given dynamics samples the Boltzmann distribution in a
high-dimensional rugged landscape. This challenging task is
applicable for a wide set of topics going beyond structural
glasses, ranging from protein folding to machine learning
algorithms [32,33].

In the present article, we evaluate the efficiency of
transverse forces in liquids living in infinite-dimensions, ex-
plaining and expanding on results announced in a recent letter
[34]. We use the diffusion constant to probe the relaxation
dynamics and to quantify the effect of transverse forces. We
analyze the resulting speedup as a function of the temperature
and we elucidate the scaling of the acceleration for large
values of the nonequilibrium drive. We find that after reaching
a maximum in the ergodic region, the efficiency decreases
towards a constant value as the dynamical glass transition is
approached, as shown in Fig. 1. This is the main result of this
work. The temperature Td at which the dynamical glass transi-
tion occurs is unaffected by the presence of transverse forces,
suggesting that the long lived, metastable states that hinder
the relaxation for this particular dynamics are encapsulated in

the equilibrium distribution, which is preserved by transverse
forces [35]. This is already an interesting result in itself, since
a priori Td may depend on the specifics of the dynamics, as
discussed in Refs. [36,37].

Our study elucidates the role of the transverse forces in the
relaxation speedup. We pinpoint the influence of transverse
forces in the one and two particle processes characterizing
the dynamics of mean-field liquids. The technical difficulty is
to carefully control the influence of the forces perpendicular
to the energy gradient, which we achieve by extending the
cavity approach of Ref. [26]. On the physics side, transverse
forces give rise to odd transport coefficients (diffusivity [38],
mobility [39], and viscosity [40]), which also arise natu-
rally in active systems composed of chiral particles or in the
presence of nonreciprocal forces [41]. These coefficients use-
fully quantify the departure from equilibrium dynamics and
explain how the relaxational dynamics is driven by nonequi-
librium currents even in cases where the speedup efficiency is
reduced.

This paper is organized as follows. In Sec. II we introduce
the equations of motion and discuss both transverse forces
and the proper infinite-dimensional scaling of parameters. In
Secs. III and IV we study respectively the one and two-particle
processes. From the asymptotic properties of the latter, the
temperature at which dynamical arrest occurs can be pre-
dicted. This is done in Sec. V. We discuss the dynamics in the
ergodic regime for large values of the out-of-equilibrium driv-
ing in Sec. VI. We compute the mean squared displacement
and discuss transverse force efficiency in Sec. VII. Finally,
in Secs. VIII A, VIII B, and VIII C we compute odd diffusion
constant, odd mobility, and odd viscosity, respectively.

II. EQUATIONS OF MOTION

Our starting point is an overdamped Langevin dynamics in
the presence of transverse forces for a system of interacting
particles with positions Ri in a space of dimension d:

ζ Ṙi = −(1d + γ A)∇U + ξ(t ), (1)

where U = ∑
i< j v(Ri(t ) − R j (t )), with potential v be-

ing pairwise and spherically symmetric; ξ is a Gaussian
white noise with correlations 〈ξ(t ) ⊗ ξ(t ′)〉 = 2ζT1dδ(t −
t ′), where ζ is the friction coefficient. As in the equilibrium
case examined in Ref. [24], we will focus on the dynamics
of the displacements ui(t ) ≡ Ri(t ) − Ri(0) with respect to
the initial positions at t = 0. We impose that the Frobenius
norm of A is ||A||2F = ∑

i, j A2
i j = d , so that γ alone controls

the intensity of the nonequilibrium drive. For convenience we
assume that the spatial dimension d is even, and choose the
following form of the matrix A:

γ A ≡
d/2⊕
α=1

�, (2)

with � ≡ γ [0 −1
1 0 ] a 2 × 2 matrix. There is no loss of gen-

erality in choosing this form, since any antisymmetric matrix
of even dimension γ A, with a spectrum {±iλk}k=1,...,d/2 can
be rewritten via an orthogonal transformation in a block form
analogous to the one of Eq. (2), with the γ ′s replaced by
γ λk in each block. As will become clear in the course of
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the derivation, allowing for λk �= 1 does not alter the general
results discussed in the following sections (but it would re-
quire a minor alteration of some explicit formulas).

Due to the structure of A it is convenient to decompose the
vector ui = ⊕d/2

α=1 ui,α ,

ζ u̇i,α (t ) = −(12 + �) · ∇i,αU (t ) + ξi,α (t ), (3)

where for a given d-dimensional vector x we have introduced
its components xα = (x2α−1, x2α )T ≡ (x(1)

α , x(2)
α )T , a set of d/2

two-dimensional vectors containing the directions that affect
each other nonreciprocally via the transverse force. By con-
struction it follows that x = ⊕d/2

α=1 xα .
We first discuss the scaling of the various parameters with

spatial dimension d so that the resulting d → ∞ dynamics
retains interesting many-body features. First, we recall the
specifics of the large d limit of equilibrium dynamics. As
always in mean field, each particle interacts with typically
d neighbors. The notion of neighbor makes sense when the
range � of the pair interaction potential is finite, as assumed
here. Then the typical number of neighbors per particle is
ρVd (�) where Vd (�) = πd/2

�(d/2+1)�
d is the volume of the interac-

tion sphere. As d → ∞ we want to maintain ρVd (�) of order
d1. Then, to ensure that the energy is extensive in the number
dN of degrees of freedom, the pair potential v(r) needs to
admit the following scaling behavior,

v(r) ≡ v(h), h = d

(
r

�
− 1

)
, (4)

where v(h) remains finite as d → ∞. This implies that
the forces scale as v′(r) ∼ dv′(h) ∼ d . However, the dis-
placement �r ≡ |r(a)

0 + u(a)| − r0 of a given particle is of
order d−1, as h needs to be of order unity. It follows then
from the expansion �r ≈ r̂ · u + u2

2r0
that u(a)

μ ∼ d−1. To keep
all the terms of Eq. (3) of the same order in d , we need to
scale the friction as ζ ∼ d2. Finally, we need to discuss the
main new element in Eq. (3), i.e., the transverse forces. With
our choice (2) of matrix A, in order for these forces to act in a
nontrivial yet nonsingular way, we need γ ∼ d0.

III. ONE-PARTICLE PROCESS

We consider N + 1 particles labeled by i = 0, . . . , N in
a volume V , and we now proceed to derive in the infinite-
dimensional limit an exact equation for a tagged, appropriate
degree of freedom pertaining to particle 0. In an equilibrium
setting, the authors of Ref. [26] understood that the proper
cavity variable could not be a full d-dimensional position
vector (because the number of degrees of freedom of the
cavity cannot be extensive in d). In our situation, however,
we identify the proper degree of freedom to be the vectors
u0,α = (u0,2α−1, u0,2α )T , with α fixing the pair of space direc-
tions.

With this identification, we start by writing a Liouville
operator L(t ) governing the dynamics of the N + 1 particles,

L(t ) ≡
N∑

i=0

d/2∑
μ=1

1

ζ
[−(12 + �) · ∇i,μU (t )

+ ξi,μ(t ) + T ∇i,μ]T · ∇i,μ, (5)

for a given realization of the stochastic forces. Then one can
write for a generic vector xi,μ(t ) = U [L](t, 0) · xi,μ, where
xi,μ ≡ xi,μ(0) and

U [L](t, 0) ≡ exp

(
T

∫ t

0
dτL(τ )

)
. (6)

The operator T is the time ordering operator from left to right,
so that ∂tU (t, 0) = U (t, 0)L(t ) [42].

We associate to the Liouvillean operator an irreducible
version Lirr,

Lirr(t ) ≡ L(t ) − δL(t ),

δL(t ) ≡ 1

ζ
[−(12 + �) · ∇0,αU (t )

+ ξ0,α (t ) + T ∇0,α]T · P · ∇0,α, (7)

where the projection operator P is defined by

Px(t ) ≡
〈∫

dr⊥
0

∏
i>0,μ dri,μe−βU x(t )∫

dr⊥
0

∏
i>0,μ dri,μe−βU

〉
ξ0,...,ξN

≡ 〈x(t )〉0, (8)

where dr⊥
0 ≡ ∏

μ �=α dr0,μ indicates integration over all the
component of particle 0 with the exclusion of the pair of
tagged directions α. The average 〈· · · 〉ξ0,...,ξN

≡ 〈. . .〉0 is an
average over realizations of the noise of all the particle and
coordinates, including the tagged one. In short, P averages
over all the degrees of freedom except for the tagged ones.

We now express the force ∇0,αU (t ) using the irreducible
Liouvillean. To do this, we exploit the identity

U [L](t ; 0) = U [Lirr](t ; 0)

+
∫ t

0
dτU [L](τ ; 0)δL(τ )U [Lirr](t ; τ ), (9)

to write

− (12 + �) · ∇0,αU (t )

= −(12 + �) · ∇0,αU †(t )

−
∫ t

0
dτU [L](τ, 0)δL(τ )U [Lirr](t, τ )(1 + �) · ∇0,αU,

(10)

where we defined ∇0,αU †(t ) ≡ U [Lirr](t, 0) · ∇0,αU . We will
show in the following that the first and second terms on the
right-hand side of Eq. (10) are, respectively, a fluctuating force
and an effective friction. To make this identification explicit,
we simplify the term under the integral of Eq. (10) into

− {U [L](τ, 0)δL(τ )U [Lirr](t, τ )(12 + �) · ∇0,αU }(a)

= −β{(12 + �) · 〈∇0,αU †(t − τ )

⊗ ∇0,αU †〉0 · u̇0,α (τ )}(a), (11)

where we recall that u(a)
α is the ath component of the two

dimensional vector uα . Equation (3) for the coordinate α of
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particle 0 reads

ζ u̇0,α (t ) = −(12 + �) · ∇0,αU †(t ) − β

∫ t

0
dτ (12 + �) · 〈∇0,αU †(t − τ ) ⊗ ∇0,αU †〉0 · u̇0,α (τ ) + ξ0,α (t ). (12)

It is important to realize that so far Eq. (12) is exact. This equation expresses the decomposition of a force into the sum of an
effective noise and of a friction term, as customarily obtained through the projection operator formalism [43]. However, we will
show that in the infinite-dimensional limit the memory kernel is further simplified by substituting ∇0,αU †(t ) with ∇0,αŨ (t ), the
force exerted by the fluid where coordinates α of particle 0 have been frozen. To do so we first fully write the expression of Lirr,
with Q ≡ 1 − P ,

Lirr(t ) = 1

ζ
[−(12 + �) · ∇0,αU + ξ0,α (t ) + T ∇0,α]T · Q∇0,α +

d/2∑
μ �=α

1

ζ
[−(12 + �) · ∇0,μU + ξ0,μ(t ) + T ∇0,μ]T · ∇0,μ

+
N∑

i>0

d/2∑
μ=1

1

ζ
[−(12 + �) · ∇i,μU + ξi,μ(t ) + T ∇i,μ]T · ∇i,μ

≡ 1

ζ
[−(12 + �) · ∇0,αU + ξ0,α (t ) + T ∇0,α]T · Q∇0,α + L0(t ), (13)

from which we see that ∇0,αŨ (t ) = U [L0](t, 0)∇0,αU . By using the last line of Eqs. (9) and (13) we can express the force
∇0,αU †(t ) in terms of a Dyson series

∇0,αU †(t ) = ∇0,αŨ (t ) +
∫ t

0
dτU [L0](t, τ )

1

ζ
[(12 + �) · ∇0,αU + ξ0,α (τ ) + T ∇0,α]T · Q∇0,αU [L0](τ, 0)∇0,αU + . . . (14)

We will now argue that all the terms of this series excluding the first are subleading in the infinite-dimensional limit, provided
that this limit is taken for a finite time t . For example, the second term of the series can be rewritten as∫ t

0
dτU [L0](t, τ )

1

ζ
[(12 + �) · ∇0,αU + ξ0,α (τ ) + T ∇0,α]T · [̃kα (τ ) − 〈̃

kα (τ )
〉
0], (15)

where k̃(ab)
α (0) ≡ ∑

j>0 ∇ (a)
α ∇ (b)

α v(r (ab)
0 j )δab. The fluctuations of this term are of order d3/2. Therefore for finite times the integral

scales as 1
d d3/2 ∼ d1/2, and is subleading compared to the first term of the series which is of order d . Terms of the series of

order n all contain additional powers of the friction coefficient ζ , leading to the scaling d3/2−n. In conclusion, we can rewrite
Eq. (12) as

ζ u̇0,α (t ) = −(12 + �) · ∇0,αŨ (t ) − β

∫ t

0
dτ (12 + �) · 〈∇0,αŨ (t − τ ) ⊗ ∇0,αŨ 〉0 · u̇0,α (τ ) + ξ0,α (t ). (16)

We have thus obtained an effective equation for the degree of freedom u0,α (t ), the coordinates α of the position for particle 0.
The force-force correlation can be rewritten as〈∇ (a)

0,αŨ (t )∇ (b)
0,αŨ

〉
0

=
〈∑

i, j �=0

∇ (a)
0,αv (̃r0i(t ))∇ (b)

0,αv (̃r0i )

〉
0

=
〈∑

i �=0

∇ (a)
0,αv (̃r0i(t ))∇ (b)

0,αv (̃r0i )

〉
0

= 2

d

〈
d/2∑
μ=1

∑
i �=0

∇ (a)
0,μv (̃r0i(t ))∇ (b)

0,μv (̃r0i )

〉
0

= 2

dN

〈
d/2∑
μ=1

∑
i �=0

∇ (a)
0,μv(r0i(t ))∇ (b)

0,μv(r0i )

〉
≡ M (ab)(t ). (17)

The indices a and b identify the cavity degrees for the two
coupled tagged space directions, as defined after Eq. (3). In
deriving Eq. (17) we have used, in order:

(1) the fact that forces between particle 0 and other two
distinct particles i and j are uncorrelated in the large dimen-
sional limit;
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(2) the equivalent roles played by the d/2 blocks;
(3) the fact that in the large dimensional limit the average

〈...〉0,α over the dynamics with the frozen direction α of parti-
cle 0 can be replaced by an average over the dynamics of the
full, unfrozen system, and that such an average can be carried
out for all the N particles of the system.

Moreover, we observe that in the high-dimensional limit
the force ∇0,αŨ (t ) has a zero average, and its statistics are
entirely determined by its second moment. The dynamical
equation obtained for particle 0 can be generalized to any
particle in the liquid, since they are all identical. The resulting
equation reads

ζ u̇i,α = −β

∫ t

0
dτ (12 + �) · M(t − τ )u̇i,α (τ )

+ �i,α (t )

〈�i,α (t )〉 = 0

〈�i,α (t ) ⊗ � j,β (t ′)〉 = δi jδαβ[2T ζ12δ(t − t ′) + (12 + �)

· M(t − t ′) · (12 + �T )]. (18)

The memory kernel M(t ) encoding pairwise force-force cor-
relations is self-consistently determined by the dynamics of
two interacting particles. The latter can be obtained from
the microscopic dynamics in the same way as in Eq. (18).
However, we first observe that the memory kernel at the initial
time is completely determined by the equilibrium properties
of the system. Therefore, it has the same expression as its
equilibrium counterpart, and in particular it is diagonal:

M(0) = 12
ρ

d

∫
dr0g(r0)|v′(r0)|2, (19)

with g(r) = e−βv(r) the radial distribution function in the
infinite-dimensional limit, and ρ is the number density of the
system. The physical simplifying idea that we use to proceed
is that a diagonal kernel at initial times implies, in the large-
dimensional limit, a diagonal kernel at successive times. In the
following section, we will derive the equations of motion for
the two particle process under the self consistent assumption
of a diagonal kernel M = 12M(t ). In this case the dynamics
for the full displacement of particle i in d dimensions reads

ζui(t ) = −β

∫ t

0
dτM(t − τ )(1d + γ A) · u̇i(τ )

+ �(t )〈
�i(t ) ⊗ � j (t )

〉 = 1dδi j[2T ζ δ(t − t ′) + (1 + γ 2)M(t − t ′)]

M(t ) = ρ

d

∫
dr0g(r0)〈r̂(t )v′(r(t ))〉r0 · r̂0v

′(r0),

(20)

where the definition of the kernel M(t ) comes from an exten-
sion by continuity of Eq. (19).

IV. TWO-PARTICLE PROCESS

A. General formulation

We consider two particles, which we label 0 and 1, and
we focus on the dynamics of their separation r(t ) ≡ R0(t ) −
R1(t ). A derivation analogous to the one performed for the

one-particle process, along the lines of Ref. [26], gives

ζ

2
ṙ = −(1d + γ A)r̂v′(r(t ))

− β

2

∫ t

0
dτM(t − τ )(1d + γ A)ṙ(τ )

+
√

2�(t )

〈�(t ) ⊗ �(t ′)〉 = 1d [2T ζ δ(t − t ′) + (1 + γ 2)M(t − t ′)].

(21)

Equation (21) can intuitively be derived from the one-particle
process of Eq. (20), singling the force between particles 0 and
1 out of the expression of M. This is a legitimate operation
which yields a negligible correction in the large dimensional
limit.

From Eq. (21) using Itō calculus one can obtain equa-
tions of motion for the dynamics of the distance r = |r| and
the unit vector r̂ along r,

ζ

2
ṙ(t ) = T (d − 1)

r(t )
− β

2

∫ t

0
dτM(t − τ )r̂(t ) · (1d + γ A)ṙ(τ )

+
√

2r̂(t ) · �(t ),

ζ

2
˙̂r(t ) = −T (d − 1)

r(t )2
r̂(t ) − γ Ar̂(t )v′(r(t ))

− β

2r(t )

∫ t

0
dτM(t − τ ) · �⊥(t )(1d + γ A)ṙ(τ )

+
√

2�⊥(t ) · �(t ), (22)

with �⊥(t ) ≡ 1d − r̂(t ) ⊗ r̂(t ) the operator projecting along
a direction orthogonal to r̂(t ). At t = 0 the dynamics of r̂
reads

ζ

2
˙̂r(0) = −T (d − 1)

r(0)2
r̂(0) − γ Ar̂(0)v′(r(0))

+
√

2�⊥(t ) · �(0). (23)

The left-hand side of this equations scales as d3/2, while the
right-hand side contains terms of order at most d . We therefore
conclude that the orientation of the vector r does not change to
leading order in d with respect to its initial orientation. We can
thus assume that r̂(t ) = r̂(0) at all times. Then the evolution
of r̂(t ) in Eq. (22) becomes

ζ

2
˙̂r(t ) = −T (d − 1)

r(t )2
r̂(0) − γ Ar̂(0)v′(r(t ))

− γ β

2r(t )

∫ t

0
dτM(t − τ )Aṙ(τ )

+
√

2�⊥(t ) · �(t ). (24)

The scaling for the different terms reads as above, and the new
term introduced, which is of order d2 × d−1 = d , remains
subleading. This proves self-consistently that, as was the case
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in equilibrium, the orientation of the inter particle separation
is constant throughout the dynamics, which was not an a priori
obvious property. The equation for the interparticle distance
reads

ζ

2
ṙ(t ) = −v′(r(t )) − T (d − 1)

r(t )

− β

2

∫ t

0
dτM(t − τ )r(τ ) +

√
2�(t ),

〈�(t )�(t ′)〉 = 2T ζ δ(t − t ′) + (1 + γ 2)M(t − t ′),

M(t ) = ρ�d

d

∫
dr0g(r0)〈v′(r(t ))〉r0v

′(r0), (25)

with �d the surface of the unit sphere in d dimensions. Note
that the two-particle process is still an out of equilibrium
one, since the noise and the friction terms do not respect
the fluctuation-dissipation theorem. One expects therefore a
different value of the memory kernel M(t ) compared to the
γ = 0 case. The analytical determination of M(t ) at all times
is an open question, even in the equilibrium case, where
progress has been made either by numerical integration or a
low-density expansion [44]. We turn to the latter approach,
to produce an expression of M(t ) which will be useful in
the following sections, where we probe the efficiency of the
transverse forces.

B. Low-density expansion of the memory kernel

The main idea is to expand the memory kernel in the form
of a perturbative series

M(t ) =
∞∑

n=1

M (n)(t ), (26)

where M (n) ∼ O(ρn) can be self-consistently determined from
the two particle process given by Eq. (25), evaluated up to
order O(ρn−1). Therefore, the lowest-order M (1) is determined
by the process

ζ

2
ṙ (0)(t ) = T (d − 1)

r (0)(t )
− v′(r (0)(t )) +

√
2�(0)(t )

〈�(0)(t )�(0)(t ′)〉 = 2T ζ δ(t − t ′), (27)

which is the same as the one obtained at equilibrium [44]. Low
densities suppress the action of transverse forces at the level
of the two-body process. In particular, one can consider the
case of a linear potential v(r) = ε( r

�
− 1), for which M (1)(t )

was determined in Ref. [44]. We give here the expression of
its time integral M̂ (1) ≡ ∫ +∞

0 dtM (1)(t ), which will be useful
later. It reads

βM̂ (1) = φ̂

2

β2(2 + β )

(1 + β )3
, (28)

with φ̂ ≡ ρVd
�d

d the rescaled packing fraction, and with Vd the
volume of a sphere of unit radius in d dimensions. Below, we
will address the issues of the long time limit of M and of its
asymptotic behavior as γ goes to infinity.

V. DYNAMICAL ARREST

A. The transition occurs at the same location as in equilibrium

The glass transition in mean-field fluids can be found by
looking at the long time behavior of M(t ). Following the exist-
ing literature [20,45] we split the kernel M into a decaying part
and an asymptotic plateau value as t becomes large: M(t ) =
M f (t ) + Mp, with M f (t → ∞) = 0 and Mp � 0 a constant. A
glass transition occurs when the density or the temperature of
the system are such that Mp > 0. In this section we will show
that this happens at the same parameters as for equilibrium
dynamics.

The plateau value Mp is given by

Mp = lim
t→∞ M(t ) = ρ

d

∫
dr0〈v′(r)〉ssv

′(r0), (29)

where 〈. . .〉ss is an average over the steady-state value of
the dynamics for the distance between two particles, given
by Eq. (21). Such a steady-state distribution depends on the
value of Mp, thus yielding a self-consistent relation that can
be exploited to determine the plateau value.

Using the aforementioned decomposition for M(t ) the
equation of motion for r can be rewritten as a nonequilibrium
dynamics for a particle in d dimensions inside an effective po-
tential w(r), under the action of a constant Gaussian drift �p

(induced by the long time dynamics of M(t )) and fluctuating
Gaussian noises � f , ξ, with eventually decaying correlations:

ζ

2
ṙ = (1d + γ A) ·

[
− ∇w(r)

− β

2

∫ t

0
dτM f (t − τ )ṙ(τ ) + � f (t )

]
+

√
T ξ(t ), (30)

with

w(r) = v(|r|) + β

4
Mp(r − r0)2 + �p · r, (31)

the correlations of the constant random drive �p and the
time-dependent noises � f (t ), ξ(t ) being respectively 〈ξ(t ) ⊗
ξ(t ′)〉 = 1d T ζ δ(t − t ′), 〈� f (t ) ⊗ � f (t ′)〉 = 1d

1
2 M f (t − t ′),

〈�p ⊗ �p〉 = 1d
1
2 Mp.

We briefly review the equilibrium case (γ = 0) for which
we have

ζ

2
ṙ = −∇w(r) − β

2

∫ t

0
dτM f (t − τ )ṙ(τ )

+ � f (t ) +
√

T ξ(t ). (32)

This is an equilibrium dynamics with memory under an
external potential w(r). The equilibrium distribution is the
Boltzmann one:

pB(r|Mp,�p, r0) ≡ e−βw(r)∫
dre−βw(r)

. (33)

We note that the steady-state distribution depends on the
plateau value of the memory kernel, and it is conditioned
on the realizations of the field � f and on the initial condi-
tion r0. The steady-state value of the force appearing in the

064133-6



TRANSVERSE FORCES AND GLASSY LIQUIDS IN … PHYSICAL REVIEW E 109, 064133 (2024)

self-consistent Eq. (29) is

〈v′(r)〉eq,r0 = 1(
πMp

)d/2

∫
d�pe− �2

p
Mp

×
∫

drpB(r, |Mp,�p, r0)v′(|r|). (34)

Substitution in Eq. (29) yields the desired self-consistent re-
lation. We refer the reader to Refs. [20,23] for a detailed
discussion of its solution. Here it is sufficient to use the fact
that Eq. (29) admits a nonzero value for Mp below a critical
temperature (or above a critical density ρd ) Td , meaning that
the system is no longer ergodic below Td (above ρd ).

After having reviewed the equilibrium limit, we now return
to the γ �= 0 case of interest. The steady-state distribution of
the process given by Eq. (30) is the same as the equilibrium
one. This means that the self-consistent relation given by
Eq. (29) yields a nonzero value of Mp for the same critical
parameter as in the equilibrium dynamics, thus proving the
statement that opened this section. This reflects the fact that
the transverse force dynamics is constructed to preserve the
Boltzmann distribution in the steady state. Any ergodicity
breaking that takes its root in the thermodynamics, as the one
observed in mean-field fluids, will be observed also in the
presence of transverse forces at the same point as in equilib-
rium. However, even if the glass transition point is unchanged,
it is interesting to observe how the dynamics conspires to

produce this result, and how it differs from its equilibrium
counterpart.

B. A sanity check

The spirit of the dynamical mean-field theory is to inte-
grate out in an exact fashion an extensive number of degrees
of freedom. This integration step transforms the Markovian
dynamics into one with memory. From an analysis of the
dynamics, it is thus not easy to see that the steady-state distri-
bution for the non-Markovian process is the Boltzmann one.
We know however that this must be the case, because the
integration can be done at the static level using replicas [20],
and we know that in equilibrium, the analysis of the dynamics
[23] confirms the results of the statics. This subsection may
thus seem a somewhat superfluous sanity check, but it is in
principle needed. We want to prove directly the invariance
of the steady-state distribution of Eq. (30). We express the
memory kernel M f (t ) as a sum of exponentials:

1

2
M f (t ) =

∑
k

cke−t/τk , (35)

where the c′
ks and the τ ′

ks are appropriately distributed [46].
Using this decomposition, we can rewrite the non-Markovian
equation of motion for r as a Markovian one, at the cost of
introducing an extra set of degrees of freedom, yk , coupled
to r:

ζ

2
ṙ(t ) = −(1d + γ A) · ∇w(r) +

∑
k

√
ckβ(1d + γ A) · [yk (t ) −

√
ckβ[r(t ) − r0]] +

√
T ξ,

ẏk = − 1

τk
[yk −

√
ckβ[r(t ) − r0]] +

√
2T

τk
ηk,

〈ηi(t ) ⊗ η j (t
′)〉 = 1dδi jδ(t − t ′),

〈ξi(t ) ⊗ ξ j (t
′)〉 = 1dδ(t − t ′). (36)

We choose yk (0) to be independent random variables drawn from a Gaussian distribution of variance T for all k. Upon averaging
over the Markovian evolution and the initial condition of the yk variables, Eq. (36) is then identical to Eq. (30). The dynamics of
yk reads

yk (t ) = yk (0)e−t/τk +
∫ t

0
dτe− t−τ

τk

⎡⎣√
ckβ

τk
[r(τ ) − r0] +

√
2T

τk
ηk (τ )

⎤⎦, (37)

which, after an integration by parts, becomes

yk (t ) = yk (0)e−t/τk +
√

ckβ[r(t ) − r0] −
√

ckβ

∫ t

0
dτe− t−τ

τk ṙ(τ ) +
√

2T

τk

∫ t

0
dτe− t−τ

τk ηk (τ ). (38)

Substitution into the equation for r yields

ζ

2
ṙ(t ) = −(1d + γ A)∇w(r) − β

∫ t

0
dτ

∑
k

cke− t−τ
τk (1d + γ A) · ṙ(τ ) + (1d + γ A) · ν(t ) +

√
T ξ(t ),

ν(t ) ≡
∑

k

√
ckβyk (0)e−t/τk +

√
2ck

τk

∫ t

0
dτe− t−τ

τk ηk (τ ). (39)
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The second term on the right-hand side is β

2

∫ t
0 dτM f (t −

τ )(1d + γ A) · ṙ(τ ). The contribution ν(t ) is a Gaussian noise
whose correlations are given by

〈ν(t ) ⊗ ν(t ′)〉 = 1d

∑
k

cke
|t−t ′ |

τk = 1

2
1d M f (|t − t ′|), (40)

and therefore ν(t ) = � f (t ). This concludes the proof of
equivalence between Eqs. (30) and (36).

To obtain the steady-state distribution of the joint process
for r and y, we first rewrite the equation in the following form:

ζ

2
ṙ(t ) = −(1d + γ A)[∇w(r) + ∇w̃(r, {yk})] +

√
T ξ(t ),

yk (t ) = − 1

τk
∂kw̃(r, {yk}) +

√
2T

τk
η(t ), (41)

where w̃(r, {yk}) = ∑
k

1
2 (yk − √

ckβr)2 and ∂k ≡ ∂
∂yk

. This
is an overdamped Langevin dynamics under the action of an
external potential w + w̃ and transverse forces acting on the r
variables. Therefore, it admits the steady-state distribution

pss(r, {yk}|Mp,�p, r0) ∝ e−β(w+w(r,{yk}). (42)

Upon integrating out the auxiliary variables yk , we obtain

pss(r|Mp,�p, r0) = e−βw(r)∫
dre−βw(r)

= pB(r|Mp,�p, r0).

(43)
This result implies a self-consistent equation for Mp identical
to the one holding in equilibrium, and therefore an identical
glass transition temperature. This may not come as a surprise
given that, in equilibrium, at least in infinite dimensions, the
glass transition point can also be found by resorting to thermo-
dynamic methods [20], and the transverse forces are designed
to preserve the thermodynamics.

VI. ERGODIC PHASE
WITH STRONG NONEQUILIBRIUM DRIVE

The calculation of the previous section has demonstrated
that the behavior of the plateau value of the force-force
correlation for transverse forces is identical to the one for
equilibrium dynamics. However, in the presence of transverse
forces the two-particle process at any finite time is different
from its equilibrium counterpart, and we therefore expect
M(t ) to be affected by the nonequilibrium forces in the er-
godic region. The explicit determination of the memory kernel
for arbitrary temperature and density is out of reach, and
already in equilibrium the numerical integration of the equa-
tion of motion and the self-consistent relation is a formidable
task [44]. Here, we will address the scaling of the memory
kernel M(t ) in the limit γ → ∞.

The starting point is the dynamics of the interparticle dis-
tance:

ζ

2
ṙ(t ) = T (d − 1)

r(t )
− v′(r(t ))

− β

2

∫ t

0
dτM(t − τ )ṙ(τ ) + �(t ),

〈�(t )�(t ′)〉 = T ζ δ(t − t ′) + 1

2
(1 + γ 2)M(t − t ′). (44)

We recall that the memory kernel M(t ) is determined from the
two-body dynamics itself; see Eq. (25).

We now rescale time, t ≡ γ t , and we define the new func-
tions f (t ) ≡ f ( t

γ
), obtaining

γ
ζ

2
ṙ(t ) = T (d − 1)

r(t )
− v′(r(t ))

− β

2

∫ t
γ

0
dτM(t − τ )ṙ(τ ) + �(t ),

〈�(t )�(t ′)〉 = γ T ζ δ(t − t ′) + 1

2
(1 + γ 2)M(t − t ′), (45)

with M(t ) = ρ

d

∫
dr0g(r0)〈v′(r(t ))〉r0v

′(r0). If we now send
γ → ∞ and keep only the leading terms, then we obtain

ζ

2
ṙ(t ) = �(t ),

〈�(t )�(t ′)〉 = 1

2
M(t − t ′). (46)

Note that in the rescaled units this equation is no longer
dependent on γ , and as a consequence M(t ) cannot depend
on γ . Using this result, we can determine the scaling of the
zero frequency mode of the memory kernel, M̂(0):

M̂(0) =
∫ +∞

0
M(t )dt

= 1

γ

∫ +∞

0
M

(
t

γ

)
dt

= 1

γ

∫ +∞

0
M(t )dt ∼ 1

γ
. (47)

We have thus found the large γ behavior of the zero-frequency
mode of the memory kernel.

VII. MEAN-SQUARED DISPLACEMENT
AND DIFFUSION CONSTANT

In this section, we explore how the transverse forces
dynamics influence the diffusivity of the particles. We are
interested in the mean-squared displacement,

�(t ) ≡ 1

N

∑
i

〈[Ri(t ) − Ri(0)]2〉 = 〈u0(t )2〉. (48)

In the long time limit we expect diffusive behavior,

lim
t→∞ �(t ) = 2dD‖(T, γ )t . (49)

Our aim is to obtain an expression for D‖(T, γ ). The starting
point of our calculation is the one-particle dynamics (we omit
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the particle index since they are all equivalent),

ζ u̇(t ) = −
∫ t

0
dτM(t − τ )(1d + γ A)u̇(τ ) + �(t ), (50)

with the noise correlations 〈�(t ) ⊗ �(t ′)〉 = 1d [2T ζ δ(t −
t ′) + (1 + γ 2)M(t − t ′)]. Introducing the Laplace transform
f̂ (s) ≡ ∫ +∞

0 dte−st f (t ), we can write the mean-squared dis-
placement using the Bromwich inversion integral,

�(t ) = − 1

4π2

∫ z+i∞

z−i∞

∫ z+i∞

z−i∞
dsds′est+s′t 〈̂u(s) · û(s′)〉,

(51)

with z greater than the real part of all the singularities of the
integrand. Applying the Laplace transform to both sides of
Eq. (50) and noting that AAT = 1d we get

u(s) = (ζ + βM̂(s))1d − γ βM̂(s)A

(ζ + βM̂(s))2 + (γ βM̂(s))2
·

̂�(s)

s

≡ K̂(s) ·
̂�(s)

s
. (52)

We also need to know the noise correlations in Laplace space,
which read

〈�̂(s) ⊗ �̂T(s′)〉 = 1d
2T ζ + (1 + γ 2)(M̂(s) + M̂(s′))

s + s′

≡ 1d
C(s, s′)
s + s′ . (53)

Equation (51) now reads

�(t ) = − 1

4π2

∫ z+i∞

z−i∞

∫ z+i∞

z−i∞
dsds′ est+s′t

ss′(s + s′)

× C(s, s′)Tr[K̂(s) · K̂T(s′)]. (54)

Since we are interested in the large time limit, we make the
change of variables w ≡ st , w′ ≡ s′t :

�(t ) = − t

4π2

∫ zt+i∞

zt−i∞

∫ zt+i∞

zt−i∞
dwdw′ ew+w′

ww′(w + w′)

× C

(
w

t
,
w′

t

)
Tr

[
K̂
(w

t

)
· K̂T

(
w′

t

)]
. (55)

The diffusion constant is obtained sending t → +∞:

D‖(γ , T ) = Tr[K̂(0) · K̂T(0)]C(0, 0)

2d

× lim
t→+∞

(
1

4π2

)∫ zt+i∞

zt−i∞

∫ zt+i∞

zt−i∞
dwdw′

× ew+w′

ww′(w + w′)
. (56)

Carrying out the computation explicitly yields

D‖(γ , T ) = T
ζ + (1 + γ 2)βM̂(0)

(ζ + βM̂(0))2 + (γ βM̂(0))2
. (57)

This is the central result of this section. For γ = 0 we obtain
the known equilibrium expression of the diffusion constant:

D‖(0, T ) = T

ζ + βM̂(0)
. (58)

The nonequilibrium diffusion constant is always larger than
the equilibrium one, D‖(γ , T ) � D‖(0, T ), as long as M̂(0)
is equal to or smaller than its equilibrium counterpart. For
large nonequilibrium drives, the zero-frequency mode of the
memory kernel scales as γ −1 (see Sec. VI above), and the
diffusion constant grows linearly with γ :

D‖(T, γ → ∞) ∼ c(T )γ , (59)

with c(T ) a temperature-dependent coefficient.
Concerning the temperature behavior of D‖, two limits are

of interest. The first one is the infinite temperature limit. In
this case M̂(0) = 0 and one obtains

D‖(T → ∞, γ ) = T

ζ
= D‖(T → ∞, 0). (60)

Since thermal fluctuations dominate over the interactions
when T → ∞, the transverse forces fail to accelerate the
dynamics, and the nonequilibrium nature of the process is
washed out by the thermal noise. The second limit of interest
is for T → Td , the glass transition temperature. Here M̂(0)
diverges and the diffusion constant goes to 0, signaling dy-
namical arrest.

To conclude this section, we compare explicitly D‖(γ , T )
and its equilibrium counterpart in the low-density regime for a
linear potential, where M̂(0) takes the form given in Eq. (28).
The results are shown in Fig. 1(a). The efficiency of transverse
forces, defined as the ratio D‖(γ ,T )

D‖(γ ,0) changes nonmonotonically
with the temperature for the highest values of γ . This feature
survives also in finite dimensions, as recently evidenced in
extensive numerical simulations [34].

Our investigation of the diffusion constant suggests the fol-
lowing picture: upon reducing the temperature from the T →
∞ regime dominated by thermal noise, transverse forces
emerge from thermal fluctuations and accelerate the dynam-
ics. However, as memory effects become stronger and the
glass transition is approached, the enhancement of the diffu-
sion is reduced. We are thus led to the question of what is
the effect of transverse forces in the low temperature regime.
In the next section we show that they mostly give rise to
odd transport coefficients rather than providing a stronger
dynamical speedup.

VIII. EMERGENT ODD TRANSPORT

A. Odd diffusivity

In this subsection we prove, and quantify, the presence
of odd diffusion in the infinite-dimensional fluid driven by
transverse forces. Odd diffusion manifests itself in the form
of a nonzero off-diagonal, antisymmetric part of the diffusion
tensor. Physically, this detects the presence of chiral, swirling
motion, and the presence of fluxes perpendicular to concen-
tration gradients arising in the system. At the microscopic
level, a Green-Kubo relation, derived in Ref. [38] identifies
the odd diffusion as the time integral of the antisymmetric part

064133-9



FEDERICO GHIMENTI et al. PHYSICAL REVIEW E 109, 064133 (2024)

of the velocity-velocity autocorrelation tensor. Following this
approach, we have

D(γ , T ) ≡ 1

N

N∑
i=1

∫ +∞

0
dt〈u̇i(t ) ⊗ u̇i(0)〉

= D‖(γ , T )1d + D⊥(γ , T )A. (61)

The conventional longitudinal diffusion constant D‖(γ , T )
given by Eq. (57) appears in the diagonal entries of the dif-
fusion tensor. The antisymmetric contribution is proportional
to the odd diffusion constant D⊥(T, γ ). It is defined as

D⊥ ≡ 1

dN

N∑
i=1

∫ ∞

0
〈u̇i(t ) · Au̇i(0)〉

= 1

ζNd

N∑
i=1

lim
z→0

〈ŝu(s) · A�i(0)〉

= 1

ζd
lim
s→0

〈ŝu(s) · A�(0)〉. (62)

In the second equality we have used a representation in terms
of the Laplace transform of the displacement ui,α , and in the
third equality the fact that all particles are equivalent. Using
Eq. (52) and the fact that

〈̂�(s) ⊗ �(0)〉 = 1d T [ζ + (1 + γ 2)βM̂(s)], (63)

we obtain

D⊥ = − T

ζd
Tr

[
K̂(0)A

][
ζ + (1 + γ 2)βM̂(0)

]
, (64)

with K̂(0) defined in Eq. (52). An explicit computation of the
trace yields

D⊥ = −T γ

ζ

βM̂(0) + (1 + γ 2)(βM̂(0))2

(ζ + βM̂(0))2 + (γ βM̂(0))2
, (65)

thus proving the presence of a finite odd diffusivity in the
system whenever γ �= 0. Upon approaching the glass transi-
tion, the odd diffusivity converges to the nonzero value γ T

ζ
:

even when ergodicity is broken and the system is confined in
a long-lived metastable state, a form of odd transport persists,
analogous to the swirling motion of a particle trapped in an
harmonic well in the presence of transverse forces [34].

As we shall see now, odd diffusion is not the only emergent
odd transport coefficient.

B. Odd mobility

Odd mobility [39] is a transport coefficient closely related
to the odd diffusivity. In this subsection we show that its
behavior upon approaching the glass transition is distinctly
different from the odd diffusivity as we find that odd mobility
vanishes in the nonergodic phase.

Odd mobility describes the transverse motion of a tracer
upon applying a constant force. Specifically, we consider the
case where a constant force Fext is applied at t = 0 on particle
0, which thus assumes the role of a tracer. The system thus

evolves under the action of the operator Lext(t ), defined as

Lext(t ) = L(t ) + 1

ζ

d/2∑
β=1

Fext
β · ∇0,β , (66)

with L(t ) the evolution operator of the unperturbed system,
displayed in Eq. (5). Following a linear response formalism,
we have, to first order in Fext,

U [Lext](t, 0) ≈ U [L](t, 0) + 1

ζ

d/2∑
β=1

∫ t

0
dτU [L](t, τ )

× Fext
β · ∇0,βU [L](0, τ ). (67)

To obtain the equation of motion of the perturbed tracer in
the linear response, we have to compute U [Lext](t, 0)F0,α .
However, we observe that U [L](t, 0)F0,α is translationally
invariant. This implies that only the first term on the right-
hand side of Eq. (67) contributes to the evolution of F0,α , and
therefore

U [Lext](t, 0)F0,α (t ) = U [L](t, 0)F0,α + O[(Fext )2]. (68)

The equation of motion of the perturbed tracer in the infinite-
dimensional limit thus becomes

ζ u̇i(t ) = Fext −
∫ t

0
dτM(t − τ )(1d + γ A) · u̇i(τ ) + �(t ),

(69)

with the noise �(t ) and the memory kernel M(t ) correspond-
ing to the one of the unperturbed dynamics in Eq. (20). The
mobility of the tracer is defined via the relation

lim
t→+∞〈u̇0(t )〉 = μFext. (70)

Applying a Laplace transform to Eq. (69), taking the 0-
frequency limit and keeping the leading diverging terms we
obtain the following expression for μ:

μ = [ζ + βM̂(0)]1d − γ βM̂(0)A

[ζ + βM̂(0)]2 + (γ βM̂(0))2

≡ μ‖1d + μ⊥A. (71)

For γ = 0 we fall back to the equilibrium case, μ =
1

ζ+βM̂(0)
1d and the Einstein relation is satisfied, T μ = D.

When γ �= 0, the Einstein relation breaks down. Note in
passing that this violation takes a compact form for the lon-
gitudinal component of the diffusivity tensor, namely D‖ =
[(1d + γ A)μ]‖. The mobility is composed of a longitudinal
term, μ‖, and of an odd component, μ⊥. The ratio D‖

T μ‖
=

1 + γ 2 βM̂(0)
1+βM̂(0)

is greater than one, which hints at a more
efficient exploration of configurations than in equilibrium,
but this effective temperature [47] is not the one that drives
dynamical arrest.

A plot of longitudinal and transverse mobilities as a func-
tion of the inverse temperature is shown in Fig. 2, where
the low-density approximation of the memory kernel M̂(0) ≈
M̂ (1) [see Eq. (28)] was used. The longitudinal mobility de-
creases with temperature from its free particle high-T value,
while the modulus of the odd mobility has a nonmonotonic
behavior, with a maximum located in the same region where
the odd diffusion steeply rises, and where the efficiency of
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FIG. 2. (a) Longitudinal mobility μ‖ for different values of the
strength γ of the nonequilibrium drive, as a function of the inverse
temperature β ≡ T −1. (b) Odd mobility in the presence of transverse
forces. In both panels, the memory kernel used is the one obtained
via a low-density expansion for the case of a linear potential. Its
expression is given in Eq. (28).

transverse forces starts decreasing, which was depicted in
Fig. 1. This simultaneous occurrence of a similar behavior in
all these quantities supports the physical picture of transverse
forces operating at their best in the mildly interacting regime.

We also see from Eq. (71) that both the longitudinal and
transverse mobilities vanish at the glass transition Td . Phys-
ically, the above result implies the absence of a long-time

systematic displacement in the nonergodic phase both along
the direction of the external force and in the direction trans-
verse to it.

C. Odd viscosity

This subsection is devoted to the computation of the odd
viscosity. Odd viscosity appears as an antisymmetric compo-
nent of the viscous tensor. For instance, upon compressions
along the x direction, a system with odd viscosity can respond
with a shear flow in the xy plane. A Green-Kubo approach,
developed in Ref. [48], relates the odd viscosity of a nonequi-
librium system to the time integral of stress-stress correlation
functions. Within this framework, using linear response the-
ory, the viscous tensor in the hydrodynamic limit reads

ηabcd = β

V

∫ +∞

0
dt

〈
σab(t )σ IK

cd (0)
〉
. (72)

The average of the integrand is meant both with respect to
the initial condition and with respect to the realizations of the
noise. The notation σ IK

ab refers to the Irving-Kirkwood stress
tensor for overdamped dynamics:

σ IK
ab = −1

2

∑
i �= j

ri j,a(t )ri j,b(t )

ri j (t )
v′(ri j (t )), (73)

and σab is the stress tensor in the presence of transverse forces

σab = (1d + γ A)bcσ
IK
ac . (74)

The odd viscosity is finally defined as

η⊥ ≡ 1
2 (ηxyxx − ηxxxy), (75)

where x = 2a − 1 and y = 2a with a = 1, . . . , d/2. To be
explicit, we focus on the x = 0, y = 1 case. The odd viscosity
then becomes

η⊥ = β

2V

∫ +∞

0
dt

〈
σ IK

xy (t )σ IK
xx (0)

〉 − 〈
σ IK

xx (t )σ IK
xy (0)

〉
+ γ

〈
σ IK

xx (t )σ IK
xx (0)

〉 + γ
〈
σ IK

xy (t )σ IK
xy (0)

〉
. (76)

The first two terms inside the integrand vanish because they
are odd upon rotation in the xy plane. The latter terms are

〈
σ IK

xx (t )σ IK
xx (0)

〉 + 〈
σ IK

xy (t )σ IK
xy (0)

〉
= 1

4

〈 ∑
i �= j,k �=l

ri j,x (t )ri j,x (t )rkl,x(0)rkl,x(0) + ri j,x (t )ri j,y(t )rkl,x(0)rkl,y(0)

ri j,x (t )rkl,x(0)
v′(ri j (t ))v′(rkl (0))

〉

= 1

4

〈∑
i �= j

ri j,x (t )ri j,x(t )ri j,x (0)ri j,x (0) + ri j,x (t )ri j,y(t )ri j,x (0)ri j,y(0)

ri j,x (t )ri j,x (0)
v′(ri j (t ))v′(ri j (0))

〉

∼ 1

2d2

〈∑
i]�= j

|ri j · r0|2
ri j (t )ri j (0)

v′(r(t ))v′(ri j (0))

〉

= ρ2V

2d2

∫
dr0g(r0)

〈 |r(t ) · r0|2
ri j (t )ri j (0)

v′(r(t ))v′(ri j (0))

〉
dyn

= ρV �2

2d
M(t ), (77)
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where 〈. . .〉dyn is an average over the realization of the noise in
the two-body dynamics. In the last passage we have used the
fact that the direction of the interparticle separation is constant
throughout the dynamics and that to leading order in d we
have r(t ) ∼ �, with � the characteristic interaction length of
the potential. The odd viscosity is therefore

η⊥ = γ βρ�2

4d
M̂(0). (78)

As the glass transition is approached, the odd viscosity di-
verges. The physical interpretation of this phenomenon is
that infinitely long-lived memory develops also at the level
of stress fluctuations with respect to transverse perturba-
tions, a consequence of the chiral interaction produced by the
nonequilibrium drive. Below Td , small external shear stresses
applied to the system generate neither longitudinal nor trans-
verse flows, consistently with the picture of a dynamically
arrested glass, and both viscosities are formally infinite.

IX. CONCLUSION AND OUTLOOK

Working in the limit of a large number of space dimensions
allows us to formulate a self-consistent dynamical mean-field
theory for the nonequilibrium problem of a dense fluid submit-
ted to both transverse and conservative forces. Unlike previous
attempts with nonequilibrium systems [24,25], where the only
possible progress is of numerical nature (in the spirit of
Ref. [44]), here the stationary state is known from the start.
This knowledge is instrumental in being able to derive some
of the dynamical properties, especially regarding the formal
expression of the memory kernel M that appears throughout.
This remarkable feature has thus been very helpful in pushing
our understanding of the mechanisms by which transverse
forces are able to accelerate the dynamics. For instance, the
reason why transverse forces struggle to accelerate the dy-
namics in the glassy regime can be understood in terms of

the picture of particles falling, and swirling, into a local po-
tential well. Our results show that increasing the amplitude
of the transverse forces will formally lead to increased ac-
celeration, but beyond a given threshold, this acceleration is
physically equivalent to a rescaling of the mobility (thus effec-
tively changing the time units without affecting the underlying
physics). At more moderate values, however, transverse forces
open up new dynamical pathways that qualitatively change the
nature of the dynamics. Our coupled mean-field equations, for
which the stationary state is known, are perhaps the simplest
instance of nonequilibrium dynamics for which numerical
integration is feasible, in the footsteps of Ref. [44]. This is
certainly a direction we wish to explore.

This work can also be seen as a first step towards exploring
somewhat more involved acceleration methods such as lifting
(this will change the exact definition of the cavity variable).
It is not clear how the existence of odd transport in our trans-
verse forces will translate in the presence of auxiliary lifting
degrees of freedom, and what the interplay with acceleration
will look like.

In our work, the transverse force which is applied has
the simplest possible structure. There exist other forms of
transverse driving forces that can be imposed and finding the
one that optimizes acceleration [49] is a key open question in
many-body systems. While we expect our results to generalize
readily to any antisymmetric matrix A, other, possibly more
physics-informed choices for the nonequilibrium drive are
possible. As for the present case, we can hope that the frame-
work of dynamical mean-field theory will allow for progress
in this interesting direction.
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