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Exerting a nonequilibrium drive on an otherwise equilibrium Langevin process brings the dynamics out of
equilibrium but can also speed up the approach to the Boltzmann steady state. Transverse forces are a minimal
framework to achieve dynamical acceleration of the Boltzmann sampling. We consider a simple liquid in three
space dimensions subjected to additional transverse pairwise forces, and quantify the extent to which transverse
forces accelerate the dynamics. We first explore the dynamics of a tracer in a weak coupling regime describing
high temperatures. The resulting acceleration is correlated with a monotonous increase of the magnitude of odd
transport coefficients (mobility and diffusivity) with the amplitude of the transverse drive. We then develop a
nonequilibrium version of the mode-coupling theory able to capture the effect of transverse forces, and more
generally of forces created by additional degrees of freedom. Based on an analysis of transport coefficients, both
odd and longitudinal, both for the collective modes and for a tracer particle, we find a systematic acceleration
of the dynamics. Quantitatively, the gain, which is guaranteed throughout the ergodic phase, turns out to be
a decreasing function of temperature beyond a temperature crossover, in particular as the glass transition is
approached. Our theoretical results are in good agreement with available numerical results.
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I. INTRODUCTION

When interested in the dynamics of dense liquids [1], the
mode-coupling approximation [2,3] is a method of choice.
It is a versatile tool designed to analyze the dynamics of
simple liquids and of other soft-matter systems in realistic
space dimensions (d = 2 or 3). It has famously been applied
to critical dynamics [4], to glass formers [3], to polymers [5]
and colloidal assemblies [6,7] up to hard-condensed matter
systems [8]. These systems share the common trait that they
are in thermal equilibrium. In recent years, the mode-coupling
approximation has been extended to some nonequilibrium
settings, such as sheared liquids [9], granular fluids [10,11],
or, even more recently, to systems of self-propelled particles
[12–15]. Here our goal is to use these works as an inspira-
tion to develop a mode-coupling approximation for systems
of particles driven by nonequilibrium forces that neverthe-
less sample the Boltzmann distribution in their steady state.
Such systems are of special interest because, for specifi-
cally designed nonequilibrium forces, they can sample the
Boltzmann distribution faster than their reversible equilibrium
counterparts. This is of course an interesting property when
dynamical evolution is intrinsically sluggish, as in dense and
cold liquids [16].

When confronted with the problem of sampling the Boltz-
mann distribution for a system of interacting particles, a
practitioner of simulations can resort to several standard tech-
niques [17,18] such as Metropolis-Hastings Monte Carlo, and
Brownian and Newtonian dynamics. These techniques endow
the system with reversible dynamics, ensuring that at long

times the equilibrium Boltzmann distribution is sampled. It is
a practical challenge to reduce as much as possible the time re-
quired to achieve convergence to the equilibrium distribution.
This convergence time proves overwhelmingly long for many
systems of interest, from proteins to supercooled liquids and
neural networks. Recently, several techniques were proposed
to accelerate the dynamics [16], including the very efficient
swap Monte Carlo algorithm that achieves dramatic speedup
for size polydisperse liquids [19,20].

An alternative approach, which has recently garnered at-
tention, is to exploit an irreversible dynamics, namely, one that
does not respect detailed balance, but that at the same time en-
sures that the Boltzmann distribution is properly sampled. The
idea is that by going out of equilibrium a faster exploration
of the phase space is sometimes possible. To achieve this
goal one could add, for example, a drift perpendicular to the
gradient flow of the system, allowing for an out of equilibrium
dynamics with the aforementioned property. We will refer to
such an orthogonal drift as transverse forces. The possibility
of using transverse forces was first envisaged in [21], where
it was also shown that the presence of a nonequilibrium drive
increases the spectral gap of the associated dynamical evolu-
tion operator, allowing for shorter convergence time. A similar
proof was later discussed in [22] in the context of Markov
chains. More detailed analysis of the exact amount of the
acceleration were carried out in the case of a particle in a har-
monic well [23,24]. Generic inequalities concerning asymp-
totic variance (a projection of the convergence time) [25,26]
and large deviation functions [27–29] were also obtained, all
demonstrating a better performance of the transverse force
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dynamics with respect to its equilibrium counterpart, in agree-
ment with existing mathematical theorems.

The acceleration cannot however increase indefinitely. In
[30] it was shown that the spectral gap saturates in the limit
of a transverse force with infinite amplitude, although little is
known about this actual limiting value. As a matter of fact, de-
spite the abundance of mathematical inequalities and rigorous
bounds, there exist very few quantitative results regarding the
speedup actually obtained in systems of theoretical and practi-
cal interest. Efforts in this direction consist in some studies on
benchmark neural network problems [31–34], in numerical re-
sults on double-well and XY models [35], and the zero-range
process [28]. Results on the barrier crossing problem in the
presence of transverse forces were also obtained [36]. Previ-
ously, some of us studied the effect of transverse forces on the
hard sampling problem of a mean-field spin glass belonging
to the RFOT universality class [37]. In a recent Letter [38],
we addressed the dynamics of dense liquids by a combination
of numerical methods and of analytical approaches, based on
the dynamical-mean-field theory and on the mode-coupling
approximation. The former infinite-dimensional approach has
been further detailed in [39]. The present work addresses
the acceleration witnessed in finite-dimensional simulations
[38] by exploring the corresponding phenomenology through
the lens of the mode-coupling approximation. We wish to
quantify theoretically the acceleration provided by irreversible
dynamics in a generic system of interacting particles in finite
dimensions.

After a presentation of our model in Sec. II, we devote
Sec. III to a study of the dynamics in the simpler weak
coupling approximation, achieved for instance in a high-
temperature regime. We use this approach to qualitatively
explain the acceleration that transverse forces exert and the
emergence of odd transport coefficients that help characterize
these driven dynamics. In Sec. IV we present the core of
our mode-coupling approximation for transverse forces. The
standard schematic approximation is shown to be missing the
gist of transverse forces which leads us to present an improved
version of the schematic approach. The emergence of odd
transport is also discussed. In Sec. V we complement the
analysis of collective modes by an in-depth description of
the dynamics of a tracer particle. In particular, the mismatch
between the diffusivity tensor and the mobility tensor helps us
shape a more intuitive picture of how acceleration operates.
In [38] it was argued that the basic physics at work in the
acceleration provided by transverse forces was of a similar
nature as that induced by what is known in the mathematical
community as lifting [40]. These two families of nonequilib-
rium drives are not usually treated on an equal footing. By
constructing a mode-coupling approach for a lifted process,
and by comparing our results with those of Sec. IV, we are
able to better substantiate our claim. Conclusions and outlook
are finally gathered in Sec. VIII, with pointers in the direction
of applications to chiral active matter.

II. DYNAMICS WITH TRANSVERSE FORCES

Our starting point is the following dynamics for a fluid of
interacting particles with positions ri in three dimensions [38]:

ṙi = μ0(1 + γ A)Fi +
√

2μ0T ξi, (1)

with Fi ≡ −∑i ∇iV (|ri − r j |) a conservative force arising
from a pairwise, isotropic interaction potential, and the ξi’s
are independent Gaussian white noises with independent com-
ponents. The correlations of the noises are 〈ξi(t ) ⊗ ξ j (t

′)〉 =
1δ(t − t ′)δi j . The average 〈· · · 〉 refer to an average over dif-
ferent realizations of the noise. The bare mobility μ0 and
the temperature T are related to the diffusion constant of a
free particle D0 through Einstein’s relation D0 = μ0T , setting
the Boltzmann constant to unity. This dynamics differs from
its overdamped equilibrium counterpart due to the presence
of an antisymmetric matrix A = −AT . The resulting addi-
tional transverse force AFi = AαβFi,β , where we are using
Einstein summation convention over repeated indices, injects
into the system a nonequilibrium current that nevertheless
preserves the Boltzmann distribution in the nonequilibrium
steady state. This means in particular that in the presence
of transverse forces, the dressed mobility and diffusivity
will pick up an odd component (as most other transport
coefficients, such as viscosity), and we do not expect the
Einstein relation to extend to the full dressed diffusivity and
mobility tensors.

We would now like to take a few lines to discuss how we
choose the matrix A. For concreteness, we control the strength
of the nonequilibrium drive through the parameter γ while
fixing the Frobenius norm of A to 2, namely,√∑

i, j

A2
i j = 2. (2)

Under this condition, the matrix A reads

A =

⎡⎢⎣ 0 A12 A13

−A12 0 A23

−A13 −A23 0

⎤⎥⎦, (3)

with
√

A2
12 + A2

13 + A2
23 = 1 [this equality motivates the

choice of the factor 2 in Eq. (2)]. We now show that upon
a suitable set of rotations of coordinates the matrix A can be
recast in a simpler form. Indeed, if R is an orthogonal matrix
representing a rotation in three dimensions, i.e., det(R) = 1
and RT R = 1, then applying R to both sides of Eq. (1) yields

ṙ′
i = μ0(1 + γ A′)F′

i +
√

2μ0T ξ′
i, (4)

where we have defined r′
i ≡ Rri, F′

i ≡ RFi, ξ′
i ≡ Rξi,

and A′ ≡ RART . The dynamics in Eq. (4) is the same
as in Eq. (1), in a rotated reference frame. Of course
the force F′

i is still a central force in the rotated
reference frame,

F ′
i,α =

∑
j

Rαβ∂ri,βV (|ri − r j |)

=
∑

j

Rαβ

∂ri,β

∂r′
i,γ

∂r′
i,γ

V (|ri − r j |)

=
∑

j

RαβRT
βγ ∂r′

i,γ
V (|r′

i − r′
j |)

=
∑

j

∂r′
i,α

V (|r′
i − r′

j |), (5)
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and the noises ξ′
i have the same statistics as the noises ξi:

〈ξ ′
i,α (t )ξ ′

j,β (t ′)〉 = Rαα′Rββ ′ 〈ξi,α′ (t )ξ j,β ′ (t ′)〉
= Rαα′Rββ ′δi jδα′β ′δ(t − t ′)

= δi jδαβδ(t − t ′). (6)

The matrix A′ is still an antisymmetric matrix satisfying
Eq. (2). Without loss of generality, we can take for A the
following explicit form:

A ≡
⎡⎣0 −1 0

1 0 0
0 0 0

⎤⎦, (7)

which is mathematically similar to A in Eq. (3) up to a rotation
R = Rx(θ )Rz(φ), with Rx(θ ), Rz(φ) rotation around the x
and z axis, respectively, satisfying tan(φ) = −A23

A13
, tan(θ ) =

− 1
A12

√
A2

13 + A2
23 . Note that for a nonzero matrix A the dy-

namics is no longer isotropic. It is invariant only by rotations
generated by the matrix A in Eq. (7). We identify the plane
left invariant by this rotations as the (xy) plane.

We have now set the stage for our analysis of transverse
forces. We begin with a weak-coupling approximation, which
follows an approach often termed the random-phase approxi-
mation [41].

III. WEAK COUPLING APPROXIMATION

Before entering the details of the mode-coupling theory
derivation, it is useful to consider the problem of a tracer
diffusing in a system interacting with transverse forces in the
special case in which fluctuations in the surrounding fluid can
be considered as weak. Following [42], we assume that the
tracer produces a small perturbation in the density field of its
environment, a procedure known as the random phase approx-
imation, and derive an expression for the transport coefficients
of the tracer, namely the longitudinal and the odd diffusion
constants. This gives a first grasp on the speedup generated by
transverse forces. In spite of throwing an interesting physical
light, this approach does not easily extend to low temperatures
where the weak coupling hypothesis is not fulfilled.

A. Equation of motion for a tracer

We consider a tagged particle with position r0 diffusing in
a fluid under the action of transverse forces. We include the
possibility for the tagged particle to be subjected to a constant
external force Fext, which will be used to probe the mobility
of the tagged particle. The equation of motion for the tracer is

ṙ0 = μ0Fext − μ0(1 + γ A)
∑
i>0

∇0V (r0(t ) − ri(t )) +
√

2μ0T ξ0.

(8)

This is Eq. (1), with the role of particle 0 being singled out. All
other particles in the fluid also interact according to Eq. (1).
We introduce the density field of the fluid without the tracer,
n(r, t ) ≡ ∑

i>0 δ(r − ri(t )) and we can then rewrite Eq. (8) as

ṙ0 = μ0Fext − (1 + γ A)(∇V ∗ n)(r0(t ), t ) +
√

2μ0T ξ0(t )

(9)

with the convolution between two functions denoted by ∗:
( f ∗ g)(r) ≡ ∫

dr f (r − r′)g(r′). Equation (9) needs to be
complemented with the Dean-Kawasaki [43] equation for
n(r, t ):

∂t n(r, t ) = μ0T ∇2n(r, t )

+ μ0∇ · [(1 + γ A)n(r, t )(∇V ∗ n)(r, t )]

+ μ0∇ · {(1 + γ A) · n(r, t )∇V (r − r0(t ))}
+ ∇ ·

√
2T μ0n(r, t )χ(r, t ), (10)

where the Gaussian noise χ(r, t ) has correlations 〈χ(r, t ) ⊗
χ(r′, t ′)〉 = 1δ(r − r′)δ(t − t ′). In order to solve Eqs. (9) and
(10) we resort to the random phase approximation.

B. Random phase approximation

In the language of the collective coordinate n, the random
phase approximation is a simple linearization of the Dean-
Kawasaki equation (10) for the local and fluctuating density
field n(r, t ) = ∑

i δ[r − ri(t )] [42,44–46]. Assuming that the
homogeneous density of the system ρ0 ≡ N

V is large enough
so that density fluctuations remain small, we split n(r, t ) into

n(r, t ) = ρ0

(
1 + 1√

ρ0
φ(r, t )

)
(11)

with φ(r, t ) a fluctuating field. To linear order in φ/
√

ρ0,
which we assume to be small, Eq. (10) becomes

∂tφ = μ0T ∇2φ + μ0∇ · (∇ρ0V ∗ φ)(r, t )

+ μ0∇2√ρ0V [r − r0(t )] + ∇ ·
√

2T μ0χ(r, t ). (12)

In deriving Eq. (12) from Eq. (10) we used the fact that,
to linear order in φ/

√
ρ0, ∇ · γ An(r, t )(∇V ∗ n)(r, t ) = 0

because A is antisymmetric, while the nonzero contribution
from ∇ · γ A · n(r, t )∇V (r − r0(t )) is of order ρ−1

0 . The lin-
earized equation for the density field is therefore not directly
influenced by the presence of the transverse forces. Instead
the latter manifestly appear in the equation of motion of the
tracer. To proceed toward the weak coupling approximation,
we consider the case where the interaction potential between
the particle is soft, with V (r) finite as r → 0. Upon introduc-
ing the Fourier transform of a function f by the convention
f (k) ≡ ∫

dre−ik·r f (r), we obtain from Eq. (9):

ṙ0(t ) = μ0Fext − iμ0(1 + γ A)
∫

dk
(2π )d

eik·r0(t )k
√

ρ0V (k)

× φ(k, t ) +
√

2T μ0ξ0(t ), (13)

where γ appears explicitly in the right-hand side. It is formally
possible to express φ(k, t ) as a functional of the tracer posi-
tion r0 upon integrating Eq. (12), and then Eq. (13) becomes
a self-contained equation for r0. We assume that the bath
and the tracer have evolved for very long times before we
start observing them forgetting their initial condition. We can
thus take without loss of generality φ(k, t → −∞) = 0 and
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r0(t → −∞) = 0. This yields

φ(k, t ) =
∫ t

−∞
ds[−μ0k2√ρ0V (k)e−ik·r0(s)

+ i
√

2μ0T k · χ(k, s)]e−μ0T k2[1+βρ0V (k)](t−s), (14)

the correlations of the noise in Fourier space being
〈χ(k, t ) ⊗ χ(k′, t ′)〉 = 1(2π )dδ(t−t ′)δ(k+k′). Substitution
of Eq. (14) into Eq. (13) leads to

ṙ0(t ) = μ0Fext + μ0

∫ t

−∞
dsF(r0(t ) − r0(s), t − s)

+ �(r(t ), t ) +
√

2μ0T ξ0(t ). (15)

The interaction between the tracer and the bath splits into a
deterministic force

F(r0(t ), t ) ≡ iμ0

∫
dk

(2π )3
(1 + γ A) · k

× k2ρ0V
2(k)eik·r0(t )−μ0T k2[1+βρ0V (k)]t , (16)

and a Gaussian colored noise �, independent of ξ0.
The memory kernel 〈�(r(t ), t ) ⊗ �(r0(t ′), t ′)〉 = G(r0(t ) −
r0(t ′), t − t ′) has the following expression:

G(r0(t ), t ) ≡ (T μ0)2

ρ0

∫
k
(1 + γ A)k̂ ⊗ k̂(1 − γ A)

× [βρ0V (k)]2

1 + βρ0V (k)
eik·r0(t )−μ0T k2[1+βρ0V (k)]t . (17)

We are now in a position to define, and then to determine,
the various transport coefficients quantifying the dynamics of
the tracer. Our computation rests on a path-integral formalism,
which we briefly outline in the next subsection.

C. Averaging over the tracer’s trajectories

We are interested in the computation of the diffusivity
tensor, obtained from the velocity-velocity autocorrelation
function [47]

D ≡
∫ +∞

0
dt〈ṙ0(t ) ⊗ ṙ0(0)〉

= lim
t f →∞〈[r0(t f ) − r0(0)] ⊗ ṙ0(0)〉, (18)

with Fext = 0, along with that of the mobility tensor μ, defined
by the response to an external force as

〈r0(t f ) − r0(0)〉 ≡ μFextt f (19)

as t f → ∞ and Fext → 0. The angular brackets denote aver-
ages over the realization of the noise. Using a path-integral
formalism, these averages over the noise realization can be
rewritten as weighted averages over the tracer’s trajectories.
If f (r0(t f )) is a generic function of the tracer position at the
final time t f then within the path-integral formalism we have

〈 f (r0(t f ))〉 =
∫

Dp0(t )Dr0(t ) f (r0(t f ))e−S[r0(t ),p0(t )], (20)

where the Janssen–De Dominicis functional integral∫
Dp0(t )Dr0(t ) is over all the trajectories r0(t ), p0(t )

starting in the remote past at r0(t → −∞) = 0 and

p0(t → −∞) = 0. Note that since the system evolves
for a very long time before we observe it, as discussed above
Eq. (14), the results discussed below do not depend on these
initial conditions. The response field p0(t ) is an auxiliary field
encoding stochastic fluctuations. The trajectories are weighted
by a trajectory-dependent exponential factor e−S[r0(t ),p0(t )]. The
corresponding action features two contributions, expressing
respectively the motion of a free tracer and its interactions
with the bath:

S[r0(t ), p0(t )] = Sfree[r0(t ), p0(t )] + Sint[r0(t ), p0(t )] (21)

with

Sfree[r0(t ), p0(t )] ≡ −i
∫

dtp0(t ) · [ṙ0(t ) − μ0Fext]

+ μ0T
∫

dtp0(t )2 (22)

and

Sint[r0(t ), p0(t )] ≡ i
∫

dt
∫ t

−∞
dsp0(t ) · F(r0(t ) − r0(s), t − s)

+
∫

dt
∫ t

−∞
dsp0(t )

× G(r0(t ) − r0(s), t − s) · p0(s). (23)

To evaluate the dynamical averages in Eqs. (18) and (19), we
resort to a small coupling approximation between the bath
and the tracer and expand in powers of the small coupling
parameter. This is carried out explicitly in the next subsection.

D. Weak-coupling approximation

We now assume that the coupling between the bath and
the tracer is weak with respect to the thermal forces. This is
expressed by requiring that

h ≡
√

ρ0V

T
� 1. (24)

From Eqs. (16) and (17) we see that both F and G are of
order h2. From Eq. (23), this implies that Sint is of order h2

as well. To second order in h, dynamical averages can thus be
computed by expanding the exponential e−S:

〈 f (r0(t f ))〉 = 〈 f (r0(t f ))〉free − 〈 f (r0(t f ))Sint〉free

1 − 〈Sint〉free
+ O(h4),

(25)

where 〈· · · 〉free ≡ ∫
Dr0(t )Dp0(t ) · · · e−Sfree refers to an aver-

age over the dynamics of a free tracer. The action Sfree is
quadratic, which ensures that linear and quadratic functionals
of the trajectories r0(t ), p0(t ) can be computed exactly. Since
we are interested in the tracer’s displacement, we define the
one-point quantity �r0(t, s) ≡ r0(t ) − r0(s) with t � s. We
then have

〈�r0(t, s)〉free = μ0Fext(t − s),

〈p0(t )〉free = 0, (26)
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from which we recover the result that the mobility tensor for the free tracer is μfree = μ01. The two-point averages read

〈p0(t ) ⊗ p0(s)〉free = 0,

〈�r0(t, s) ⊗ p0(s′)〉free = −i1χ[s,t )(s
′),

〈[�r0(t, 0) − μ0Fextt] ⊗ [�r0(t ′, s′) − μ0Fext(t
′ − s′)]〉free = 21μ0T L([s, t] ∩ [s′, t ′]), (27)

where χ[s,t )(s′) is the characteristic function of the interval [s, t ) (it is 1 if s′ ∈ [s, t ) and 0 otherwise). The quantity L[a, b] returns
the length of the interval [a, b]. Note that for Fext = 0 the last equality in Eq. (27) yields the mean-squared displacement of a
free particle, 〈�r0(t f , 0)2〉free = 2dμ0T t f .

We now evaluate 〈Sint〉free. This average requires the evaluation over the dynamical action for a free particle of two
contributions. The first one is

〈p0(t )eik·�r0(t,s)〉free = ie−μ0T k2(t−s)+ik·Fext (t−s)〈p0(t )�r0(t, s)〉free · k = 0, (28)

where we made use of Wick’s theorem and of the second equality of Eq. (27). Similarly one can show that the other term
vanishes, namely, 〈p0(t ) ⊗ p0(s)eik·�r0(t,s)〉 = 0. We thus conclude that

〈Sint〉free = 0. (29)

In the next two subsections we will compute the diffusion and the mobility tensors to leading order in h.

E. Diffusion tensor

We specialize the calculation to the case where no external force is applied to the tracer particle, Fext = 0. The calculation of
the diffusion tensor to second order in the weak coupling h requires computing two free-particle dynamical averages, stemming
respectively from the drift term F of Eq. (16) and from the memory term G of Eq. (17). They are given by (with s � t):

〈�r0,a(t f , 0)ṙ0,b(0)p0,c(t )eik·�r(t,s)〉free = −2iδacμ0Te−μ0T k2[1+βρ0V (k)](t−s)kbχ[s,t )](0)χ[0,t f )(t )〈
�r0,a(t f , 0)ṙ0,b(0)p0,c(t )p0,d (s)eik·�r0(t,s)

〉
free = [δbdδacδ(s − 0) − 2μ0T δackd kbχ[s,t )(0)]χ[0,t f ](t )e−μ0T k2(t−s). (30)

Using these results, one can directly compute the diffusivity matrix

D(γ , T ) ≈ μ0T 1 − lim
t f →∞〈�r0(t f , 0) ⊗ r0(0)Sint〉free

= μ0T 1 − lim
t f →+∞ i

∫
dt
∫ t

−∞
ds〈�r0(t f , 0) ⊗ r0(0)[p0(t ) · F(�r0(t, s), t − s))]〉free

− lim
t f →+∞

∫
dt
∫ t

−∞
ds〈�r0(t f , 0) ⊗ r0(0)[p0(t ) · G(�r0(t, s), t − s)) · p0(s)]〉free

= μ0T

[
1 − 1

2ρ0

∫
k
(1 + γ A)k̂ ⊗ k̂

[βρ0V (k)]2[
1 + 1

2βρ0V (k)
]2

+ 1

4ρ0

∫
k
(1 + γ A)k̂ ⊗ k̂(1 − γ A)

[βρ0V (k)]3[
1 + 1

2βρ0V (k)
]2

[1 + βρ0V (k)]

]
. (31)

For γ = 0, we obtain

D(0, T ) = μ0T

[
1 − 1

2ρ0

∫
k

k̂ ⊗ k̂
[βρ0V (k)]2[

1 + 1
2βρ0V (k)

]
[1 + βρ0V (k)]

]

= μ0T 1

[
1 − 1

2dρ0

∫
k

[βρ0V (k)]2[
1 + 1

2βρ0V (k)
]
[1 + βρ0V (k)]

]
, (32)

where we used, in the second line, the fact that upon integration over all the wave vectors k̂ ⊗ k̂ can be replaced, using the
isotropy of the integrand in Eq. (32), by d−11. We thus recover the equilibrium result for the longitudinal diffusion constant
obtained in [42,44].

The equilibrium diffusion tensor of Eq. (32) is diagonal, and the interaction of the tracer with the bath reduces its ability
to diffuse. When γ �= 0, the diffusion tensor acquires an antisymmetric contribution proportional to γ , and the diagonal
part picks up a contribution proportional to γ 2. These additional terms lead respectively to odd diffusivity and enhanced
diffusion. To see this explicitly, we can write the tensor products of Eq. (31) in the (xyz) basis. In this basis, the matrix A
displayed in Eq. (7) reads A = ey ⊗ ex − ex ⊗ ey. The second tensor product inside the brackets of Eq. (31) is, neglecting the
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term that vanishes upon integration over all the wave vectors,

(1 + γ A)k̂ ⊗ k̂ =
∑

i=x,y,z

k̂2
i ei ⊗ ei+γ

[
ey ⊗ exk̂2

x −ex ⊗ eyk̂2
y

]
.

(33)

The term proportional to γ is antisymmetric upon integra-
tion over the wave vector k, and it contributes to the odd
diffusivity.

The third tensor in Eq. (31) is

(1 + γ A)k̂ ⊗ k̂(1 − γ A) =
∑

i=x,y,z

k̂2
i ei ⊗ ei

+ γ
[
ex ⊗ eyk̂2

x − ey ⊗ exk̂2
y

]
+ γ

[
ey ⊗ exk̂2

x − ex ⊗ eyk̂2
y

]
+ γ 2

[
ex ⊗ exk̂2

x + ey ⊗ eyk̂2
y

]
.

(34)

Upon integration over k the terms proportional to γ cancel
out, leaving only a contribution proportional to γ 2 to the
longitudinal diffusion.

The diffusion tensor in the (xyz) basis is therefore given by

D = Dxx(γ )[ex ⊗ ex + ey ⊗ ey]

+ Dzzez ⊗ ez + D⊥(ey ⊗ ex − ex ⊗ ey) (35)

with D‖(γ ) given by

D‖(γ ) = μ0T

(
1 − 1

2dρ0

∫
k

[βρ0V (k)]2

[1 + βρ0V (k)]
[
1 + 1

2βρ0V (k)
]

+ γ 2

4dρ0

∫
k

[βρ0V (k)]3

[1 + βρ0V (k)]
[
1 + 1

2βρ0V (k)
]2
)

.

(36)

The odd diffusion constant reads

D⊥(γ ) = −γ
μ0T

2dρ0

∫
k

[βρ0V (k)]2

[1 + βρ0V (k)]
[
1 + 1

2βρ0V (k)
] .
(37)

For systems with equilibrium dynamics (that is, when γ = 0),
Onsager reciprocity relations impose this quantity to vanish.
However, when departing from equilibrium, as is the case in
the presence of transverse forces, odd transport coefficients
need not vanish as they are a priori not prohibited by time-
reversal invariance. In our case, a nonzero odd diffusivity
reveals the presence of a directed swirling motion for the

tagged particle. Of course, for γ = 0, the odd diffusivity van-
ishes, as expected in equilibrium.

We see from Eq. (36) that the diffusivity of the tracer is
enhanced by transverse forces, as the contribution propor-
tional to γ 2 is positive. It is remarkable that this diffusion
enhancement is captured even for a system where the lin-
earized bath relaxation is not affected by the transverse forces.
An enhancement of diffusions in odd system was also found
in the case where the oddity is induced by external magnetic
fields [48,49], and is not, as in our case, a consequence of the
nonequilibrium dynamics of the system.

We now take advantage of these explicit expressions to
discuss the temperature dependence of the speedup. First, we
observe that both terms in the integrals of Eq. (36) are decreas-
ing functions of the temperature. This implies that the quantity
D‖(0)/μ0T is an increasing function of the temperature. Thus
the efficiency of the transverse forces, defined as the ratio of
the diffusion coefficient with and without transverse forces, is

D‖(γ )

D‖(0)
= 1 + γ 2 I

D‖(0)/μ0T
(38)

with I ≡ 1
2dρ0

∫
k

[βρ0V (k)]3

[1+βρ0V (k)][1+ 1
2 βρ0V (k)]2 . We conclude that the

efficiency of transverse forces increases upon cooling down
the system. This is consistent with the increase of the odd dif-
fusivity of the tracer. An analogous trend was recently found
for binary mixture with nonreciprocal interactions between
particles of different species [46].

It would be remarkable that the monotonous trend of the
efficiency extends to low temperatures or high densities. In the
following sections, using the mode coupling theory, we will
show that this trend does not hold for very cool or very dense
systems, where the small coupling approximation in Eq. (24)
breaks down. Before moving to the mode-coupling formalism,
we briefly examine the mobility of the tracer which contains
additional information, since the Einstein relation between the
diffusivity and mobility tensors does not necessarily hold.

F. Mobility tensor

The mobility tensor of the tracer can be obtained from the
weak coupling expansion of Eq. (19):

〈�r0(t f , 0)〉 = μ0T Fextt f − 〈�r0(t f , 0)Sint〉free + o(t f ).
(39)

The second term involves the following averages, which can
be obtained using Wick’s theorem and the dynamical averages
of a free tracer displayed in Eq. (27):

〈�r0,a(t f , 0)p0,b(t )eik·�r0(t,s)〉free = iδabχ[0,t f )e
−μ0T k2(t−s)+iμ0k·Fext ,

〈�r0,a(t f , 0)p0,b(t )p0,c(s)eik·�r0(t,s)〉free = −iδabkcχ[0,t f )e
−μ0T k2(t−s)+iμ0k·Fext . (40)

Plugging these results into Eq. (39) we obtain

〈�r(t f , 0)〉 ≈ μ0Fextt f − (1 + γ A)Fext
μ0

2dρ0

∫
k

[ρ0βV (k)]2

[1 + βρ0V (k)]
[
1 + 1

2βρ0V (k)
] t f

≡ (1μ‖ + Aμ⊥)Fextt f . (41)
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When γ = 0, the Einstein relation D‖(0, T ) = T μ‖(0, T ) is
recovered. When γ �= 0, the presence of a transverse compo-
nent to the force on the tracer does not affect the longitudinal
mobility of the tracer, and its expression is the same as in
equilibrium [42]. However, an odd mobility coefficient [50]
proportional to γ appears. If the tracer is pulled by a force
Fext along a given direction in the (xy) plane, it will also
move along the transverse direction parallel to AFext: this is
the physical meaning of the emergent odd mobility. As the
temperature is lowered, the longitudinal mobility decreases
while the odd mobility increases.

The main take-home message of this section is the increase
of the sampling efficiency upon decreasing the temperature.
In what follows we analyze what happens when the small
coupling approximation breaks down. When the strength of
transverse forces increases, we ask about the asymptotic be-
havior of the efficiency.

IV. MODE-COUPLING THEORY IN THE PRESENCE
OF TRANSVERSE FORCES

The dynamical evolution of the system of N particles with
positions ri is governed by the operator �γ

�γ ≡ D0

∑
i

∇i · [∇i − (1 + γ A)βFi]. (42)

When γ = 0, �γ is the usual Smoluchowski evolution op-
erator of the equilibrium dynamics. The evolution of the
probability distribution ρ(rN , t ) for the positions of the N
particles rN = {ri}i=1,...,N of the system reads

∂tρ(rN , t ) = �γ ρ(rN , t ). (43)

We can thus write the formal expression for ρ(rN , t ) given its
initial condition ρ(rN ):

ρ(rN , t ) = e�γ tρ(rN , 0). (44)

We denote the average value of any function f (rN , t ) by
〈 f (rN , t )〉, which is fully determined by the knowledge of
ρ(rN , t ). Using the notation drN ≡ �N

i=1dri we have

〈 f (rN , t )〉 ≡
∫

drN f (rN )e�γ tρ(rN )

=
∫

drN [e�†
γ t f (rN )]ρ(rN )

=
∫

drN e�−γ t f (rN )ρ(rN )

= 〈e�−γ t f (rN )〉, (45)

where we have used the adjoint operator �†
γ , defined as

�†
γ ≡ D0

∑
i

[∇i + (1 + γ A)βFi] · ∇i, (46)

and the following identity, which is a consequence of the
breaking of detailed balance:

· · ·�γ f (rN )〉 = · · · (�†
−γ f (rN ))〉. (47)

The steady-state solution of Eq. (44) is the Boltzmann distri-

bution ρB(rN )= e−βH(rN )∫
drN e−βH(rN )

with H(rN )≡ 1
2

∑
i �= j V (|ri−r j |).

Since we are interested in the steady-state dynamics of the
system, we assume that the initial condition is also sampled
from the Boltzmann distribution, i.e., ρ(rN ) = ρB(rN ).

We are interested in the fluctuating density mode n(q, t ),
defined as the Fourier transform of the fluctuating density field
n(r, t ) = ∑

i δ(r − ri(t )) − ρ0:

n(q, t ) ≡
∑

i

e−iq·ri (t ), (48)

evaluated at the wave vector q, and the dynamical structure
factor S(q, t ):

S(q, t ) ≡ 1

N
〈n∗(q)(e�†

γ t n(q))〉

= 1

N
〈n∗(q)e�−γ t n(q)〉, (49)

where we have omitted the time from the argument of the
functions when they are evaluated at t = 0. For instance,
n(q) ≡ n(q, 0). The initial condition S(q) is the equilibrium
structure factor of the system. Another quantity of interest is
the self-part of the intermediate scattering function, Fs(q, t ):

Fs(q, t ) ≡ 1

N

∑
i

〈n∗
i (q)e�−γ t ni(q)〉, (50)

with ni(q) ≡ e−iq·ri .
In the next section, we implement the Mori-Zwanzig pro-

jection operator formalism to obtain an equation of motion for
the dynamical density correlations.

A. Projection operator formalism

We start our calculation by introducing the Laplace
transform

S(q, z) ≡
∫ +∞

0
S(q, t )e−zt , (51)

which, once applied to the time derivative of Eq. (49) yields

zS(q, z) − S(q) = 1

N

〈
n∗(q)�−γ

1

z − �−γ

n(q)

〉
. (52)

We introduce an operator that projects along the density mode
n(q):

P ≡ 1

NS(q)
n(q)〉〈n∗(q), (53)

and its orthogonal counterpart Q ≡ I − P . The notation in-
troduced in Eq. (53) has to be understood as always acting
within an average over the initial condition and the dynam-
ics, namely, 〈· · ·P · · · 〉 = 1

NS(q) 〈n∗(q) · · · 〉〈· · · n(q)〉. Using
the resolvent identity [3]

Q 1

z − �−γ

= Q 1

z − �−γQ

+ Q 1

z − �−γQ
Q�−γP

1

z − �−γ

, (54)
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we obtain

zS(q, z) − S(q) = 1

N

〈
n∗(q)�−γ (P + Q)

1

z − �−γ

n(q)

〉

= 1

N

[〈
n∗(q)�−γP

1

z − �−γ

n(q)

〉
+
〈
n∗(q)�−γQ

1

z − �−γQ
n(q)

〉

+
〈
n∗(q)�−γQ

1

z − �−γQ
�−γP

1

z − �−γ

n(q)

〉]

=
[

1

NS(q)
〈n∗(q)�−γ n(q)〉 + 1

NS(q)

〈
n∗(q)�−γQ

1

z − Q�−γQ
Q�−γ n(q)

〉]
S(q, z). (55)

When passing from the first to the second line, we used Eq. (54). To pass from the second to the third line, we used
the fact that 〈n∗(q)�−γQ 1

z−�−γ Qn(q)〉 = 〈n∗(q)�−γQ 1
z−�−γ QQn(q)〉 = 0 (since QQ = Q) and the definition of P given

in Eq. (53). Using the projection operators, we have separated the contributions to the evolution of the structure fac-
tor into an exponentially decaying part with frequency −N−1〈n∗(q)�−γ n(q)〉 and a memory kernel D0

S(q) q · M̃(q, z) · q ≡
1

NS(q) 〈n∗(q)�−γQ 1
z−Q�−γ QQ�−γ n(q)〉. The frequency term reads

− 1

NS(q)
〈n(q)∗�−γ n(q)〉 = i

D0

NS(q)
q ·
∑

i

〈eiq·ri · [(∇i − γ AβFi )n(q)]〉 = −D0q2

S(q)
. (56)

This term, which encodes the diffusive decay of the structure factor in the absence of interactions, is left unaffected by the
transverse forces.

Using an integration by parts, together with the fact that the Boltzmann distribution describes the steady state of the system,
we can write the memory kernel M̃ as

q · (D0β )2

V ρ0S(q)

〈∑
i

eiq·ri ((1 − γ A)Fi + iT q)Q 1

z − Q�−γQ
Q
∑

j

eiq·r j (Fi(1 − γ A) − iT q)

〉
· q ≡ D0

S(q)
q · M̃(q, z) · q. (57)

Due to the presence of projection operators Q, the formula for M̃ can be simplified,

M̃(q, z) = D0β
2

V ρ0

〈∑
i

eiq·ri ((1 − γ A)Fi + iT q)Q 1

z − Q�−γQ
Q
∑

j

eiq·r j (Fi(1 − γ A) − iT q)

〉

= D0β
2

V ρ0

〈∑
i

eiq·ri ((1 − γ A)Fi )Q
1

z − Q�−γQ
Q
∑

j

eiq·r j Fi(1 − γ A)

〉
.

The memory kernel can be expressed in terms of the correla-
tions between projected force density Fourier modes,

Qj(q) ≡ Q
∑

i

Fie
−iq·ri . (58)

Note that due to the projection operator we have
· · ·Q∑i Fie−iq·ri〉 = · · ·QT

∑
i ∇ie−iq·ri〉 and it is the

latter form that is used in the derivation of the mode-coupling
approximation, Eq. (69). The memory kernel M̃ thus reads

M̃(q, z) = (1 − γ A) K̃(q, z)(1 − γ A) (59)

with

K̃(q, z) ≡ D0β
2

V ρ0

〈
j(q)∗Q 1

z − Q�−γQ
Qj(q)

〉
. (60)

Equation (55) becomes

zS(q, z) − S(q) = D0

S(q)
q · [−1 + M̃(q, z)] · qS(q, z). (61)

When γ = 0, the memory kernel M̃ is diagonal, and only the
correlations among longitudinal particle currents contribute.
We thus fall back onto the equilibrium case. In the pres-
ence of transverse forces, correlations arising from transverse
currents contribute to the dynamics of the structure factor.
Cross-correlations among longitudinal and transverse currents
might as well influence the dynamics. This is the new feature
entering the design of our mode-coupling approximation. In
the next section, we expand on the irreducible representation
of the memory kernel.

B. The irreducible memory kernel

We now introduce the irreducible memory kernel. Follow-
ing Kawasaki [51] and Vogel and Fuchs [52] we define an
irreducible operator

�irr
−γ ≡ D0Q

∑
j

∇ jQ j · (1 − γ A)[−βF j + ∇ j]Q (62)
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with Q j ≡ 1 − P j and P j ≡ e−iq·r j 〉〈eiq·r j a single-particle
projection operator. The definition of the irreducible operator
comes from a formal extension of the equilibrium case. Using
the fact that particles are statistically equivalent we obtain
Q�−γQ = �irr

−γ − δ�−γ , with

δ�−γ = D0β
2

N
Qj(q)〉 · (1 − γ A)〈j(q)∗Q. (63)

Using Eq. (63) and the resolvent identity

1

z − Q�−γQ
= 1

z − �irr−γ

+ 1

z − �irr−γ

δ�−γ

1

z − Q�−γQ
,

(64)

we can express the reducible memory kernel K̃ in Eq. (60) as
a function of an irreducible memory kernel K(q, z), where the
evolution of the system is governed by �irr

−γ :

K(q, z) ≡ D0β
2

ρ0V

〈
j(q)∗Q 1

z − �irr−γ

Qj(q)

〉
. (65)

The relationship between the reducible and the irreducible
memory kernels is

K̃(q, z) = [1 + K(q, z)(1 − γ A)]−1K(q, z). (66)

The introduction of the irreducible memory kernel is a neces-
sary step in order to avoid an unphysical negative viscosity in
the system, which may appear within an approximate evalua-
tion of the reducible kernel [53].

Approximations are now needed to compute K(q, z). In the
next section we apply the mode-coupling approximation to the
memory kernel.

C. Mode-coupling expansion of the memory matrix

To perform the mode-coupling expansion, we follow
Szamel and Löwen [54]. The basic idea behind the mode-
coupling approximation is to decompose the current field into
a sum of products of density modes:

Qj(q) ≈ 1

2

∑
k

n(k)n(q − k)

N2S(k)S(q − k)
〈n∗(k)n∗(q − k)Qj(q)〉,

(67)

where the factor 1
2 comes from a Gaussian factoriza-

tion of a static multi-point density correlator. The central
mode-coupling approximation is the factorization of the time-
dependent multipoint density correlator, combined to the
approximation �irr

−γ ≈ �−γ :〈
n(k′)∗n(q − k′)∗e�irr

−γ t n(k)n(q − k)
〉

≈ 〈n∗(k′)e�−γ t n(k)〉〈n∗(q − k′)e�−γ t n(q − k)〉
+ 〈n∗(k′)e�−γ t n(q − k)〉〈n∗(q − k′)e�−γ t n(k)〉

= N2S(k, t )S(q − k, t )[δk,k′ + δk′q−k]. (68)

We now compute the expectation value in Eq. (67) with the
aid of a convolution approximation

〈n(k)∗n(q − k)∗Qj(q)〉 = 〈n(k)∗n(q − k)∗j(q)〉

− 1

NS(q)
〈n(k)∗n(q − k)∗n(q)〉〈n(q)j(q)〉

≈ T

〈
n(k)∗n(q − k)

∑
i

∇ie
−iq·ri

〉

− T

NS(q)
NS(k)S(q − k)S(q)

〈
n(q)∗

∑
i

∇ie
−iq·ri

〉

= −T

〈∑
i

∇i[n(k)∗n(q − k)∗]e−iq·ri

〉

+ T

NS(q)
NS(k)S(q − k)S(q)

〈∑
i

∇i[n(q)∗]e−iq·ri

〉
= −iNT [kS(q − k) + (q − k)S(k) − qS(k)S(q − k)]

= iNT ρ0S(k)S(q − k)[kc(k) + (q − k)c(q − k)], (69)

where in the last step we have introduced the direct correlation
function c(k), related to S(k) via the Ornstein-Zernike relation
ρ0c(k) = 1 − 1

S(k) . We can now inject the expansion (67) into
the memory kernel K of Eq. (65). We then use Eqs. (68) and
(69). After replacing the sum over the wave vectors with an
integral,

∑
k → V

∫
k, we obtain

K(q, t ) ≈ D0ρ0

2

∫
k

Vk,q ⊗ Vk,qS(k, t )S(q − k, t ), (70)

where the vertex

Vk,q ≡ kc(k) + (q − k)c(|q − k|) (71)

is the mode-coupling vertex of the equilibrium dynamics.
To proceed further, we decompose the kernel K over an

orthonormal basis that depends on the wave vector q and on
the matrix A. The axes of this basis are defined by

e1 ≡ eq1 ≡ AT Aq
|Aq| ,

e2 ≡ eq2 ≡ Aq
|Aq| ,

e3 ≡ eq3 ≡ (1 − AT A)q

|(1 − AT A)q| . (72)

Looking at the expression for A in Eq. (7), we see that e1

is the normalized projection of q on the (xy) plane, e2 is
the normalized vector orthogonal to e1 in the (xy) plane, as
selected by the matrix A, and e3 is the normalized projection
of q along the z direction. We refer to this basis as the A − q
basis. The matrix K(q, t ) is diagonal in the basis defined in
Eq. (72), within the mode-coupling approximation. To prove
this, we consider the decomposition of K(q, t ) in the A − q
basis, namely,

K(q, t ) =
3∑

i, j=1

Ki j (q, t )ei ⊗ e j . (73)
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The matrix element Ki j reads

Ki j (q, t ) = D0ρ0

2

∫
k
[kic(k) + (qi − ki )c(|q − k|)]

× [k jc(k) + (q j − k j )c(|q − k|)]
× S(k, t )S(q − k, t ). (74)

We now consider the symmetries of the dynamics with trans-
verse forces. The first symmetry transformation we exploit is
a reflection of direction 3 (the axis z). This symmetry imposes

K(R3q, t ) = K(q, t ) (75)

with R3q ≡ q − 2e3(q · e3) the operator that reflects a vec-
tor with respect to direction 3. By construction, we have
eqi = eR3qi for i = 1, 2, and eq3 = −eR3q3. This implies that
K3i(q, t ) = K3i(R3q, t ) for i = 1, 2. On the other hand, a
change of variable k3 → −k3 in the momentum integration
of K3i(R3q, t ) shows that

K3i(R3q, t ) = −K3i(q, t ), (76)

where we used the fact that S(R3k, t ) = S(k, t ) due to the
symmetries of the dynamics with transverse forces. Combin-
ing Eqs. (75) and (76) we see that K3i(q, t ) = −K3i(q, t ) for
i = 1, 2, thus implying that K3i(q, t ) = 0 for i = 1, 2.

The second symmetry we exploit is obtained by consid-
ering a rotation within the (xy) plane by an angle π/2. The

resulting invariance imposes

K
(
R π

2
q, t
) = K(q, t ) (77)

with R π
2
q ≡ Aq + e3q3 the operator that rotates a vector by

an angle π/2 in the (xy) plane. By construction, eq3 = eR π
2

q3,
eq1 = −eR π

2
q2 and eq2 = eR π

2
q1. This implies K12(q, t ) =

−K21(R π
2
q, t ). On the other hand, a change of variable k →

R π
2
k in the momentum integral of K21(R π

2
q, t ) shows that

K21(R π
2
q, t ) = −K12(q, t ), (78)

where we used the fact that S(R π
2
k, t ) = S(k, t ) due to the

symmetries of the dynamics with transverse forces. Combin-
ing Eqs. (77) and (78) we see that K12(q, t ) = −K12(q, t ) for
i = 1, 2, thus implying that K12(q, t ) = K21(q, t ) = 0. This
concludes our proof that the kernel K(q, t ) is diagonal in the
A − q basis, i.e.,

K(q, t ) =
3∑

i=1

Kii(q, t )ei ⊗ ei. (79)

Using this diagonal approximation, we can give an expres-
sion of K̃(q, z). Noting that the matrix A reads, in the A − q
basis,

A = e2 ⊗ e1 − e1 ⊗ e2, (80)

we can invert the matrix in Eq. (66), substitute the result in
Eqs. (59) and (61) to finally obtain

zS(q, z) − S(q) = −D0q ·
[

1 + (1 + γ 2)K22

(1 + K11)(1 + K22) + γ 2K11K22
e1 ⊗ e1 + 1

1 + K33
e3 ⊗ e3 + γ

K11 + K22 + (1 + γ 2)K11K22

(1 + K11)(1 + K22) + γ 2K11K22

× [e1 ⊗ e2 − e2 ⊗ e1] + (1 + K11)K22 + K11(K22 − 1)γ 2

(1 + K11)(1 + K22) + γ 2K11K22
e2 ⊗ e2

]
· qS(q, z), (81)

where we have omitted the dependence on (q, z) of the memory kernel Kii, for simplicity. Note that only the first line of the term
in the square bracket contributes to the decay of S(q, z), due to the projection along the mode q. The off-diagonal, antisymmetric
term on the second line hints at the odd transport properties of the dynamics, which will be investigated below.

Before turning to the discussion of longitudinal and odd transport, we study the decay of the dynamical structure factor to a
(possibly nonzero) plateau. To do so, we introduce the normalized dynamical density correlations φ(q, t ) ≡ S(q,t )

S(q) . Its dynamics
is readily obtained from Eq. (81):

zφ(q, z) − 1 = − D0

S(q)
q ·
[

1 + (1 + γ 2)K22

(1 + K11)(1 + K22) + γ 2K11K22
e1 ⊗ e1 + 1

1 + K33
e3 ⊗ e3

]
· qφ(q, z). (82)

For γ = 0, we are back to the known equilibrium situation.
The isotropy of the dynamics is restored, K11 = K33 and we
consistently find

zφ(q, z) − 1 = − D0

S(q)
q2 φ(q, z)

1 + K‖(q, z)
, (83)

where K‖ is the longitudinal mode-coupling kernel

K‖(q, t ) = D0ρ0

2q2

∫
k

[q · kc(k) + q · (q − k)c(|q − k|)]2

× S(k, t )S(q − k, t ). (84)

For the general situation with γ �= 0, it is instructive to con-
sider the case where q3 = 0 and rewrite Eq. (82) in the time
domain:

∂tφ(q, t ) + D0q2φ(q, t ) + D0q2(1 + γ 2)K22 ∗ φ(q, t )

= −[(K11 + K22) + (1 + γ 2)K11 ∗ K22] ∗ ∂tφ(q, t ), (85)

where ∗ denotes a convolution in time, f ∗ g(t ) = ∫ t
0 dt

f (t − τ )g(τ ). With this expression, it is clear that when γ �= 0
the transverse currents affect both the relaxation rate and the
friction kernel of the system.

In order to extract a physical picture from these equations,
we inject an approximate form for the static structure factor in
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which the structure is sharply localized at a given wave vector.
As a result, the next subsection explores the resulting so-called
schematic approximation.

D. Schematic mode-coupling theory

The first schematic approximation we consider follows
the historical one [55] where the structure factor is strongly
peaked for a wave vector of modulus q0, S(q) ≈ 1 +
S0δ(|q| − q0), which implies in turn that ρ0c(q) = 1 if |q| =
q0 and 0 otherwise. Within this approximation, K22 = 0. In
this case, Eq. (82) has the following property: if φ(k, t ) is ro-
tationally invariant at t = 0, then φ(k, t ) remains rotationally
invariant at all subsequent times t . The memory kernel thus
reads

K11(q0, t ) = K33(q0, t )

= D0S2
0

2ρ0

∫
|k|=|q−k|=q0

dk
(2π )3

φ(k, t )φ(q − k, t )

= λeqφ
2(q0, t ), (86)

where λeq ≡
√

3
16π2

D0S2
0 q3

0
ρ0

φ2(q0, t ). Upon substitution into
Eq. (82) we obtain, denoting by φ2(q0, z) the Laplace trans-
form of φ2(q0, t ),

zφ(q0, z) − 1 = −D0q2
0

1

1 + λeqφ2(q0, z)
φ(q0, z). (87)

This equation is identical to the one obtained in the equilib-
rium case for γ = 0.

We briefly review here how an ergodicity-breaking sce-
nario is predicted from this equation [56]. If we denote by f0

the nonergodicity parameter f0 ≡ limt→+∞ φ(q0, t ), we have

lim
z→0

φ(q0, z) = f0

z
,

lim
z→0

φ2(q0, z) = f 2
0

z
. (88)

Taking the limit z → 0 on both sides of Eq. (87) and keeping
only the diverging part yields

f0

1 − f0
= λeq

D0q2
0

f 2
0 . (89)

Equation (89) admits a nonzero solution if and only if λeq

D0q2
0
�

4. This is the ergodicity-breaking predicted by the mode-
coupling theory of the colloidal glass transition in equilibrium
[54].

We now give an expression for the high-temperature re-
laxation time in the equilibrium case. Let us assume that
the system is ergodic, λeq < 4D0q2, and that φ(q0, t ) = e− t

τ0 ,
from which it follows that φ(q0, z = 0) = τ0 and φ2(q0,

z = 0) = τ0
2 . Equation (87) evaluated at z = 0 gives an expres-

sion for the relaxation time τ0:

τ0 = 1

q2
0D0 − λeq

2

. (90)

This result is physical only for λeq < 2q2
0D0, which corre-

sponds to the ergodic phase. At higher values of λeq another
functional form for the decay of φ must be assumed [55,56].

Implementing the conventional schematic approximation
does not allow us to capture any qualitative change in the evo-
lution equation of the dynamical structure factor. However, the
fact that dynamics is accelerated is a mathematical statement,
and so we should blame the nature of the schematic approxi-
mation. There is also the possibility that the mode-coupling
approximation itself does not capture the acceleration pro-
vided by transverse forces, but our analysis, developed in the
remainder of the paper, shows that this is not the case.

The historical schematic approximation spuriously trans-
forms a set of anisotropic equations for time correlations into
an isotropic one. We thus need to take a step back and consider
an alternative schematic approximation that does not overlook
the anisotropy, which we believe is an essential ingredient.
This is what we implement in the next subsection.

E. New ansatz for the ergodic phase: Relaxation speedup

We now resort to an approximate form of the static struc-
ture factor that preserves the chiral character of the dynamics,
and which, as will appear, implies a faster relaxation in the
ergodic phase.

We keep the main ingredient of the schematic approxi-
mation, namely the idea that the structure factor is sharply
localized for wave vectors around a given modulus q0. Nev-
ertheless, we replace the sharp delta function with a rounded
peak of nonzero width ε, which is assumed to be small with
respect to q0, but nonzero. This will be enough to produce
an interesting interplay of modes in various directions. In
practice, we resort to the following approximate forms for
S(k) and for the product S(k)S(q − k):

S(k) ≈ 1 + S0
1

εd
η

(
k − q0

ε

)
,

S(|k|)S(q − k) ≈ S2
0

εd
η

(
k − q0

ε

)
η

( |q − k| − q0

ε

)
(91)

with ε−1η(k) a function normalized to unity with an absolute
maximum at k = 0. An example of such η(k) could be a
Gaussian function

ε−dη(k) ≡ 1√
2πε2d

e− k2

2ε2 , (92)

but the specific shape of η is not relevant. Such a function
will serve as an approximation of the Dirac distribution. Using
the Ornstein-Zernike relation, the direct correlation function is
given by

ρ0c(k) ≈
S0
εd η
( k−q0

ε

)
1 + S0

εd η
( k−q0

ε

) . (93)

When computing K22(q, t ), we focus on a wave vector q such
that |q| = q0 and expand around wave vectors k0 such that
k0 = q0 and |q − k0| = q0. We then rewrite k as

k = k0 + εp (94)
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in the integrals of Eq. (74). Note that ε has the dimension of a wave vector, and hence p is dimensionless. The approximate
values of k and |q − k| up to order ε2 are then

k = |k0 + εp| = q0 + ε
p · k0

q0
+ ε2

2q0

[
p2 − (p · k0)2

q2
0

]
,

|q − k| ≈ q0 + ε
p · (q − k0)

q0
+ ε2

2q0

[
p2 − (p · (q − k0))2

q2
0

]
. (95)

We now expand the direct correlation function in powers of ε. We assume the function η to be even, so that ρ0c′(q0) = 0. We
thus obtain

ρ0c(k) ≈ ρ0c(q0) + ε2 (p · k0)2

2q2
0

ρ0c′′(q0) = 1 + ε2 (p · k0)2

2S0q2
0

η′′
0

η2
0

, (96)

where we used the notation η0 ≡ η(0), η′′
0 ≡ η′′(0). Substituting Eq. (96) into the expression for the memory kernel K22(q, t ),

given in Eq. (74), we find to lowest order in ε,

K22(q, t ) = D0ρ0

2

∫
k

(
Aq · k
|Aq|

)2

[c(k) − c(|q − k|)]2S(k)S(|q − k|)φ(k, t )φ(q − k, t )

≈ ε4 D0(η′′
0 )2

8ρ0q4
0η

4
0

∫
p

(
Aq · k0

|Aq|
)2

(p · q)2[2p · k0 − p · q]2η

(
p · k0

q0

)
η

(
p · (q − k0)

q0

)
φ(k0, t )φ(q − k0, t ). (97)

The integrand is nonzero as long as Aq �= 0. Allowing for a small momentum shell of thickness ε was enough for anisotropy to
play a role, in contrast to the standard schematic approximation.

The previous result justifies the following approximation
for the memory kernel K(q, z), when |q| = q0 and Aq �= 0:

K(q, z) = λφ2(q0, z)(e1 ⊗ e1 + e3 ⊗ e3) + νφ2(q0, z)e2 ⊗ e2

(98)

with λ and ν two parameters that depend continuously on
density and temperature. Moreover, as a further simplification,
we assume that all the modes relax as the ones in the (xy)
plane. We speculate that the anisotropy of the system would
simply lead to a renormalization of γ for our theory, thus
weakly affecting the results discussed in the following.

Within the above approximation, Eq. (82) reads

zφ − 1 = −q2
0D0φ

1 + νφ2(1 + γ 2)

1 + φ2(λ + ν) + φ2
2λν(1 + γ 2)

. (99)

For γ = 0, this expression must match its equilibrium
counterpart. Therefore we must have λ = λeq. In the next

paragraph we investigate the glass transition and the dynamic
acceleration in the ergodic phase.

1. Ergodicity breaking

We substitute Eq. (88) into Eq. (99) and keep only the
leading diverging terms of order 1/z2:

λeqν(1 + γ 2)(1 − f0) f0 = q2
0D0ν(1 + γ 2). (100)

This expression simplifies into Eq. (89), namely, 1
1− f0

=
λeq

q2
0D0

f0, which establishes that dynamic ergodicity breaking
occurs at exactly the same location as in equilibrium.

2. Speedup of the relaxation time

Using φ(q0, z = 0) = τ0, φ2(q0, 0) = τ0
2 and substituting

into Eq. (99) with z = 0 we obtain an equation for τ0:

τ 2
0

[
(1 + γ 2)

(
λ

4
− q2

0D0

)
ν

]
+ τ0

[
1

2
(λ + ν) − q2

0D0

]
+ 1 = 0. (101)

The positive solution for any value of γ is

τ−1
0 (γ ) = 4

−λ − ν + 2q2
0D0 +

√
λ2 + ν2 + 4νq2

0D0(1 + 2γ 2) + 4q2
0D2

0 − 2λ
(
ν + 2γ 2ν + 2q2

0D0
) . (102)

This describes the relaxation time for exponential relaxation
in the ergodic phase. The relaxation is exponential as long as
λeq < 2q2

0D0, as in equilibrium. As a consistency check, τ0(0)
matches the equilibrium solution, while τ0(γ ) < τ0(0) for all
values of γ . This proves that transverse forces accelerate the
relaxation of the system.

In the limit γ → ∞, the relaxation time reads

τ0(γ ) = 1

γ ν

√
2(

q2
0D0 − λ

2

) . (103)
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In this limit, the relaxation time goes to 0 linearly in 1/γ .
If correct, this implies a relaxation time that goes to zero for
a large amplitude of the transverse forces. However, in nu-
merical applications this method would be hindered by errors
in the discretized equation of motion as increasing γ would
in practice demand smaller and smaller time steps. Note also
that the γ 1 dependence of the acceleration at large γ differs
from the naive γ 2 acceleration one might anticipate based on a
simpler dimensional analysis as argued in [38]. This modified
scaling results from a many-body correlation effect.

We now move to lower temperatures close to the dynamical
glass transition, where the exponential form for the relaxation
is no longer valid.

3. Early and late β relaxations close to the transition

We now study the time dependence of φ near its
intermediate-time plateau within the ergodic phase, but very
close to the mode-coupling critical temperature. We study
whether the known power-law regimes in this region, as found
in [55], are affected by the transverse forces. Our starting point
is Eq. (99), which we recall here:

q2
0D0φ(z)

1 − zφ(z)
= 1 + (λ + ν)φ2(z) + (1 + γ 2)λνφ2(z)2

1 + (1 + γ 2)νφ2(z)
. (104)

The system loses ergodicity for λ � 4q2
0D0. In the glass state

close to the ergodicity breaking we set λ = 4q2
0D0(1 + ε) with

ε � 1, and we obtain

lim
t→+∞ φ(t ) = 1

2 (1 + ε1/2). (105)

If instead we set

λ = 4q2
0D0(1 − ε) (106)

we are in the ergodic phase close to the glass transition. To
describe the approach of φ to the plateau we assume, in the
limit ε → 0 the following scaling form, taken from Eq. (105):

φ(t ) = 1
2 + ε1/2g(τ ), (107)

with τ ≡ εαt a rescaled time. We begin by assuming that
α > 1 and we shall later check that this is self-consistently
correct. When considering the Laplace transform, we use a
rescaled variable z ≡ εαζ . The Laplace transforms of φ(t ) and
φ2(t ) are therefore

φ(ζ ) = ε−α

[
1

2ζ
+ ε1/2g(ζ )

]
,

φ2(ζ ) = ε−α

[
1

4ζ
+ ε1/2g(ζ ) + εg2(ζ )

]
. (108)

We thus substitute Eq. (108) into Eq. (104) and search for
the leading order in ε. To do so, we assume that we are in
a regime where |ε1/2g(τ )| � 1. The orders ε0 and ε1/2 are
self-consistently satisfied, while at order ε we obtain

8ζg2(ζ ) − 4g2(ζ ) = − 1

ζ
. (109)

This is the same equation as that obtained in equilibrium
[55]. The exponents controlling the approach to and the de-
parture from the plateau are left unchanged by the transverse
dynamics.

For completeness, we also recall how to compute these
exponents below. For the early β relaxation we take

g(τ ) ≡ a0τ
−a (110)

for τ � 1, which implies that

g(ζ ) = a0ζ
a−1�(1 − a),

g2(ζ ) = a2
0ζ

2a−1�(1 − 2a), (111)

for ζ � 1, with �(x) ≡ ∫ +∞
0 t x−1e−t dt the gamma function.

Substitution into Eq. (109) yields to leading order in ζ

4a2
0ζ

2a−1[2�(1 − a)2 − �(1 − 2a)] = 0. (112)

This equation has two solutions a = −1 and a = 0.395.
Among these, we retain only the physical one with a = 0.395.
This solution is consistent with the earlier assumption that
α > 1. In fact, if we want

φ(t ) = 1
2 + a0t−a (113)

to hold, then we must have α = 1/2a > 1. We also assess in
which range of times this solution is valid. Since we want
|ε1/2g(τ )| � 1 and τ � 1 we must have

ε
1

2a a1/a
0 � τ � 1, (114)

which implies

a1/a
0 � t � ε−1/2a. (115)

For the late β relaxation we assume

g(τ ) ≡ −b0τ
b (116)

for τ � 1, which implies that

g(ζ ) = −b0ζ
−b−1�(1 + b),

g2(ζ ) = b2
0ζ

−2b−1�(1 + 2b), (117)

for ζ � 1. Substitution in Eq. (109) yields to leading order in
ζ :

4a2
0ζ

−2b−1[2�(1 + b)2 − �(1 + 2b)] = 0. (118)

This equation has the solution b = 1. We also assess in
which range of times this solution is valid. Since we want
|ε1/2g(τ )| � 1 and τ � 1 we must have

1 � τ � ε
1
2b b−1/b

0 , (119)

which implies

ε−1/2a � t � ε− 1
2a − 1

2b b−1/b
0 . (120)

This approach does not allow us to compute the values
of the two constants a0 and b0. These will however exhibit
a dependence on γ , which, we expect, should result in a
marginal shortening of the time required to approach and leave
the plateau in the temperature regime close to the ergodicity-
breaking transition.

4. Divergence of the relaxation time

In this subsection we show that the exponent characterizing
the divergence of the relaxation time close to criticality is also
unchanged by the transverse forces.
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We start by assuming the following form for φ(t ) for
t � a1/α

0 :

φ(t ) ≡ 1
2 e2ε1/2g(εαt ). (121)

This expression naturally gives Eq. (107) whenever
|ε1/2g(εαt )| � 1, which corresponds to the plateau regime
investigated earlier. When t � ε− 1

2a − 1
2b b−1/b

0 we have

φ(t ) = 1
2 e−2b0ε

α+1/2t . (122)

The Laplace transforms read

φ(z) = 1

2(z + 2b0εα+1/2)
,

φ2(z) = 1

4(z + 4b0εα+1/2)
. (123)

Using the scaling z = εα+1/2ζ we see that, to leading order in
ε, Eq. (123) satisfies Eq. (104), which confirms that the ansatz
of Eq. (122) is correct. Our schematic mode-coupling theory
therefore predicts that, close to the critical temperature TMCT,
the relaxation time τα diverges as a power law,

τα ∼ (T − TMCT)−1/2a+1/2b, (124)

with 1
2a + 1

2b ≈ 1.7658, which is again the same exponent as
in equilibrium [55].

F. Beyond the schematic approximation

Using insights gained from the schematic approximation,
we now prove some general properties of the dynamics with
transverse forces, as derived in Eq. (82), in particular regard-
ing the location of the glass transition and the acceleration of
the dynamics.

1. Location of the glass transition

To locate the glass transition, we assume that when ergod-
icity breaking occurs, the plateau is the same for all wave
vectors with the same modulus:

φ(q, z → 0) ≈ φ∞(q)

z
,

K11(q, z → 0) ≈ K33(q, z → 0) ≈ K‖,∞(q)

z
,

K22(q, z → 0) ≈ K⊥,∞(q, z → 0)

z
. (125)

Taking the limit z → 0 in Eq. (82), and using Eq. (125), the
contribution from transverse forces cancels, leading to

q2D0
φ∞(q)

1 − φ∞(q)
= K‖,∞(q). (126)

This equation is the same as the one governing the equilibrium
case. This establishes that the glass transition takes place for
the same value of the parameters (density, temperature) as in
equilibrium when γ = 0.

2. Acceleration in the ergodic phase

In the ergodic phase, however, some acceleration can be
achieved even if the location of the glass transition is the
same. To support this assertion, we begin by self-consistently

assuming that transverse forces accelerate the decay of the
dynamical structure factor. In practice, we start from the pos-
tulate that

φf(q) � φeq, f(q), (127)

where φf ≡ φ(q, z = 0) ≡ ∫ +∞
0 dτφ(q, τ ) is the time-

integrated normalized dynamical structure factor, and φeq,f

is the same quantity for equilibrium dynamics, obtained
from Eq. (82) when γ = 0. Due to the mode-coupling
expression of the memory kernel, Eq. (74), it follows that
Ki j,f(q) ≡ Ki j (q, z = 0) � Ki j,eq,f(q) ≡ Ki j,eq(q, z = 0). This
means that

1 + (1 + γ 2)K22,f

(1 + K11,f )(1 + K22,f ) + γ 2K11,fK22,f
� 1

1 + K11,eq,f
, (128)

where we omitted the dependence on the q argument for clar-
ity. This inequality self-consistently proves that the transverse
force dynamics accelerates the decay rate of φ in the ergodic
phase.

3. Limiting behavior for large γ

We explore the asymptotic behavior of the relaxation in the
ergodic in the presence of very strong transverse forces. In the
ergodic phase, the z → 0 limit of Eq. (82) reads

1 = − D0q ·
[

1 + (1 + γ 2)K22,f

(1 + K11,f )(1 + K22,f ) + γ 2K11,fK22,f
e1 ⊗ e1

+ 1

1 + K33,f
e3 ⊗ e3

]
· qφf. (129)

The analysis of the exponential relaxation in the schematic
approximation suggests that, in the limit γ → ∞, one should
expect

lim
γ→∞ φf = φf

γ
, (130)

where φf is a constant that does not depend on γ . Our starting
point is the assumption that a similar scaling holds for the
memory kernels, namely,

lim
γ→∞ Kii,f = Kii,f

γ
, (131)

with Kii,f a quantity independent from γ . This scaling can be
explicitly checked in the case of exponential relaxation. If we
substitute the asymptotic behaviors of Eqs. (130) and (131)
into Eq. (129), the dependence on γ disappears. This result
consistently demonstrates that the relaxation time decreases
linearly in γ −1 in the limit of strong transverse forces. Note
that, by contrast to the discussion in Sec. IV E 2 which was
limited to exponential decays, this result is valid over the
whole ergodic phase.

In this section, we have investigated the relaxation prop-
erties of the collective density modes in the presence of
transverse forces, demonstrating the existence of a speedup,
and establishing its asymptotic behavior for strong drift. We
have also realized that transverse forces do not affect the
location of the transition to the nonergodic regime. This, in
turn, triggers a number of questions related to the microscopic
mechanisms and dynamical pathways opened by transverse
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forces that support these observed collective behaviors. To
answer this question, we turn to the analysis of the motion of
an individual particle. The transport coefficients of this tracer,
along with the diffusivity and mobility tensors, will help us
shape a qualitative picture.

V. DYNAMICS OF A TRACER WITH TRANSVERSE
FORCES IN THE MODE-COUPLING APPROACH

We now analyze the motion of a tracer within the mode-
coupling framework. We first introduce the general setting and
the relevant dynamical quantities.

Following Ernst and Dorfman [57], we consider the motion
of a tagged tracer particle with label 0 in a liquid of N particles
with transverse forces. The tracer initial position at time t = 0,
r0, is fixed at the origin, and it influences the distribution of
the surrounding bath. The initial condition for the probability
distribution of the total system thus reads

PN+1(rN+1, t = 0) = V δ(r0)ρB(rN+1). (132)

Averages over the initial distribution PN+1(rN+1, 0) will be
denoted by 〈· · · 〉0. Averages over the Boltzmann distribution
are denoted by 〈· · · 〉, as usual. Starting from t = 0, a constant
external force Fext is applied on the tracer. The evolution
operator becomes �ext

γ , defined as

�γ,ext = �γ + δ�ext = D0

∑
i

∇i · [∇i − (1 + γ A)βFi]

− D0∇0 · βFext. (133)

We denote the Fourier transform of the tracer density as

n0(q) ≡ e−iq·r0 . (134)

The large-time, long-wavelength limit of this Fourier trans-
form can be used to obtain relevant transport coefficients. A
small q expansion of the time derivative of Eq. (134) yields
constitutive equations of motion for the tracer

〈∂t n0(q, t )〉0 = −iq · 〈ṙ0(t )〉0 − q ·
∫ t

0
dτ 〈ṙ0(τ ) ⊗ ṙ0(0)〉0 · q − q · 〈ṙ0(t ) ⊗ r0〉0 · q + O(q3) ≈ −iq · μ · Fext − q · D · q.

(135)

In the second line, we have taken a large time limit, t → ∞, and used the definition of the diffusivity tensor D, given by Eq. (18),
and the mobility tensor μ, given by Eq. (19). Note that the mobility and the diffusivity are computed within a linear response
formalism, where the intensity of the external force is small, |Fext| → 0. Moreover, as for the weak coupling analysis of the tracer,
we are interested in the expression of the diffusivity tensor obtained for Fext = 0, and neglect the dressing of the diffusivity that
comes from the presence of the dragging external force.

A. Equation of motion of the tracer

We introduce a projection operator tailored to the space of the tracer density fluctuations

P0 ≡
∑

q

· · · n∗
0(q)〉〈n0(q) · · · (136)

and the associated orthogonal projector Q0 ≡ I − P0. Note that, in contrast with the other projection operators used in this
work, P0 contains a summation over all wave vectors, since these are all included inside the δ function of the initial condition in
Eq. (132). With this definition, we have

P0PN+1(rN+1; t = 0) = 1

V

∑
q

n0(q)〉〈n∗
0(q)V δ(r0)〉 =

∑
q

n0(q)〉 = V δ(r0)ρB(rN+1) = PN+1(rN ; t = 0), (137)

and thus

Q0PN+1(rN , t = 0) = 0. (138)

Our goal is to derive an equation of motion for the evolution of the average tracer density, 〈n0(q)e�γ,extt 〉0. In this notation, the
probability distribution PN+1(rN+1, 0) stands to the right of the evolution operator e�γ,extt , which acts on the said distribution.
The time derivative of this quantity reads, after a Fourier transformation〈

n0(q)�γ,ext
1

z − �γ,ext

〉
0

=
〈
n0(q)�γ,extP0

1

z − �γ,ext

〉
0

+
〈
n0(q)�γ,extQ0

1

z − �γ,ext

〉
0

=
[
〈n0(q)�γ,extn

∗
0(q)〉 +

〈
n0(q)�γ,extQ0

1

z − �γ,extQ0
Q0�γ,extn

∗
0(q)

〉]
n0(q, z), (139)

with n0(q, z) = 〈n0(q) 1
z−�γ,ext

〉0. We used the same resolvent identity as in Eq. (64) (with P0 and Q0 instead of P and Q), namely,

1

z − �γ,ext
= 1

z − �γ,extQ0
+ 1

z − �γ,extQ0
Q0�γ,extP0

1

z − �γ,ext
, (140)

together with the fact that 〈· · ·Q0
1

z−�γ,extQ0
〉0 = 0. The frequency matrix reads

〈n0(q)�γ,extn
∗
0(q)〉 = −D0q2 − iD0βq · Fext, (141)

and it contains the mobility of a free tracer, D0β.
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The memory kernel reads instead〈
n0(q)�γ,extQ0

1

z − Q0�γ,extQ0
Q0�γ,extn

∗
0(q)

〉
=
〈
n∗

0(q)�−γ ,extQ0
1

z − Q0�−γ ,extQ0
Q0�−γ ,extn0(q)

〉

= −iq · D2
0

〈
eiq·r0 [(1−γ A) · βF0−iq+βFext]Q0

1

z−Q0�−γ ,extQ0
Q0∇0e−iq·r0

〉
· [(1 − γ A) · iq − βFext]. (142)

The first term Fext on the right-hand side does not contribute,
since it belongs to the space of the tracer’s density modes.
It thus vanishes when the projector Q0 acts on its right. To
extract the mobility of the tracer, we are interested in terms
linear in Fext. One of these terms comes from the last Fext

appearing on the right-hand side of Eq. (142). Another term
comes in principle from the expansion of the operator �γ,ext.
However, the physical meaning of this term is a dressing of the
diffusion matrix by means of the external force, as it yields
a contribution proportional to q2. The tracer’s equation of
motion can thus be cast in the form

z〈n0(q, z)〉0 − 1 = [−iq · μ(q, z) · Fext − q · [D(q, z)

+ |Fext|δD(q, z)] · q]n(q, z), (143)

where δD(q, z) is the correction to the diffusivity tensor due to
the applied external force. We are not interested in this term,
and we focus on the mobility and diffusivity tensors, that read,
respectively,

μ(q, z) = D0β[1 − (1 − γ A) K̃0(q, z)] (144)

and

D(q, z) = D0[1 − (1 − γ A) K̃0(q, z)(1 − γ A)]. (145)

The tracer-memory kernel can be expressed in terms of the
projected longitudinal tracer force density Fourier modes

K̃0(q, z) ≡ D0β
2

〈
j∗0(q)Q0

1

z − Q0�−γQ0
Q0j0(q)

〉
(146)

with Q0j0(q) ≡ Q0F0e−iq·r0 . Note that due to the projection
operator we have · · ·Q0F0e−iq·r0〉 = · · ·Q0T ∇0e−iq·r0〉 and it
is the latter form that is used in the definition of the irreducible
evolution operator, Eq. (150) and the derivation of the mode-
coupling vertex, Eq. (153).

Equations (144) and (145) express the transport coef-
ficients of the tracer as a function of the current-current,
memory tensor K̃0. As usual in a mode-coupling approach,
we first give an irreducible representation of this mem-
ory kernel and then expand it within the mode-coupling
approximation.

The reduction of K̃ is achieved by introducing an irre-
ducible evolution operator

�irrs
−γ = �−γ + D0β

2
∑

k

Q0j0(k)〉 · (1 − γ A) · 〈j∗0(k)Q0

(147)

and exploiting the identity

1

z − Q0�−γQ0
= 1

z − �irrs−γ

[
1 − D0β

2

V

∑
k

Q0j0(k)〉

· (1 − γ A) · 〈j∗0(k)Q0
1

z − Q0�−γQ0

]
.

(148)

We obtain from Eq. (146)

K̃0(q, z) = [1 + K0(q, z)(1 − γ A)]−1 · K0(q, z), (149)

where we have introduced the irreducible memory kernel for
the tracer

K0(q, z) ≡ β2D0

〈
j∗0(q)Q0

1

z − �irrs−γ

Q0j0(q)

〉
. (150)

As a consequence of the linear response treatment in the
definition of the K0(q, z) the evolution operator involves the
dynamics with transverse forces in the absence of the external
perturbation. This allows us to simplify the tracer’s memory
kernel, as was done previously for the memory kernel related
to the dynamics structure factor, K(q, z). Before discussing
further this point, we apply the mode-coupling approximation
scheme to K0.

B. Mode-coupling expansion of the tracer’s memory kernel

The mode-coupling expansion can be carried out in an
analogous way to what was done in Sec. IV C. The tracer’s
current is expanded along the following density product:

Q0j0(q) ≈
∑

k

n(k)n0(q − k)

NS(k)
〈n∗(k)n∗

0(q − k)Q0j0(q)〉.

(151)

The Gaussian approximation now becomes〈
n∗(k′)n∗

0(q − k′)e�irrs
−γ t n(k)n0(q − k)

〉
≈ 〈n∗(k′)e�−γ t n(k)〉〈n∗

0(q − k′)e�−γ t n0(q − k)〉
+ 〈n∗(k′)e�−γ t n0(q − k)〉〈n∗

0(q − k′)e�−γ t n(k)〉
= NS(k, t )Fs(q − k, t )δk,k′ + S(k, t )S(q − k, t )δk′,q−k

≈ NS(k, t )Fs(q − k, t )δk,k′ . (152)

In the last passage we have neglected the term of order 1
compared to the term of order N2. In addition, we noted
that since the tracer is equivalent to any other particle, we
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have 〈n∗
0(q − k′)e�−γ t n0(q − k)〉 = Fs(q − k), with the self-

intermediate correlation function Fs defined in Eq. (50).
We now compute the average in Eq. (151) with the help of

a convolution approximation

〈n(k)∗n∗
0(q − k)Q0j0(q)〉

=〈n(k)∗n∗
0(q−k)j0(q)〉−〈n(k)∗n∗

0(q−k)n0(q)〉〈n∗
0(q)j0(q)〉

= T 〈n(k)∗n∗
0(q − k)∇0e−iq·r0〉 − T S(k)〈n∗

0(q)∇0e−iq·r0〉
= −T 〈∇0[n(k)∗n∗

0(q − k)]e−iq·r0〉 + T S(k)〈∇0[n∗
0(q)]

= −iT [k + (q − k)S(k) − qS(k)]

= −iT ρ0S(k)c(k)k (153)

with ρ0c(k) = 1 − 1
S(k) the direct correlation function. With

these results, substitution of Eq. (151) in the irreducible

memory kernel of Eq. (150) yields

K0(q, t ) ≈ D0ρ0

∫
k

k ⊗ kc(k)2Fs(q − k, t )S(k, t ). (154)

This is the mode-coupling expression of the tracer’s memory
kernel. Using the symmetries of the dynamics, as done in
Sec. IV C, one can show that K0 is diagonal in the A − q basis
given by Eq. (72):

K0(q, t ) =
∑

i

K0,ii(q, t )ei ⊗ ei. (155)

Now that we have a diagonal decomposition of the tracer’s
memory kernel, we can focus on physical quantities of interest
for the tracer dynamics.

C. Self-intermediate scattering function

The dynamics of the self-intermediate scattering function
Fs can be read from the tracer’s dynamics. It is given by

zFs(q) − 1 = −D0q ·
[

1 + (1 + γ 2)K0,22

(1 + K0,11)(1 + K0,22) + γ 2K0,11K0,22
e1 ⊗ e1 + 1

1 + K0,33
e3 ⊗ e3

]
· qFs(q, z). (156)

This equation of motion is formally similar to Eq. (82), with the collective memory kernel being replaced by the tracer’s memory
kernel. For a wave vector q lying in the (xy) plane, we get, using an inverse Laplace transform

∂t Fs + D0q2Fs + D0q2(1 + γ 2)K0,22 ∗ Fs = −[(K0,11 + K0,22) + (1 + γ 2)K0,11 ∗ K0,22] ∗ ∂t Fs, (157)

where the dependence on (q, t ) has been omitted for clarity. This equation was announced in an earlier work [Eq. (11) in [38]].
The properties of this dynamics can be analyzed in the same way illustrated for the dynamical structure factor in Sec. IV E.

D. Diffusion tensor

The diffusion tensor at any finite wave vector and frequency is obtained by substituting the mode-coupling expression for K0,
given in Eq. (155), into Eq. (145). The result reads, in the A − q basis introduced in Eq. (72),

D(q, z) = D0

[
1 + (1 + γ 2)K0,22

(1 + K0,11)(1 + K0,22) + γ 2K0,11K0,22
e1 ⊗ e1 + 1

1 + K0,33
e3 ⊗ e3 + γ

K0,11 + K0,22 + (1 + γ 2)K0,11K0,22

(1 + K0,11)(1 + K0,22) + γ 2K0,11K0,22

× [e1 ⊗ e2 − e2 ⊗ e1] + (1 + K0,11)K0,22 + K0,11(K0,22 − 1)γ 2

(1 + K0,11)(1 + K0,22) + γ 2K0,11K0,22
e2 ⊗ e2

]
. (158)

The expression of the diffusion tensor is one of the main
results of this work. From the large-wavelength, small-
frequency limit of Eq. (158) we obtain the diffusion matrix
D. In Cartesian coordinates, it reads

D = D‖,x[ex ⊗ ex + ey ⊗ ey]

+ D‖,zez ⊗ ez + D⊥[ey ⊗ ex − ez ⊗ ey]. (159)

We now discuss the expression and the behavior of the dif-
ferent diffusion constants that appear in the diffusion tensor
D.

1. Longitudinal diffusion

The dynamics with transverse forces is anisotropic. As a
consequence, there are two types of longitudinal diffusion
constants, one related to the diffusion in the (xy) plane (within
which rotational invariance is preserved), D‖,x and one related

to the diffusion along the z direction, D‖, z. Their expressions
are

D‖,x(γ ) = D0
1 + (1 + γ 2)K∞

0,11(
1 + K∞

0,11

)(
1 + K∞

0,22

)+ γ 2K∞
0,11K∞

0,22

,

D‖,z(γ ) = D0
1

1 + K∞
0,33

, (160)

where we introduced the notation K∞
0,ii ≡ K0,ii(q → 0, z → 0)

to denote the long wavelength, zero frequency of the tracer’s
memory kernel. This coefficient reads explicitly

K∞
0,ii = D0

ρ0

∫ +∞

0
dt
∫

k
[kiρ0c(k)]2Fs(−k, t )S(k, t ). (161)
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For γ = 0, the equilibrium result is duly recovered:

Daa,eq = D0
1

1 + K∞
0,‖,eq

(162)

for a = x, y, z. When γ �= 0 the anisotropy of the dynamics
is revealed through the different expressions of the diffusion
constants.

The dynamics is indeed accelerated. If we assume that in
the ergodic phase K∞

0,ii � K∞
0,ii,eq, we self-consistently obtain

Daa(γ ) � Daa(0).
In the ergodic phase in the limit of strong drive, the mem-

ory kernel scales as γ −1. This implies that the efficiency of
transverse forces with respect to the equilibrium dynamics,
computed as the ratio D(γ ) ≡ ∑

a=x,y,z Daa(γ ) over D(0),
grows as

D(γ )

D(0)
∼ γ . (163)

We now investigate two limiting cases: in the high-
temperature regime, the memory kernels vanish because the
fluid enters an effectively noninteracting limit and therefore
D(γ ) = D0, while at T = TMCT the memory kernels diverge
as predicted by the schematic approach of Sec. IV D, implying
that D(γ ) = 0 and dynamical arrest occurs. We have therefore

lim
T →∞

D(γ )

D(0)
= c(γ ), lim

T →TMCT

D(γ )

D(0)
= 1, (164)

with c(γ ) > 1 a constant that depends on the intensity of the
driving force. These conditions, together with the acceleration
in the ergodic phase, demonstrate that the ratio of the diffusion
constants D(γ )

D0
exhibits a maximum as a function of the tem-

perature in the ergodic phase. This maximum is observed in
numerical simulations [38].

2. Odd diffusivity

The odd diffusion constant is encoded in the antisymmetric
part of the diffusivity tensor:

D⊥(T, γ ) = −D0γ
K∞

0,11 + K∞
0,22 + (1 + γ 2)K∞

0,11K∞
0,22(

1 + K∞
0,11

)(
1 + K∞

0,22

)+ γ 2K∞
0,11K∞

0,22

.

(165)

For an asymptotically large driving, γ → ∞, the odd dif-
fusion constant grows linearly in γ , D⊥(γ , T ) ∼ γ . This
suggests that strong transverse forces manifest themselves
with an increasingly swirling motion.

Close to ergodicity breaking where the memory kernel
diverges, we obtain

lim
T →TMCT

D⊥ = −γ D0. (166)

Therefore, even if the longitudinal diffusion constant associ-
ated to particle transport goes to 0 at the critical temperature,
the odd diffusion constant remains nonzero. Together with the
vanishing of the diffusion constant, this suggests a physical
picture where particles perform a swirling motion inside the
permanent local cage made by their neighbors. An analogous
situation can be shown to arise in the much simpler model of

a particle in a harmonic well under the action of transverse
forces [38].

E. Mobility tensor

The mobility tensor is an alternative quantity characteriz-
ing the nature of the dynamics with a physical content distinct
from that of the diffusivity tensor due to the breaking of
the Einstein relation. The mobility tensor is obtained from
Eq. (144), using the mode-coupling expansion of the tracer’s
memory kernel given in Eq. (155). The result reads

μ(q, z) = D0β

[
1 + K22

(1 + K11)(1 + K22) + γ 2K11K22
e1 ⊗ e1

+ 1

1 + K33
e3 ⊗ e3

+ γ (K0,11e2 ⊗ e1 − K0,22e1 ⊗ e2)

(1 + K11)(1 + K22) + γ 2K11K22

+ 1 + K11

(1 + K11)(1 + K22) + γ 2K11K22
e2 ⊗ e2

]
.

(167)

In the small frequency and large wavelength limit of these
expression, we obtain the mobility of the tracer,

μ = μ‖,x[ex ⊗ ex + ey ⊗ ey]

+ μ‖,zez ⊗ ez + μ⊥[ex ⊗ ey − ey ⊗ ex], (168)

with the longitudinal mobilities μ‖,x, μ‖,z, and odd mobility
μ⊥ given by

μ‖,x = D0β
1 + K∞

0,11(
1 + K∞

0,11

)2 + γ 2K∞
0,11

, μ‖,z = D0β
1

1 + K∞
0,33

,

μ⊥ = −γ D0β
K∞

0,11(
1 + K∞

0,11

)2 + γ 2K∞
0,11

. (169)

The anisotropic character of transverse forces in three dimen-
sions manifests itself through the fact that μ‖,z �= μ‖,x. In the
large γ limit, all nonzero entries of the mobility tensor con-
verge (in modulus) to the mobility of a free tracer, D0β. This
is in contrast with the behavior of the diffusivity tensor, whose
nonzero entries grow linearly in γ . This is a consequence of
the breakdown of the fluctuation-dissipation theorem, arising
from the nonequilibrium nature of the dynamics. A variant
of the fluctuation-dissipation theorem survives for the lon-
gitudinal components of the diffusion and mobility tensor,
as [μ(1 + γ A)]aa = β[D]aa with a = x, y, z. This variant of
the fluctuation-dissipation theorem was also derived in the
dynamical mean-field treatment of transverse forces [39].

As the glass transition is approached, all components of
the mobility tensor vanish. Physically, this means that in the
dynamically arrested glass, a weak external force cannot set
the particles in motion, neither in the longitudinal nor in the
transverse direction with respect to the external force.

The vanishing of longitudinal and odd mobilities is one of
the facets of the glass transition in the mode-coupling theory
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of transverse forces. Another facet is the divergence of the
viscosity tensor, which will be explored in the next section.

VI. ODD VISCOSITY

This section is devoted to the study of the emerging odd
viscosity [58–62]. Following [52,60], we compute the vis-
cosity tensor in the long-wavelength and long-times limits by
looking at the response of the stress to an external perturba-
tion. To do so, we define a microscopic stress tensor in the
presence of transverse forces and develop its linear response
theory, leading to the definition of the viscosity tensor, and in
particular to the identification of its odd component.

A. Stress tensor and transverse forces

Following [52], we start by defining the microscopic stress
tensor in the presence of transverse forces from the equation

∂t n(q) = �†
γ n(q) ≡ −D0βqaqbσab(q). (170)

This identity, which only holds when inserted into the average
〈· · · 〉, yields

σab(q) ≡
∑

i

[
i(δbc + γ Abc)

qaFi,c

q2
+ T δab

]
e−iq·ri . (171)

For γ = 0, we recover the expression of the microscopic
equilibrium stress tensor, σ eq(q), given by

σ
eq
ab (q) ≡

∑
i

[
i
qaFi,b

q2
+ T δab

]
e−iq·ri . (172)

For equilibrium dynamics, the viscosity is defined as the re-
sponse function of Qσ eq to particle current fluctuations, as
discussed in [63] for underdamped Langevin dynamics and
extended in [52] for the overdamped case. In the presence
of transverse forces one must substitute σ eq with σ given by
Eq. (171). This gives rise to coupling between parallel and
longitudinal components of the stress tensor, which eventually
results in odd viscosity.

Note that the projection of the stress tensor in the space
orthogonal to the density fluctuations, Qσab(q), is related with
its equilibrium counterpart by the following relation:

Qσab(q) = Qσ eq
ac (δcb − γ Acb), (173)

where the Einstein summation convention is being used. We
also have

Q ja(q) = −iqbQσ
eq
ba (q) (174)

with Q ja(q) the projected force density Fourier modes de-
fined in Eq. (58).

In the next section, we pursue our program by developing
a linear response theory of the microscopic stress.

B. Linear response theory

We consider the perturbation produced by a weak exter-
nal velocity field made by a single Fourier mode v(r, t ) ≡
1
V v(t )eiq·r. The evolution operator associated to the system is

now �γ + δ�, with

δ� ≡ − 1

V

∑
i

∇i · v(t )eiq·ri . (175)

As a consequence of the perturbation, the probability distri-
bution associated to the system becomes ρB(rN ) + δρ(rN , t ).
The equation of motion for the perturbation δρ(rN , t ) reads,
to linear order,

∂tδρ(rN , t ) = �γ δρ(rN , t ) + δ�(t )ρB(rN ). (176)

The solution to this equation is given by

δρ(rN , t ) =
∫ t

−∞
dτe�γ (t−τ )δ�(τ )ρB(rN )

= −β

V

∫ t

−∞
dτe�γ (t−τ )vb(τ )iqaσ

eq∗
ab (q)ρB(rN ).

(177)

The average of the stress tensor in linear response reads

〈Qσab(q, t )〉lr = −β

V

∫ t

−∞
dτ iqcvd (τ )

× 〈σ eq∗
cd (q)e�−γ (t−τ )Qσαβ (q)

〉
= −β

V

∫ t

−∞
dτ iqcvd (τ )

× 〈σ eq∗
cd (q)e�−γ (t−τ )Qσab(q)

〉
θ (t − τ ).

(178)

The average 〈. . .〉lr is an average over the dynamics described
by the operator �γ + δ�, neglecting terms of order higher
than linear in v(t ). We are interested in computing the vari-
ation of the stress with respect to the small perturbation.
To do this, it is more suitable to work in Fourier space, by
denoting the Fourier transform of a function f (t ) as f (ω) ≡∫ +∞
−∞ f (t )e−iωt . Within the linear response framework, we can

take the perturbation v to be a monochromatic plane wave, i.e.,
v(t ) = v(ω)e−iωt+0+t . The symbol 0+ has to be understood as
a small positive infinitesimal quantity used to ensure that the
perturbation goes to 0 at t = −∞. Substitution into Eq. (178)
yields

∂〈Qσab(q, ω)〉lr

∂iqcvd
= β

V

〈
σ

eq∗
cd (q)

1

−iω − �−γ

Qσab(q)

〉
.

(179)

This is the response of Qσab(q) to an external velocity gradi-
ent. To obtain the viscosity, we need to work out the response
of Qσab(q) to a change in the gradients of the particle current.
However, within linear response, we can work out a relation
between the particle currents and the applied velocity field,
thus making the calculation of the viscosity tensor possible.
This is done next.

C. The viscosity tensor

Following [52,53,63], we introduce the average particle
current J(q, t ), governing the evolution of the density mode
n(q):

〈∂t n(q, t )〉lr ≡ iρ0q · J(q, t ). (180)
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The left-hand side of Eq. (180) splits into

〈∂t n(q, t )〉lr = 〈n(q, t )δ�(t )〉 + 〈n(q, t )�γ 〉lr, (181)

which implies

Ja(q, t ) = va(q, t ) − D0β

ρ0
qb〈σab(q, t )〉lr. (182)

Thus, the particle current corresponds to sum of the imposed
solvent velocity v and of a term that originates from the
change in the stress tensor.

The viscosity tensor is defined as the response function
describing the change of the projected stress tensor due to the
gradient of the average particle current [63]:

ηabcd (q, ω) ≡ ∂〈Qσab(q, ω)〉lr

∂iqcJd (q, ω)
. (183)

Our aim is now to show that the viscosity tensor is related
to the following correlation function:

Cirr
abcd (q, ω) ≡ β

V

〈
σ

eq∗
ab (q)Q 1

−iω − �irr−γ

Qσcd (q)

〉
, (184)

which encodes the correlation between the equilibrium
stress tensor and the stress tensor in presence of transverse
forces, evolving with the irreducible operator �irr

−γ defined in
Eq. (62).

We first introduce an auxiliary correlation function CQ
abcd ,

CQ
abcd ≡ β

V

〈
σ

eq∗
ab (q)Q 1

−iω − Q�−γQ
Qσcd (q)

〉
, (185)

which is the analog of Cirr
abcd but evolves with the projected

evolution operator Q�−γQ. Using the operator identity

1

−iω − Q�−γ

= 1

−iω − �−γ

+ 1

−iω − �−γ

P�−γ

× 1

−iω − Q�−γ

, (186)

we obtain

∂〈Qσab(q)〉lr

∂iqcvd

=
[
δceδdg − D0β

S(q)
q f

∂〈n(q, t )〉lr

∂iqcvd
(δ f g + γ A f g)qe

]
CQ

egab.

(187)

On the other hand, the correlators CQ
abcd and Cirr

abcd are related
to each other. We can exploit the resolvent identity given
by Eq. (64) and the fact that the operator δ�−γ defined in
Eq. (63) can be expressed in terms of the stress tensor through
Eq. (174),

δ�−γ = D0β
2

N
qaqdQσ

eq
ab (q)〉[δbc − γ Abc]〈σ eq∗

dc (q)Q. (188)

This yields

Cirr
abcd = CQ

abcd − D0β
2

ρ0V
qeq f

〈
σ

eq∗
ab (q)

1

−iω − Q�−γQ

× Qσ
eq
e f (q)

〉
(δ f g − γ A f g)Cirr

f gcd

= CQ
abcd − D0β

ρ0
qeq f C

Q
abegC

irr
f gcd . (189)

This equation is analogous to the relation between the memory
kernels K and K̃ given by Eq. (66). Contracting both sides of
Eq. (189) with the quantity inside the brackets in Eq. (187)
and rearranging the terms gives

∂〈Qσab(q)〉lr

∂iqcvd
=
[
δceδdf + D0β

ρ0
qeqg

∂〈Qσgf (q)〉lr

∂iqcvd

− qeqg
D0

ρ0S(q)

∂〈n(q)〉lr

∂iqcvd
(δgf + γ Agf )

]
Cirr

e f ab.

(190)

On the other hand, from Eq. (182) we have

∂iqeJf

∂iqcvd
= δceδdf + D0β

ρ0
qeqg

∂〈Qσh f (q)〉lr

∂iqcvd

− qeqg
D0

ρ0S(q)

∂〈n(q)〉lr

∂iqcvd
δgf . (191)

Combining Eqs. (190) and (191), using the chain rule and the
definition of the viscosity tensor given by Eq. (183) we obtain

∂iqeJf

∂iqcvd
ηabe f (q, ω) =

[
∂iqeJf

∂iqcvd
− γ qeqg

D0

ρ0S(q)

∂〈n(q)〉lr

∂iqcvd
Agf

]
× Cirr

e f ab(q, ω). (192)

This equation relates the irreducible stress-stress correlator
with the viscosity. For γ = 0, we recover the relation derived
in [52],

ηabcd (q, ω) = β

V

〈
σ

eq∗
cd (q)

1

−iω − �irr
0

Qσ
eq
ab (q)

〉
. (193)

When γ �= 0, and additional term stemming from the influ-
ence of the transverse forces and proportional to the response
of the density field to external currents appears. Moreover,
the stress-stress correlator Cirr depends on γ through both
the definition of the stress σab and the dynamical evolution
operator �irr

−γ .
In the hydrodynamic limit, when q → 0 and ω → 0, the

second term on the right-hand side of Eq. (192) is subleading
compared to the first one, leading to

ηabcd (q → 0, ω → 0) = Cirr
cdab(q → 0, ω → 0). (194)

This equation relates the hydrodynamic viscosity with the
stress-stress irreducible correlator. In the next two sections,
we use this formula to compute, within the mode-coupling
approximation, the shear and odd viscosities.
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D. Shear viscosity

We start with the shear viscosity ηxyxy. Due to the rotational
invariance of the dynamics in the (xy) plane, we evaluate the
q → 0 limit with q = qex. From Eq. (194) we obtain

ηxyxy = lim
q→0

lim
ω→0

β

V

〈
σ eq∗

xy (q)Q 1

−iω − �irr−γ

Qσ eq
xy (q)

〉

− γ
β

V

〈
σ eq∗

xy (q)Q 1

−iω − �irr−γ

Qσ eq
xx (q)

〉
. (195)

We now replace Qσ
eq
ab (q) with iQ qa

q2 jb(q). In this way, the
stress-stress correlations is expressed in terms of the projected
force-force correlations, encoded by the memory kernel K
given by Eq. (65). We therefore get, using the A − q basis,

ηxyxy = lim
q→0

lim
ω→0

ρ0

D0β
[K22(qex,−iω) − γ K21(qex,−iω)].

(196)

Using the expression of K given by the mode-coupling
approximation, Eq. (74), and the fact that within this approx-
imation the off-diagonal terms in K are 0 in the A − q basis,
we have

ηxyxy = lim
q→0

lim
ω→0

ρ0

q2D0β
K22(qex,−iω)

= lim
q→0

ρ2
0

2q2β

∫ +∞

0
dt
∫

k
{ky[c(k) − c(|qex − k|)]}2

× S(k, t )S(qex − k, t )

= 1

2β

∫ +∞

0
dt
∫

k
[k̂xkyρ0c′(k)]2|S(k, t )|2. (197)

In this expression, the dependence on γ enters through the dy-
namical evolution of S(k, t ). For γ = 0, rotational symmetry
is restored, and we recover the equilibrium, mode-coupling
result [64]:

ηeq
xyxy = 1

60π2β

∫ +∞

0
dkk4

[
1

S(k)
S′(k)

]2

φ(k, t )2. (198)

Since the relaxation of S(k, t ) is faster in the presence of
transverse forces we have ηxyxy(γ ) � η

eq
xyxy. Also, the shear

viscosity diverges at the glass transition.

E. Odd viscosity

We now address the odd viscosity. We identify the follow-
ing contribution as the odd viscosity:

ηodd ≡ 1
2 (ηxyxx − ηxxxy). (199)

Physically, a nonzero ηodd means that attempts at compress-
ing the system along the x-direction generate shear flows
in the (xy) plane. In a nonreciprocal fashion, shear stresses
applied on the (xy) plane will generate an expansion of the
liquid along the x direction. In equilibrium dynamics we have
ηabcd = ηcdba and therefore ηodd = 0. We address now how
this situation changes when transverse forces are present.

Performing a computation similar to the one done in
Eq. (196) gives

ηodd = 1

2
lim
q→0

lim
ω→0

ρ0

q2D0β
{[K21(qex,−iω) + K12(qex,−iω)] − γ (K11[qex,−iω) + K22(qex,−iω)]}. (200)

Within the mode-coupling approximation, the first two terms on the right-hand side of Eq. (200) are 0. Taking the hydrodynamic
limit of the mode-coupling expression of Kii given by Eq. (74), we obtain

ηodd = −γ

2
lim
q→0

lim
ω→0

ρ0

q2D0β
[K11(qex,−iω) + K22(qex,−iω)]

= − γ

4β

∫ +∞

0
dt
∫

k
[[ρ0c(k) + kxk̂xρ0c′(k)]2 + [k̂xkyρ0c′(k)]2]S(k, t )2. (201)

As the glass transition is approached the odd viscosity di-
verges. Physically, this means that in the glassy state no
form of transport is possible, and the transverse, as well as
the longitudinal, dynamical pathways through which the liq-
uid relaxes, are blocked. This directly impacts all viscosity
coefficients.

VII. LIFTING: SAMPLING THE BOLTZMANN
DISTRIBUTION WITH ACTIVE PARTICLES

The term lifting is used in the Markov chain Monte Carlo
literature to denote a sampling technique used to extract con-
figurations from a given steady-state target distribution, see
[65] for a pedagogical review. In a lifting scheme, the number
of degrees of freedom of the system is extended, and transi-
tions involving the additional degrees of freedom are allowed.

By exploiting the extended nature of the phase space, one can
perform irreversible transitions, while preserving the target
distribution in the steady state. The nonequilibrium nature
of the dynamics can be exploited to obtain a convergence
towards the equilibrium steady state, which is faster than
conventional equilibrium methods, such as the Metropolis-
Hastings algorithm.

Lifted schemes have been employed in a variety of con-
texts: in the Ising model in mean-field [66,67] and in one
dimension [68], in hard spheres in one [69] and two dimen-
sions (where it is named the Event Chain Monte Carlo method
[70,71]), in lattice random walkers [72], and glassy hard disks
[73]. Based on these examples, it appears that the performance
is remarkable even when the system evolves in a not too
strongly convex potential. This is what occurs when the lifted
degrees of freedom are coupled with the order parameter close
to a second-order phase transition.
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Lifted dynamics can be described in terms of run and
tumble particles with a properly tuned tumbling rate. By ex-
ploiting this connection, we now present a model of lifted
dynamics inspired by active Brownian particles (ABPs).
While the mode-coupling theory of the non-lifted counterpart
of these active system has been explored recently [12–14],
here we focus on systems of active particles specifically de-
signed to sample the Boltzmann distribution, and we compare
this model with the overdamped equilibrium dynamics coun-
terpart. The results obtained will also make clear that the
performance of lifted schemes in supercooled liquids is simi-
lar to the one obtained through the transverse forces approach
studied in the first part of this article, thus strengthening the
connection between lifting and transverse forces.

A. Lifted active Brownian particles (ABPs)

The lifted-ABP dynamics of N particles in two dimensions
is given by

ṙi = v0ûi

θ̇i = v0βFi · Aûi +
√

2Drχi, (202)

where ûi = (cos θi, sin θi ) is a unit vector denoting the direc-
tion of the self-propulsion speed of particle i. The vector ûi

forms an angle θi with respect to the x axis. χi is a Gaussian
white noise, 〈χi(t )χ j (t ′)〉 = δi jδ(t − t ′). The self-propulsion
orientation is subjected to diffusion with a diffusion constant
Dr as for standard ABPs, but is in addition subjected to a drift
that depends on the interaction force Fi = −∑i ∇ j �=iV (ri −
r j ) between the particles in position space. The latter en-
forces the stationarity of the Boltzmann distribution in the
steady state because the matrix A ≡ [ 0 −1

1 0

]
ensures that the

drift is always perpendicular to ûi. The drift term makes the
ABP equations of motion non-conventional, hence the “lifted-
ABP” name for Eq. (202).

In the absence of interactions when Fi = 0, Eq. (202) de-

scribes freely diffusing ABPs, with diffusion constant v2
0

2Dr
.

When interactions are added, lifted-ABPs sample the equilib-
rium Boltzmann distribution of the interacting system at fixed

temperature T , and this can be done at various values of v2
0

2Dr
.

This is to be compared with the equilibrium dynamics where
temperature simultaneously fixes the Boltzmann distribution
and the free diffusion constant D0 = μ0T .

The evolution of the probability distribution ρ(rN , θN , t ) of
lifted-ABPs is governed by the operator �v0 :

�v0 ≡ −
∑

i

∇i · v0ûi +
∑

i

∂θi

[−v0βFi · Aûi + Dr∂θi

]
,

(203)

so that

∂tρ(rN , θN , t ) = �v0ρ(rN , θN , t ). (204)

The steady-state solution of Eq. (204) is a product of inde-
pendent distributions in the respective subspaces spanned by
rN and by uN :

ρss = 1

(2π )N
ρB(rN ) = 1

Z
e−β

∑
i< j V (ri−r j ) (205)

with Z ≡ (2π )N
∫

drN e−β
∑

i< j V (ri−r j ).

The operator �v0 has the following property, which is a
reflection of the breaking of detailed balance reminiscent of
Eq. (47) for transverse forces:

�v0 f (rN , ûN )〉 = (�†
−v0

f (rN , ûN ))〉. (206)

We are interested in the evolution of the density mode n(q):

n(q, t ) ≡
∑

i

e−iq·ri (t ) (207)

and of its correlation function, the dynamical structure factor
S(q, t ):

S(q, t ) ≡ 1

N
〈n∗(q)n(q, t )〉. (208)

The following identity holds when inserted into an average:

∂t n(q, t ) = �†
v0

n(q, t ), (209)

so that n(q, t ) = e�†
v0 n(q, t ). This together with Eq. (206)

allows us to write

S(q, t ) = 1

N
〈n∗(q)e�−v0 t n(q)〉. (210)

Another important quantity is the time derivative of the den-
sity mode at t = 0:

∂t n(q) = −iv0qû‖(q), (211)

which is the projection of the velocity ûi along the wave vector
q:

û‖(q) ≡
∑

i

(̂q · ûi )e
−iq·ri . (212)

We are also interested in the self-intermediate scattering func-
tion Fs(q, t ). Here we rewrite the definition (50) by putting the
time dependence entirely into ni(q, t ),

Fs(q, t ) ≡ 1

N

N∑
i=1

〈n∗
i (q)ni(q, t )〉. (213)

We have ∂t ni(q) = −iv0qu‖,i(q), with

û‖,i(q) ≡ q̂ · ûie
−iq·ri (214)

encoding the Fourier transform of the longitudinal self-
propulsion velocity with respect to the wave vector q. The
small-q expansion of the self-intermediate scattering function
yields the mean-squared displacement

�(t ) ≡
N∑

i=1

〈[ri(t ) − ri(0)]2〉. (215)

Using the isotropy of the dynamics given by Eq. (202) we can
also connect F and �:

Fs(q, t ) = 1 − q2

4
�(t ) + O(q3). (216)

An equation for � is obtained at the end of the section.
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1. Short-time dynamics

To gain insights on the dynamics we consider a short-time
expansion of S(q, t ):

S(q, t ) ≈ S(q) + t

N
〈n∗(q)�−v0 n(q)〉

+ t2

2N
〈n∗(q)�−v0�−v0 n(q)〉

= S(q) − iv0q〈n∗(q)û‖(q)〉

− t2

2
v2

0q2〈û∗
‖(q)û‖(q)〉. (217)

The second term on the right-hand side of Eq. (217) vanishes
due to rotational invariance. For the third term we have, using
Einstein notation for the components of the vectors q̂ and ûi,

〈û∗
‖(q)û‖(q)〉 =

〈∑
i, j

ûi,α û j,β q̂α q̂βe−iq·(ri−r j )
〉

=
∑
i, j

〈ûα,iûβ, j〉〈δi, jδαβ q̂α q̂βe−iq·(ri−r j )〉

= N

2
, (218)

and therefore we obtain

S(q, t ) = S(q) − v2
0q2

4
t2 + O(t3). (219)

This yields two results. First, we see that increasing v0 pro-
duces a faster decay of the dynamic structure factor at short
times. Moreover, in contrast with equilibrium overdamped
Brownian dynamics, the decrease is quadratic in time (in
line with the ballistic nature of the dynamics at short times),
instead of being linear. This suggests that we should study the
dynamics of S(q, t ) to second order in time, as done in the
next section.

2. Projection operator formalism

We want to find an evolution equation for S(q, t ). The
starting point is to write its second time derivative:

∂2
t S(q, t ) = 1

N

〈
n∗(q)�−v0 e�−v0 t�−v0 n(q)

〉
= − iv0q

N

〈
û∗

‖(q)�−v0 e�−v0 t n(q)
〉
. (220)

By taking the Laplace transform on both sides of Eq. (220) we
get

z2S(q, z) − z = − iv0q

N

〈̂
u∗

‖(q)�−v0

1

z − �−v0

n(q)

〉
. (221)

We now have to choose a projection operator P tailored to the
relevant degrees of freedom. We assume these relevant modes
to be the density field and its time derivative, which leads to
the following expression for P:

P ≡ 1

NS(q)
n(q)〉〈n∗(q) + 2

N
û‖(q)〉〈û∗

‖(q). (222)

With this choice and a resolvent identity akin to Eq. (54)
previously used for transverse forces

1

z − �−v0

= 1

1 − Q�−v0Q
+
(

1 + 1

z − Q�−v0Q
�−v0

)
× P 1

z − �−v0

P
(

1 + �−v0

1

z − Q�−v0Q

)
,

(223)

Eq. (221) becomes

z2S(q, z) − zS(q) = − iv0q

N

[
〈û∗

‖(q)�−v0 n(q)〉

× 1

NS(q)
〈n∗(q)R(z)n(q)〉

+ 〈û∗
‖(q)�−v0 û‖(q)〉 2

N
〈û∗

‖(q)R(z)n(q)〉
+ 〈û∗

‖(q)�−v0QRQ(z)Q�−v0 û‖(q)〉

× 2

N
〈û∗

‖(q)R(z)n(q)〉
]
. (224)

An explicit computation gives

〈û∗
‖(q)�−v0 n(q)〉 = −i

v0qN

2
,

〈û∗
‖(q)�−v0 û‖(q)〉 = −N

2
Dr,

− iv0q

N

〈
û∗

‖(q)
1

z − �−v0

n(q)

〉
= zS(q, z) − S(q). (225)

Putting everything together and taking an inverse Laplace
transform yields

∂2
t S(q, t ) = − v2

0q2

2S(q)
S(q, t ) − Dr∂t S(q, t )

−
∫ t

0
dτM(q, t − τ )∂τ S(q, τ ). (226)

This is an evolution equation for the dynamical structure fac-
tor for the lifted-ABP dynamics. It allows for underdamped
oscillations in the presence of a memory kernel given by

M(q, t ) ≡ − 2

N
〈û∗

‖(q)�−v0QeQ�−v0QtQ�−v0 û‖(q)〉. (227)

With a similar approach, one can derive an equation for
Fs(q, t ). In practice the step above must be repeated using the
single-particle projection operator

Pi ≡ ni(q)〉〈n∗
i (q) + 2u‖,i(q)〉〈û∗

‖,i(q), (228)

instead of P and employ particle equivalence. The result is

∂2
t Fs(q, t ) = −v2

0q2

2
Fs(q, t ) − Dr∂t Fs(q, t )

−
∫ t

0
dτMs(q, t − τ )∂τ Fs(q, τ ), (229)
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with the self-memory kernel defined as

Ms(q, t ) ≡ − 2

N

N∑
i=1

〈
û∗

‖,i(q)�−v0QeQ�−v0QtQ�−v0 û‖,i(q)
〉
.

(230)

All the steps performed so far are exact. To proceed, approxi-
mations are needed to compute M and Ms. In the next section,
we approximate the memory kernels using the mode-coupling
scheme.

3. Mode-coupling expansion

We expand the memory kernel as a product of density
mode correlations. The physical justification for this choice is
that the non-trivial part in the time evolution of û‖(q) comes
from the coupling with the fluid, which involves pairwise
forces between particles. We therefore write

Q�−v0 û‖(q)〉 = 1

2

∑
k

〈n∗(k)n∗(q − k)Q�−v0 û‖(q)〉
N2S(k)S(|q − k|)

× n(k)n(q − k)〉, (231)

with the factor 1
2 inserted to avoid double counting of the

density modes products. We now calculate the expecta-
tion value on the right-hand side of Eq. (231) by means
of the convolution approximation 〈n∗(k)n∗(q − k)n(q)〉 ≈
NS(q)S(k)S(|q − k|):

〈n∗(k)n∗(q − k)Q�−v0 û‖(q)〉
= 〈n∗(k)n∗(q − k)�−v0 û‖(q)〉

− 〈n∗(k)n∗(q − k)P�−v0 û‖(q)〉
= 〈[�†

−v0
(n∗(k)n∗(q − k))]û‖(q)〉

− 〈n∗(k)n∗(q − k)n(q)〉 1

NS(q)
〈n∗(q)�−v0 û‖(q)〉

= −iv0

〈∑
i, j,k

(ûi,α q̂α )[û j,βkβ + ûk,β (qβ − kβ )]

× eik·r j ei(q−k)·rk e−iq·ri

〉
+ i

Nv0q

2
S(k)S(|q − k|)

= i
Nv0

2
[qS(k)S(|q − k|)

− (̂q · k)S(|q − k|) − q̂ · (q − k)S(k)]

= i
Nv0ρ0

2
[(̂q · k)c(k) + q̂ · (q − k)c(|q − k|)], (232)

where the direct correlation function ρ0c(q) and the particle
density of the system ρ0 were defined below Eq. (153) and
above Eq. (12), respectively.

We can now give the expression for the mode-coupling
memory kernel. To this end, we resort to the approximation

eQ�−v0Qt ≈ e�−v0 t (233)

and use a Gaussian factorization for computing the two-body
density correlation. Moreover, due to the irreversibility of the
dynamics, we have

〈n∗(k)n∗(q−k)Q�−v0 û‖(q)〉 = 〈û‖(q)�−v0Qn(k)n(q − k)〉.
(234)

The memory kernel reads, in the mode-coupling
approximation,

M(q, t ) ≈ v2
0ρ0

4

∫
dk

(2π )2
[(̂q · k)c(k)+q̂ · (q−k)c(|q−k|)]2

× S(k, t )S(q − k, t ). (235)

A similar expression can be obtained for Ms, using as a start-
ing point the expansion

Q�−v0 û‖,i(q)〉 =
∑

k

〈n∗(k)n∗
i (q − k)Q�−v0 û‖,i(q)〉

NS(k)

× n(k)ni(q − k)〉. (236)

The final result reads

Ms(q, t ) ≈ v2
0ρ0

2

∫
dk

(2π )2
[̂q · kc(k)]2F (|q − k|, t )S(k, t ).

(237)

Note that the structure of the memory kernels M and Ms is
the same as the one obtained for equilibrium dynamics, their
magnitude being now determined by the magnitude of the
self-propulsion speed v0.

In the next sections we study the ergodicity-breaking tran-
sition and the behavior of the diffusion constant stemming
from these approximate expressions for the memory kernels.

4. Long-time dynamics: Acceleration and ergodicity breaking

To study the long-time dynamics we introduce the nor-
malized dynamical structure function φ(q, t ) ≡ S(q,t )

S(q) . Its
equation of motion reads

∂2
t φ(q, t ) = − v2

0q2

2S(q)
φ(q, t ) − Dr∂tφ(q, t )

−
∫ t

0
dτM(q, t − τ )∂τφ(q, τ ). (238)

We first study the ergodicity-breaking transition. We define
the long-time limits of the normalized structure factor and the
memory kernel

lim
t→+∞ φ(q, t ) = φ∞(q),

lim
t→+∞ M(q, t ) = M∞(q). (239)

In the long-time limit, Eq. (238) becomes a self-consistent
equation for the plateau value of the correlation function:

φ∞(q)

1 − φ∞(q)
= 2S(q)ρ0

q2

∫
dk

(2π )2

× [(̂q · k)c(k) + q̂ · (q − k)c(|q − k|)]2

× φ∞(k)φ∞(q − k). (240)

This equation is the same as the one obtained for overdamped
equilibrium dynamics [54]. It follows that ergodicity break-
ing is expected to occur at the same critical density as in
equilibrium.

To study the relaxation of the system in the ergodic regime,
we introduce a relaxation time

τ ≡
∫ +∞

0
dtφ(q, t ). (241)
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Integration of Eq. (238) in t from 0 to +∞ gives

τ = 2S(q)Dr

v2
0q2

+ 2S(q)ρ0

q2

∫ +∞

0
dt
∫

dk
(2π )2

[(̂q · k)c(k)

+ q̂ · (q − k)c(|q − k|)]2φ(k, t )φ(q − k, t ). (242)

This expression for τ is formally identical to the equilibrium
case with the bare diffusion coefficient D0 now being replaced

with v2
0

2Dr
= D0. While D0 is slaved to the temperature in equi-

librium, v2
0

2Dr
can be independently varied in the lifted-ABP

model, potentially leading to an accelerated dynamics.

5. Diffusion constant

We obtain an equation of motion for the mean-squared
displacement �(t ) by substituting Eq. (216) in Eq. (229) and
retaining only the leading term in the limit q → 0:

∂2
t �(t ) = 2v2

0 − Dr∂t�(t )−
∫ t

0
dτMs(q → 0, t − τ )∂τ�(τ ).

(243)

We now assume a diffusive behavior at large times: �(t ) ∼
4Dt . Substituting into Eq. (243) we obtain an expression for
the diffusion constant D:

D = v2
0

2Dr

1

1 + v2
0

2Dr
m∞

s

, (244)

where the memory kernel is given by

m∞
s = ρ0

∫ +∞

0
dt
∫

dk
(2π )2

[̂q · kc(k)]2Fs(k, t )S(k, t ).

(245)

The formal expression of m∞
s is the same as in equilibrium,

while the one for D is also formally similar, with the replace-

ment D0 by v2
0

2Dr
. In the ergodic phase when m∞

s is finite,
the diffusion constant D can be enhanced with respect to

equilibrium by increasing v2
0

2Dr
> D0, which plays the role of

the driving force. Differently from the transverse force case,
the acceleration survives the high-temperature limit, since

D = 2v2
0

Dr
in this limit. In the opposite limit of temperature

approaching the dynamic transition, ms,∞ diverges and thus D
exactly recovers its equilibrium expression and the lifted-ABP
dynamics is no longer felt. This suggests that lifted dynamics
acceleration plummets as the kinetic glass transition is ap-
proached. This is in line with recent numerical results [73].

VIII. CONCLUSION

The irreversible sampling of the Boltzmann distribution
can generically be faster than a conventional equilibrium
dynamics. Our goal in this work was to study theoretically
the acceleration and the microscopic relaxation dynamics ob-
tained in the case of dense liquids approaching the glass
transition when irreversible dynamics are used [37,38,73].
Unlike our precedent effort [39] where the problem was
analysed exactly in the mean-field limit of liquids in large di-
mensions, we developed here an approximate mode-coupling
approach to study the dynamics directly in finite dimension.
These two approaches are thus complementary [74].

To this end, we developed a mode-coupling approach
specifically tailored to address nonreciprocal transverse
forces, which can be seen as one of the simplest nonequi-
librium drive achieving acceleration. Technically, this has
required a careful treatment of transverse and longitudinal
modes. Physically, we concluded that the location of the
ergodicity-breaking transition predicted to occur in equilib-
rium without transverse forces is never affected by transverse
forces. However, the dynamics in the ergodic phase is sys-
tematically accelerated by transverse forces, with a nontrivial
temperature dependence. These results are fully consistent
with both the large dimensional results [39] and computer
simulations [38].

The emerging physical picture is that longitudinal diffusion
gets arrested for the same value of the control parameters as
in equilibrium dynamics, but the energy injected by the trans-
verse forces is dissipated in an ever-going odd motion, that
we picture as a swirling motion within an environment that
becomes increasingly confining as the temperature is lowered.
Approaching the kinetic glass transition, the odd diffusion
saturates to a constant value, the odd mobility vanishes, and
the odd viscosity diverges.

In a recent work [38] we further argued that transverse
forces share the same accelerating physical ingredient as their
lifted counterparts in which the nonequilibrium drive results
from coupling the dynamics to extra degrees of freedom.
Our explicit mode-coupling approach clearly supports this
intuition. For the lifted processes explicitly considered in our
final section, the physical conclusions echo those drawn from
considering transverse forces. We believe that this analogy is
a credible explanation of the observations of [73] showing
that event-chain Monte Carlo methods lose their edge over
conventional Metropolis Monte Carlo as the fluid enters more
deeply into its glassy regime.

Our work opens at least two immediate research direc-
tions. The first one has to do with the collective behavior
of dense assemblies of chiral active particles [75,76], for
which a mode-coupling analysis will surely closely follow
the footsteps developed in our work. The second one is
more subtle: it is concerned with the numerical integration of
the derived mode-coupling equations. This will surely be a
highly nontrivial task due to the loss of isotropy. The absence
of a fluctuation-dissipation theorem is additionally respon-
sible for increasing the number of coupled self-consistent
integro-differential equations to solve, which will add to the
complexity of the numerical solution.
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APPENDIX: IRREDUCIBLE MEMORY KERNEL

In this Appendix we justify the choice for the irreducible
memory kernel made in Eq. (62). We first review how
the irreducible memory kernel is introduced in the equi-
librium case, when γ = 0. Following Kawasaki [51], the
starting point is the observation that the evolution operator
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� ≡ D0
∑

i ∇i[βFi + ∇i] can be mapped to a Hermitian op-

erator H ≡ e
βH

2 �e
−βH

2 . It can be written in a manifestly
Hermitian form as

H = −
∑

i

U†
i · Ui, (A1)

with Ui ≡ √
D0[−∇i + β

2 Fi]. Going back to the non-
Hermitian representation we see that

� = −
∑

i

e
−βH

2 U†
i e

βH
2 · e

−βH
2 Uie

βH
2 ≡ −

∑
i

O×
i · Oi,

(A2)

with

O×
i = √

D0∇i,

Oi = √
D0[−∇i + βFi]. (A3)

At this point, one can insert any generic projection operator Pi

and its orthogonal counterpart Qi ≡ I − Pi. For consistency
with the notation of the main text, we also enclose � between
the orthogonal projector Q = I − P , defined from Eq. (53):

Q�Q = −Q
(∑

i

O×
i Pi · Oi −

∑
i

O×
i Qi · Oi

)
Q

≡ −δ� + �irr. (A4)

What remains to do is to properly choose the projection op-
erator P , in such a way that a renormalization of the memory
kernel occurs: M̃(q, z) = M(q,z)

1+cM(q,z) , with c some q-dependent

constant. Following Cichocki and Hess [53] we take

Pi ≡ · · · e−iq·ri〉〈eiq·ri · · · , (A5)

leading to the following expression for δ�:

δ� = D0β
2

N
· · ·Qf(q)〉 · 〈f∗(q)Q · · · . (A6)

Note that this is different from the choice of Kawasaki, which
is instead

PKawasaki
j = · · · O je

−iq·r j 〉 1

D0q2
〈eiq·r j O×

j · · · , (A7)

which leads to, using the fact that particles are equivalent,

δ�Kawasaki = · · · �n(q)〉 1

〈n∗(q)�n(q)〉 〈n
∗(q)� · · ·

= D0β
2

N
· · ·Q f‖(q)〉〈 f ∗

‖ (q)Q · · · . (A8)

We see that in equilibrium, the operator δ�Kawasaki contains
only contributions from the longitudinal currents.

We now turn to the general situation with γ �= 0. In this
case one can see that an analogous decomposition for �γ can
be made, with an extra term to take into account the presence
of transverse forces:

�−γ = −O× · (1 − γ A) · O. (A9)

Using the projection operator Pi defined in Eq. (A5) we obtain

�irr
−γ = QO×Qi · (1 − γ A) · O

= D0Q
∑

j

∇ jQ j · (1 − γ A)[−βF j + ∇ j]Q, (A10)

which is Eq. (62).
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