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Irreversible swap algorithms for soft sphere glasses
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We extend to soft repulsive interaction potentials a recently proposed irreversible swap algorithm originally
designed for polydisperse hard spheres. The original algorithm performs rejection-free, irreversible, collective
swap moves. We show that event-driven cluster updates of particle diameters can also be performed in continuous
potentials by introducing a factorized Metropolis probability. However, the Metropolis factorization needed to
deal with continuous potentials decreases the efficiency of the algorithm and mitigates the benefits of breaking
detailed balance. This leads us to propose another irreversible swap algorithm using the standard Metropolis
probability that accelerates the relaxation of soft sphere glasses at low temperatures compared to the original
swap algorithm. We apply these efficient swap algorithms to produce very stable inherent structures with
vibrational density of states lacking the quasilocalized excitations observed in conventional glasses.
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I. INTRODUCTION

Supercooled liquids experience a dramatic slowing down
of their dynamics upon a mild reduction in temperature or
increase in density. A fundamental understanding of this
phenomenon is the central goal of theories of the glass
transition [1]. The slow dynamics of glass-formers poses seri-
ous practical challenges for their numerical investigation [2].
When approaching the glass transition, numerical simulations
performed by integrating Newton’s equations of motion ex-
perience the glassy slowing down at low temperature, and
thermal equilibrium cannot be achieved within practically ac-
cessible timescales. Similarly to Newtonian dynamics, Monte
Carlo simulations implementing local translational moves re-
produce the characteristic dynamics of supercooled liquids
on long timescales and experience slow dynamics as well
[3]. However, Monte Carlo algorithms that sample a given
target distribution need not be restricted to local translations,
with irreducibility and aperiodicity being the only additional
constraints the Markov chain must abide by [4–6]. Thus, any
“unphysical” move, as far as it satisfies these two conditions
without affecting the target long-time distribution, can be in-
corporated into a Monte Carlo algorithm. Devising efficient
dynamical rules that reduce the dynamical slowing down
extends the range of temperature and densities that can be
accessed by numerical simulations, leading to a better under-
standing of the system properties. Beyond glasses, extended
ensemble and cluster algorithms [7–14] are successful exam-
ples of how efficient Monte Carlo algorithms can bypass slow
physical pathways and bring new insights into the thermody-
namics of many complex systems.

In the physics of glasses and supercooled liquids, clever
Monte Carlo algorithms have also been used to compute the

nontrivial static properties, including the Franz–Parisi poten-
tial and the point-to-set length [15–20]. The swap Monte
Carlo algorithm [21], simply referred to as “Swap” in the fol-
lowing, which allows for the exchange of particle diameters in
polydisperse mixtures, has been particularly impactful on the
numerical study of glasses in the last decade. When applied
to size polydisperse systems [22–25], this relatively simple
algorithm can accelerate the equilibration of certain models
by several orders of magnitude, allowing the simulations to
explore equilibrium states even below the experimental glass
transition temperature. Starting from stable configurations ob-
tained with the Swap algorithm, simulations employing the
physical dynamics have revealed important correlations be-
tween the dynamic and static structures of ultrastable glasses
[26,27]. The Swap algorithm was numerically applied to other
systems, such as crystals with complex structures and lat-
tice models [19,28–31]. However, the Swap itself eventually
becomes slow at very low temperatures [32], and the quest
for even more efficient Monte Carlo algorithms needs to be
continued.

The Swap algorithm samples the Boltzmann distribution
through reversible moves, i.e., that obey detailed balance:
it randomly selects two particles and attempts an exchange
of their diameters with the standard Metropolis probability.
A line of research dating back to the 90s [33–37] points
instead to the fact that giving up on the reversibility of a
Markov chain while preserving its stationary distribution
can be rewarded with faster convergence. A most prominent
family of algorithms exploiting this idea is the so-called lifted
Markov chains [38,39]. In a nutshell, an additional degree of
freedom, the lifting variable, is introduced which drives the
system away from equilibrium and breaks detailed balance.
The dynamics is nevertheless carefully designed to sample the
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FIG. 1. Schematic description of various swap algorithms. Each panel shows a configuration (top) and the one-dimensional array, s, listing
particle labels in order of increasing diameters. (a) In Swap, two particles are randomly selected along s and a reversible exchange of their
diameters is performed using a Metropolis acceptance rule. (b) In cSwap, a directed chain of swaps is built starting from an active particle (in
bright red). Consecutive particles in s are successively swapped, resulting in a collective move. The activity label (red arrow) is updated either
to the left (backward cSwap) or to the right (forward cSwap). (c) In kSwap, the consecutive swaps have a fixed size k � 1 (here k = 2) and
the activity label is updated according to the forward prescription. Typically, kSwap clusters contain less particles but span a larger interval in
diameter space.

Boltzmann distribution in its steady state, upon marginalizing
over the lifting degrees of freedom. This approach was
successfully applied in a variety of physical settings [40–44].
Despite recent progress in the mathematical understanding of
lifted Markov chains [45–47], the design of an appropriate
scheme for a given physical system remains a nontrivial task.
It has recently been shown [48,49] how the lifting approach
can be employed to improve the efficiency of Swap for hard
particles in two and three dimensions. The introduction of
lifting degrees of freedom allows us to perform driven, collec-
tive updates of the particle diameters. The resulting collective
Swap (named “cSwap”) algorithm for hard sphere glasses
achieves a significant speedup compared to Swap in the dense
glassy regime. However, cSwap is tailored for the hard sphere
potential and cannot be applied for continuous potentials.

Here we extend the algorithm to soft repulsive potentials
and study its efficiency. We design and compare algorithms
that perform driven particle swaps in models of soft repulsive
spheres in two and three dimensions. The algorithms studied
in this paper are illustrated in Fig. 1. In addition to the standard
Swap in Fig. 1(a), we first discuss a variant of the cSwap
algorithm for hard spheres, which differs from the original
version in Ref. [48] in the manner the lifting degrees of
freedom are updated. We then generalize these two cSwap al-
gorithms for soft sphere continuous potentials, which exploit
the factorized Metropolis probability [43] to perform directed
collective moves; see Fig. 1(b). Our simulations show that,
contrary to hard spheres, the cSwap algorithms become less
efficient than the reversible Swap algorithm for polydisperse
soft sphere models. We prove that the probability factorization
is the cause of this somewhat disappointing result. This leads
us to design another irreversible swap algorithm, which we

name “kSwap”. This algorithm employs the full Metropolis
probability and performs consecutive directed swap of a fixed
jump size k; see Fig. 1(c). We find that kSwap is more efficient
than Swap and cSwap for these continuous potentials. As an
application, we use these algorithms to produce inherent glass
states with original physical properties.

The paper is organized as follows. We present the Swap
and cSwap algorithms and their extensions to continuous
potentials in Sec. II. The models used to benchmark these
algorithms are introduced in Sec. III. The efficiency of these
algorithms is studied in Sec. IV. The kSwap algorithm is
introduced and studied in Sec. V. Inherent glassy states are
produced and analyzed in Sec. VI, while Sec. VII concludes
the paper.

II. COLLECTIVE SWAP ALGORITHMS

A. Revisiting the hard sphere system

The collective swap (cSwap) algorithm [48,49] performs
driven cluster updates in the space of particle diameters. This
is done by extending the configuration space of the system
through an extra degree of freedom. The system then evolves
through a driven Markovian dynamics in the extended phase
space. The dynamical rules are designed in such a way that
the nonequilibrium stationary state is the Boltzmann distri-
bution. This general construction can be rewarded with a
faster convergence toward the target stationary distribution
than equilibrium dynamics, and is known in the literature as a
lifted Markov chain [34,35,40,43–45,50].

In the collective swap algorithm, the particle labels are
sorted in a one-dimensional array by increasing diameter.
An activity label, v, is initialized at random among the N
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possible particle labels. This activity label v constitutes the
additional lifting degree of freedom. The active particle serves
to initiate the collective swap move. An exchange of diameters
between particle v and particle i immediately to its right in s
is proposed, where s is the one-dimensional array that lists
particle labels in order of increasing diameters. This exchange
is accepted with a probability given by the Metropolis rule.
For hard spheres, the move is accepted with probability 1 if
the exchange of diameters generates no overlaps and rejected
otherwise. If the move is accepted, the diameters of v and i are
exchanged and the array is updated. Another attempt at updat-
ing the diameter of v with the nearest right neighbor is again
performed, following the same procedure. The accumulation
of a number nc of accepted moves of this type is equivalent to
an overall permutation where particle v is maximally inflated,
while all other particles involved in the move are simultane-
ously deflated and replace their left neighbor in the array s.

The inflation of the active particle v stops when an ex-
change in the chain produces an overlap. When this happens,
the lifting degree of freedom v is updated instead of simply
rejecting the exchange, thus terminating a single collective
Swap move. In the original version of the algorithm [48,49],
the particle immediately to the left of the cluster becomes
active for the next step, see Fig. 1(b), thus moving backward
along the diameter array. We refer to this choice as the back-
ward collective Swap. It is also possible to choose the particle
immediately to the right of the updated cluster; see Fig. 1(b).
In this case, the activity label moves in the same forward
direction as the inflating particle along the sorted array. We
christen this algorithm the forward collective Swap.

In a simulation, sets of cSwap moves alternate with sets of
translational Metropolis Monte Carlo moves. A set of NcSwap

cSwap moves is performed with probability pcSwap, and a
sweep made by N translational moves is performed otherwise.
Here NcSwap is a number comparable with the number of
particles in the system, NcSwap ∼ N . Finally, we observe that
in both forward and backward versions of cSwap, the activ-
ity label v is updated deterministically. One way to warrant
ergodicity is to intersperse this deterministic evolution with a
resetting process: After a cluster update, the activity label v is
resampled uniformly along the array s with a small probability
pr. The precise value of pr does not impact the efficiency of
the algorithm, as long as pr ∼ N−1. Here we take pr = 1

NcSwap
.

The computational cost of the cluster update can be no-
ticeably reduced by resorting to an event-driven approach.
Instead of attempting the pairwise swaps of the active par-
ticle v one by one, the largest particle i∗ with which v can
be exchanged without generating overlaps is easily identified
through a search operation, e.g., binary search [51], along s.
The identification of particle i∗ defines the entire cluster to
be updated in the collective Swap move, namely, particles
between v and i∗. The cluster move is then performed by
updating the diameter of v to the one of i∗, and by updating the
diameter of all the other particles in the cluster, i∗ included,
to the diameter of the particle on their left along the sorted
array. The resulting cascade of deflation can be safely per-
formed, as the shrinking of a hard sphere never generates
overlaps with its surrounding neighbors. This event-driven
approach makes the computational cost of a collective update
comparable with the one of a single equilibrium swap move

in Swap, thus allowing cSwap to maintain an edge over equi-
librium Swap in practical implementations.

B. Generalization to continuous potentials

The cSwap algorithm described above needs reconsider-
ation when continuous potentials are used, as finite energy
differences now need to be handled correctly. We consider
here systems of polydisperse soft spheres, whose diameters
are stored in the array s introduced in Sec. II A. Given an
assignment of diameters through the array s, the total energy
E (s) of the system is defined as E (s) ≡ ∑

i< j V (ri j |s), where
V (ri j |s) is a pairwise interaction potential depending on the
distance ri j between particles i and j and on their diameters.
In soft spheres, Monte Carlo moves which produce particle
overlaps involving finite positive increments in energy have a
finite probability to occur. Given an assignment of the particle
diameters, the probability to accept an exchange of the diame-
ters of two particles i and j in a system at inverse temperature
β is given by the Metropolis probability

PMet = min[1, e−β�E (i, j|s)] = e−β max[0,�E (i, j|s)], (1)

where �E (i, j|s) is the change of energy of the system via the
proposed swap move. It is defined as

�E (i, j|s) ≡ E (s′) − E (s)

=
∑
k �=i

V (rik|s′) − V (rik|s)

+
∑
l �= j

V (r jl |s′) − V (r jl|s), (2)

where s′ is the array obtained from s after exchanging the
diameters of particles i and j. Cluster moves can of course
be constructed out of this Metropolis acceptance probability,
but the evaluation of Eq. (1) would become numerically very
expensive when the size of the cluster becomes large as �E
would now involve a large number of energy evaluations. As
observed in Ref. [44], this problem can be alleviated by re-
placing the acceptance probability in Eq. (1) with a factorized
Metropolis probability PfMet, defined as

PfMet(i, j|s) = e−β max[0,�Ei j (s)] × e−β max[0,�Eji (s)], (3)

where

�Ei j (s) =
∑
k �=i

V (rik|s′) − V (rik|s) (4)

is the energy difference of particle i, and of particle i only,
before and after the exchange of its diameter with particle j
on the sorted array s. The total energy change in the swap
move is thus �E (i, j|s) = �Ei j (s) + �Eji(s). The key ob-
servation is that PfMet also obeys detailed balance and can be
used to sample the Boltzmann distribution. For repulsive soft
interactions, which we use below, the shrinking particle has a
negative energy change while the inflating one has a positive
change. If the diameter of particle i inflates, the factorized
Metropolis probability in Eq. (3) reduces to

PfMet(i, j|s) = e−β�Ei j (s). (5)

Clearly, the factorized Metropolis probability is smaller than
the Metropolis probability as it includes only positive contri-
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bution to the energy change. On the other hand, it alleviates
the computational load to propose collective moves, as we
discuss below.

Using the factorized Metropolis probability, we propose a
generalization to soft repulsive potential of the forward cSwap
algorithm that is amenable to an event-driven formulation.
As in the hard sphere case, the activity label is initialized
at random along the sorted array s. Particle v attempts to
exchange its diameter with the particle on its right along s.
We denote this particle by v1. The exchange is accepted ac-
cording to the factorized Metropolis probability PfMet(v, v1|s).
If accepted, the diameters and the array s are updated, after
which v attempts a new exchange. This procedure is iterated
until the first rejection. The activity label is then updated
according to the forward cSwap rule. As for hard spheres, a
uniform resampling of the activity label is implemented to
ensure aperiodicity. This procedure defines the forward cSwap
algorithm for a soft repulsive potential.

The steady state of the forward cSwap algorithm is given
by the Boltzmann distribution, since the algorithm verifies the
stationarity, or global balance, condition:

πss(s|v) =
∑
s′,v′

φ((s′, v′) → (s, v)). (6)

Here πss(s|v) is the stationary probability distribution for an
instance of ordered diameters s and of the lifted label v,
defined as

πss(s|v) = 1

N
πB(s), (7)

with πB(s) ∝ e−βE (s) the Boltzmann distribution. The quantity
φ((s′, v′) → (s, v)) is the steady state probability flux from a
configuration (s′, v′) to the configuration (s, v), which is equal
to the stationary distribution of (s′, v′), πss(s′, v′), multiplied
by the transition probability from configuration (s′, v′) to con-
figuration (s, v). We now verify that Eq. (6) is satisfied when
we compute the probability fluxes on the right hand side using
the forward cSwap rules. We have∑

s′,v′
φ((s′, v′) → (s, v)) = πss(s

∗|v)e−β�Ev,v1 (s∗ )

+ πss(s|v−1)(1 − e−β�Ev−1 ,v (s) ).
(8)

We used the fact that only two configurations contribute to
the total probability flow toward the configuration (s, v): the
configuration (s∗, v), defined as the configuration that flows
into (s, v) upon a successful exchange of particle v with its
right neighbor along s, and the configuration (s, v−1), which
flows into (s, v) after a rejection of the exchange of the particle
diameters v−1 with v. Here, and in what follows, vn denotes
the particle n steps away from v along the ordered array s (if n
is positive vn lies to the right of v, if n is negative vn lies to the
left of v). By plugging into Eq. (8) the definition of the steady
state probability πss, given by Eq. (7), and using the equality

πB(s∗)e−β�Ev,v1 (s∗ ) = πB(s)e−β�Ev−1 ,v (s), (9)

we confirm that the stationarity condition Eq. (6) is satisfied.
Equation (9) can be verified using the definitions of s∗, v−1

and v1 in relation to s and v.

The use of the factorized Metropolis filter allows us to to
easily calculate the probability to accept n successive swaps
along the array s as

vn∏
i=v

PfMet(i, i1|s) = e−β�Ev,vn (s). (10)

The simplification of the Boltzmann factors in this product is
the main rationale behind the introduction of the factorized
Metropolis filter. As for hard particles, we can find i∗ = vn

efficiently in an event-driven way. To this end, we draw a
uniform random number ϒ ∈ (0, 1) and find i∗ such that

e−β�Ev,i∗1 (s)
< ϒ < e−β�Ev,i∗ (s). (11)

Finding i∗ can be efficiently done with computational com-
plexity O(log N ) through algorithms such as binary search. A
cluster move of all the particles between v and i∗ on the array
s can then be performed.

An event-driven backward cSwap algorithm for soft po-
tentials is constructed analogously, by changing the update
rule for the lifting degree of freedom. A proof of stationarity
for the event-driven backward cSwap is obtained as follows.
Given a configuration (s|v), we denote by m the integer such
that vm is the rightmost label along the ordered array s. In the
backward cSwap algorithm, there are m probability flows into
state (s|v). The right hand side of the stationarity condition,
Eq. (6), becomes

πss(s|v) +
m−1∑
n=1

[φin(n) − φout(n − 1)], (12)

where

φout(n) = πss(sn|vn)e−β�Ev1 ,vn+2 (sn ), (13)

φin(n) = πss(sn|vn)e−β�Ev1 ,vn+1 (sn ), (14)

and sn is the configuration that flows into s after performing
an event-driven backward Swap move from the active parti-
cle v1. Since swapping vn+2 and v1 on array sn+1 yields sn,
�Evn+2,v1 (sn+1) = −�Ev1,vn+2 (sn), providing

E (sn) + �Ev1,vn+2 (sn) = E (sn+1) + �Ev1,vn+2 (sn+1). (15)

We thus have φin(n) − φout(n − 1) = 0 for any n, and the total
probability flow is π (s|v1) = π (s|v), which completes the
proof.

Note that the backward algorithm balances the probability
flows of multiple cluster moves, not of single exchanges.
Thus, interrupting a cluster update violates the balance con-
dition, whereas it does not cause any problem in the forward
algorithm, as the latter satisfies the balance condition through
every single diameter exchange during the construction of the
cluster.

III. GLASS-FORMING MODELS
USED FOR BENCHMARKING

To test these cSwap algorithms, we explore their efficiency
in the context of two models of glass-formers. We use polydis-
perse soft spheres in two [52] and three dimensions [23] with
number density φ = 1, interacting through the following po-
tential (we omit the explicit dependence of V on the diameter
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array s):

V (ri j )/v0 =
(

di j

ri j

)12

+ c0 + c2

(
ri j

di j

)2

+ c4

(
ri j

di j

)4

(16)

if ri j < rcutoff
i j , with rcutoff

i j = 1.25di j and v0 > 0 an energy
scale, and V (ri j ) = 0 otherwise. Here, ri j = |ri − r j | with ri

the position of particle i. The particle diameter is nonaddi-
tive, di j = di+d j

2 (1 − ε|di − d j |) with ε = 0.2, which prevents
crystallization and demixing. We use the following power-law
distribution for the diameters:

P(d ) =
{

Ad−3 : dmin < d < dmax

0 : otherwise,
(17)

where dmin/dmax = 0.45. The constant factor A is a normal-
ization constant. This distribution leads to an overall polydis-

persity δ = (d2 − d
2
)1/2/d = 0.23. The units of length and

temperature are d and v0.
The particle positions are updated with the standard

Metropolis translational dynamics, where we first displace a
particle by a random vector δ ∈ (−δmax, δmax)d , with d the
spatial dimension, and then accept it with the Metropolis
probability. We set δmax = 0.175d and δmax = 0.1d for the
two- and three-dimensional models, respectively. For the swap
algorithms, we perform a set of diameter swaps with probabil-
ity pswap = 0.2 and otherwise perform a set of N translational
moves. The value of pswap is approximately optimized to
minimize the relaxation time at low temperatures. When us-
ing the event-driven schemes for the collective algorithms,
NcSwap = 512 clusters are updated per unit time, while for
the swap algorithms using the full Metropolis probability,
one unit time consists of N swap attempts. We verified that
this choice of time units faithfully mirrors, up to an overall
rescaling, the CPU time required by each algorithm to run.
The system size is N = 1024 throughout the paper, unless
explicitly mentioned otherwise.

For the two-dimensional model, we measure the time cor-
relation of the local orientational order [53] at time t ,

C6(t ) =
〈∑

j ψ j (0)ψ∗
j (t )

〉
〈∑

j |ψ j |2
〉 , (18)

ψ j (t ) = 1

|∂ j(t )|
∑

k∈∂ j(t )

e−6iθ jk (t ), (19)

where θ jk (t ) is the angle of rk (t ) − r j (t ) with respect to the
x axis, and 〈·〉 represents an average over initial equilibrium
configurations. The set of neighboring particles ∂ j(t ) for
particle j is found using the Voronoi tessellation for each
configuration at time t . On the other hand, the relaxation of the
three-dimensional model is studied using the overlap function

Q(t ) =
〈

1

N

∑
i

w(|ri(0) − ri(t )|)
〉
, (20)

where w(r) is 0 when r > 0.2d and 1 otherwise.
In all cases, we define the relaxation time τα as the time

where the time correlation functions decrease to the value e−1.
While this is a measurement of a specific correlation time, its
temperature dependence faithfully reflects the evolution of the
equilibration timescale that characterizes either the approach

FIG. 2. Time correlations of the two-dimensional (a) and three-
dimensional (b) models at T = 0.08 comparing Metropolis transla-
tions, with Swap, forward, and backward cSwap algorithms. In both
cases, Swap remains marginally faster than cSwap algorithms.

to stationarity or the ergodic exploration of the configuration
space at thermal equilibrium.

IV. EQUILIBRATION TIMES OF COLLECTIVE
SWAP ALGORITHMS

We test the two cSwap algorithms on the models at T =
0.08, much lower than the onset temperatures To ≈ 0.3 in two
dimensions and To ≈ 0.2 in three dimensions, below which
the heterogeneous glassy dynamics sets in [54,55]. The data
in Fig. 2 show the time correlations for the simple Metropolis,
Swap, and both cSwap algorithms. At this temperature, the
Metropolis translational dynamics is completely frozen and
the corresponding time correlation shows a plateau cover-
ing the longest simulated timescale, showing that relaxation
is impossible within our simulation window using simple
Monte Carlo simulations. On the other hand, all three swap
algorithms can decorrelate the particle positions or relative
orientations, and all time correlations decay to a small value
after t ≈ 105. Strikingly, however, the two cSwap algorithms
are both slightly slower than the simple Swap despite the large
number of clusters updated per unit time. This result is in
stark contrast with the hard sphere situation [48,49], where
cSwap is roughly 10 times faster than Swap in both spatial
dimensions.

The main difference between the two families of algo-
rithms is the use of the factorized Metropolis probability for
the continuous potentials to satisfy the stationarity condition.
We may therefore expect the loss of efficiency of cSwap
for soft spheres to be caused by the factorization. For hard
spheres, both expressions for the Metropolis probabilities be-
come identical, whereas for soft spheres we generally have
PfMet < PMet.

We test this hypothesis in Fig. 3, which compares full and
factorized swap acceptance probabilities. It can be seen that
the factorization significantly reduces the acceptance of swap
moves at low temperatures. The full Metropolis probability
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FIG. 3. Swap probability P(d1, d2) between particles with di-
ameters d1 and d2 at equilibrium in the three-dimensional model
at T = 0.08, using (a) the full Metropolis expression in Eq. (1)
and (b) the factorized Metropolis probability, Eq. (3), respectively.
Off-diagonal elements corresponding to large diameter exchanges
are strongly suppressed by the factorized probability in (b).

can be close to 1 even when the two diameters are dissimilar,
as the negative and positive energy changes can cancel each
other. By contrast, the factorized probability only uses the
positive energy change of the inflating particle and rapidly
decreases with the diameter difference.

Since the cSwap algorithms gradually increase the diam-
eters of particles by successive moves between neighboring
particles in the s array, the factorized probability results in
clusters with a relatively small number of particles (≈20 at the
lowest temperature), leading to slow decorrelation in diameter
space. In fact, the factorized Metropolis probability also slows
down the event-chain algorithm for translations for continu-
ous potentials compared with hard particles [40,43]. We have
explicitly checked the influence of the factorized probability
in our algorithm by comparing the equilibrium Swap against
a version of forward cSwap that uses the full Metropolis
probability, with the same number of cluster updates per unit
time as in the factorized case. This unfactorized algorithm is
faster than Swap, thus demonstrating that the factorized prob-
ability is indeed responsible for the efficiency loss. However,
a forward cSwap with a large number of cluster updates using
the full Metropolis acceptance probability is not practically
useful, because of the large overhead needed to estimate PMet.

V. ANOTHER IRREVERSIBLE SWAP ALGORITHM
WITH LARGE JUMPS

The generalization of cSwap to continuous potentials in-
volves a factorization of the Metropolis acceptance rule.
When applied to large clusters, the factorization decreases the
acceptance so much that the algorithm becomes inefficient.
Yet the efficiency of cSwap over Swap relies on the rapid
inflation of the active particle to the maximum value allowed
by the Boltzmann distribution. Large changes of the particle
are indeed the source of the speedup offered by swap moves
[23].

These arguments and the search for an efficient algorithm
suggest introducing collective and directed swap moves that
use the Metropolis probability and allow for large moves
in diameter space. To this end, we generalize the forward
cSwap so it now incorporates larger jumps of size k along

FIG. 4. Relaxation time τα as a function of inverse temperature
for (a) the two- and (b) three-dimensional systems. The backward
and forward cSwap algorithms are slower than Swap, whereas kSwap
with kmax = 100 is faster.

the s array; see Fig. 1(c). We christen this algorithm “kSwap”.
kSwap is a modification of cSwap, where an active particle
v is swapped with another particle vk , k � 1, further away
along the one-dimensional array s with the full Metropolis
probability (recall that cSwap swaps adjacent particles v and
v1 with the factorized Metropolis probability). The jump size
k is sampled from a uniform distribution between 1 and kmax

every time we start the swap update, while it is kept fixed until
the update stops. The parameter kmax thus controls the typical
jump size. We incorporate these large jumps into the forward
algorithm. Since it uses the full Metropolis probability, the
unit time of kSwap consists of N swap attempts. Its computa-
tional complexity is thus equivalent to that of Swap.

Large jumps in diameter space typically yield a smaller
acceptance probability, and kSwap is not as collective as the
cSwap algorithms, with the typical cluster size 〈nc〉 ≈ 3 when
kmax = 100, while 〈nc〉 ≈ 20 for the cSwap algorithms. Nev-
ertheless, kSwap is faster than cSwap and even faster than the
original Swap. In Fig. 4, we show the relaxation time τα of
the two models as a function of inverse temperature 1/T , for
all algorithms. All algorithms incorporating swap moves are
much faster than the original Metropolis Monte Carlo. For
soft spheres, kSwap is faster than Swap, which is itself slightly
faster than both forward and backward cSwap. The speedup of
kSwap with respect to Swap weakly depends on temperature
and increases towards low temperatures.

The relaxation time of kSwap depends on kmax. For kmax =
1, the algorithm reduces to a forward cSwap with the full
Metropolis probability and is slower than Swap. We find,
for N = 1024 and kmax ∈ [50, 150], that kSwap is faster than
Swap, that the value kmax = 100 is roughly optimal and that
it yields the shortest relaxation time at low temperatures.
For continuously polydisperse models, the typical interval
between two neighboring diameters in the array decays as
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N−1, thus we expect kmax to linearly scale with N for opti-
mal performance. We have checked kmax = 50 indeed yields
almost the same relaxation time for kSwap when N = 512,
supporting the above scaling of kmax with N .

VI. USING SWAP ALGORITHMS TO PRODUCE
NONCONVENTIONAL STABLE GLASSES

Algorithms such as gradient descent and FIRE (for fast
inertial relaxation engine) [56] starting from an equilibrium
configuration at temperature T produce an energy minimum,
also called an inherent structure (IS). Inherent structures and
the related concept of a potential energy landscape are fre-
quently used to discuss the properties of supercooled liquids
and glasses [57–67]. Two quantities are of particular interest.
First, the value of the energy density in the inherent state
reached from a given T reveals the stability of the correspond-
ing amorphous structures. Typically, an IS has a lower energy
when it is reached from a lower T , indicating more stable
glassy structures lying deeper in the potential energy land-
scape. The second quantity is the vibrational density of states
(DOS), which describes the range of eigenfrequencies char-
acterizing eigenmodes of the vibrational matrix at the energy
minimum. Roughly speaking, an abundance of low-frequency
modes would correspond to an energy minimum with many
soft vibrational modes. Remarkably, the vibrational density
of states D(ω) of inherent glassy states displays a power law
scaling at small frequencies, D(ω) ∼ ω4 [68–71], in addition
to the Debye law. The stability of the glass is usually encoded
into the prefactor of this power law, which decreases sharply
with increasing stability [71]. The ω4 scaling of the DOS is
thus a universal property of amorphous solids, which suggests
an abundance of low-frequency soft modes resulting from the
disordered structure of the IS.

We generate inherent structures from equilibrium config-
urations at temperature Tinit using zero-temperature Monte
Carlo algorithms, in which only updates lowering the total en-
ergy are accepted. For the Metropolis translational dynamics,
we reduce the jump size to δmax = 0.0005d . We refer to this
as the Metropolis quench. We also use hybrid Monte Carlo
quenches using both translational and swap moves, using ei-
ther Swap or kSwap. Note that cSwap algorithms do not work
for quenches, as the factorized probability is always zero for
collective swaps at zero temperature. The number of Monte
Carlo sweeps per particle in our simulations ranges from 106

to 2 × 106. The number of negative eigenvalues of the Hessian
matrix for a generated configuration after the quench is typi-
cally zero, indicating that the Monte Carlo approach indeed
produces energy minima.

In Fig. 5, we show the IS energy density eIS/N as a
function of initial temperature Tinit for the Metropolis, Swap,
and kmax = 100 kSwap algorithms. The Metropolis quench
reproduces the behavior observed previously in glass-formers,
with a very weak dependence of the IS energy at high Tinit,
and a sharper dependence below a crossover temperature,
corresponding to the onset temperature [54]. Below the onset,
IS energies depend more sensitively on the initial temperature,
lower Tinit ending deeper in the potential energy landscape.
The crossover corresponds roughly to the onset of slow dy-

FIG. 5. Inherent structure energy eIS/N as a function of initial
temperature Tinit for (a) the two- and (b) three-dimensional systems,
respectively. The dashed line in each panel represents eIS/N at the
lowest Tinit for the Metropolis quench.

namics, near Tinit ≈ 0.3 in two dimensions and Tinit ≈ 0.2 in
three dimensions [26].

A clear observation in Fig. 5 is that quenching from the
same configuration using a zero-temperature algorithm that
performs both translational and swap moves yields much
lower energies than Metropolis quenches. The performance of
the two swap algorithms are nearly equivalent. The tempera-
ture dependence of the IS energies is less pronounced than for
conventional quenches, especially at high temperatures. and it
is essentially the same for the two swap algorithm. There is no
obvious qualitative difference between two and three dimen-
sions. In both cases, we observe that instantaneous quenches
starting from very high temperatures yield inherent states that
are extremely deep in the potential energy landscape, and in
fact much deeper than what could be obtained without swap
algorithms.

These findings for continuous potentials confirm the re-
sults obtained for fast compressions of hard particles with
the swap Monte Carlo algorithm [22,48,49] and rationalize
the efficiency of approaches where gradient descent involving
not just translational degrees of freedom are used to produce
stable glassy structures as developed in Refs. [72–75]. Qual-
itatively, using swap moves during annealing seems much
more efficient than very slowly cooling the system without
swap moves. We note in Fig. 5(a) a qualitative difference
between hard and soft potentials. For two-dimensional hard
disks, fast compressions with swap moves seemingly all ter-
minate at the same density, independently of the initial state
[48]. This observation led Bolton-Lum et al. to conclude
that this end-point represents an ideal disk packing [75]. For
continuous potentials, we do not find evidence for such an
ideal amorphous structure (or ground state) that would be
systematically found in the potential energy landscape.
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FIG. 6. Vibrational density of states of inherent structures for
(a) two and (b) three dimensions. Temperatures are chosen so IS
energies are the same in the two algorithms, see dashed lines in
Fig. 5. The swap moves deplete the soft modes at low frequencies.

Using swap moves to prepare inherent structures not only
produces much lower energies but also affects the physi-
cal properties of the energy minima that are found. This is
revealed by the vibrational DOS. In Fig. 6, we show the
DOS for two- and three-dimensional glasses and compare
in each case inherent structures that have the exact same
energy (dashed lines in Fig. 5) but are produced either with
or without swap moves. Clearly, the DOSs are very different
for the two quench protocols, showing that the IS energy
does not uniquely characterize amorphous structures. For the
two-dimensional system, Fig. 6(a), the Metropolis quench
has several isolated modes extending toward low frequencies
with an envelope compatible with the ω4 power law reported
before. These few low-frequency modes are nearly removed
by the swap quenches. This effect becomes more obvious
in three dimensions, Fig. 6(b), where the smooth tail found
for Metropolis quenches is replaced by a gapped distribution.

(a) (b)

FIG. 7. (a) Quasilocalized low-frequency vibrational mode with
ω ≈ 0.32 of an IS obtained by the Metropolis quench from Tinit =
0.04 and (b) extended, plane-wave-like vibrational mode with ω ≈
0.55 of an IS by the hybrid quench from Tinit = 0.4. The arrows are
amplified by a factor of 40, for clarity.

The observation of gapped vibrational spectra was also re-
ported using augmented gradient descent techniques [73,74].
In agreement with these studies, we find that the conventional
Metropolis quench produces soft modes which are quasilo-
calized [an example is shown in Fig. 7(a)] and coexist with
delocalized modes. By contrast, the gapped DOS observed
in swap quenches mostly removes quasilocalized modes and
lead to vibrational modes that have a plane-wave-like struc-
ture, see Fig. 7(b). Overall, these results show that swap moves
during the approach to the energy minimum remove some soft
vibrational modes and change the nature of the energy minima
that are reached.

VII. CONCLUSION

This paper extends to soft continuous potentials our re-
cent efforts [48,49] to develop irreversible versions of the
swap Monte Carlo algorithm to speed up even further the
equilibration of glass-forming models. The broader rationale
is the belief that any algorithm developed for hard spheres
should have an efficient counterpart for continuous potentials,
as illustrated before by the event-chain and geometric cluster
algorithms, and even the event-driven molecular dynamics
[6,11,40,43,76–80].

Here we successfully generalized the irreversible cSwap
algorithms developed for hard spheres to soft potentials, fol-
lowing the path used for event-chain translational moves.
However, the performance of the resulting algorithms applied
to soft sphere models are not as good as expected. We have
identified the factorization of the Metropolis probability as the
root cause of the degradation of the algorithmic performance,
which led us to devise an irreversible swap algorithm that uses
the full Metropolis probability and borrows from both cSwap
and Swap. This algorithm accelerates equilibrium relaxation
at low temperature compared to Swap and cSwap, despite
the fact that it is less collective than cSwap. We believe it
is useful in practice, as it requires a single additional in-
gredient, namely, a sorted array of particle indices with the
same computational complexity, thus achieving a modest but
finite speedup. Our results provide instructive insights into
the nature of collective moves needed in Monte Carlo al-
gorithms for dense glassy systems and the edge that can be
achieved by tuning the range of the irreversible moves. Future
research directions should aim at improving further Monte
Carlo algorithms, for instance, by exploiting, among others,
reinforcement learning [81] and normalizing flows strategies
[82].
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