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Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios
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We compute analytically and numerically the four-point correlation function that characterizes nontrivial
cooperative dynamics in glassy systems within several models of glasses: elastoplastic deformations, mode-
coupling theory(MCT), collectively rearranging region€RR’s), diffusing defects, and kinetically constrained
models(KCM's). Some features of the four-point susceptibiljgy(t) are expected to be universal: at short
times we expect a power-law increase in timethdue to ballistic motion(t? if the dynamics is Brownian
followed by an elastic regimémost relevant deep in the glass phaskaracterized by & or t growth,
depending on whether phonons are propagative or diffusive. We find in botA &mel earlya regime that
xa~t*, where u is directly related to the mechanism responsible for relaxation. This regime ends when a
maximum of y, is reached at a time=t" of the order of the relaxation time of the system. This maximum is
followed by a fast decay to zero at large times. The height of the maximum also follows a powgs(taw
~t"*. The value of the exponents and \ allows one to distinguish between different mechanisms. For
example, freely diffusing defects id=3 lead tou=2 and\=1, whereas the CRR scenario rather predicts
either u=1 or a logarithmic behavior depending on the nature of the nucleation events and a logarithmic
behavior of y,(t"). MCT leads tou=b and A=1/vy, whereb and y are the standard MCT exponents. We
compare our theoretical results with numerical simulations on a Lennard-Jones and a soft-sphere system.
Within the limited time scales accessible to numerical simulations, we find that the exporgerdther small,
©n<1, with a value in reasonable agreement with the MCT predictions, but not with the prediction of simple
diffusive defect models, KCM’s with noncooperative defects, and CRR’s. Experimental and numerical deter-
mination of y4(t) for longer time scales and lower temperatures would yield highly valuable information on the
glass formation mechanism.
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I. INTRODUCTION probability that a similar event has occurred a distance
The idea that the sharp slowing down of supercooled lig&W& within the same time intervalsee, e.g[31]). There-
uids is related to the growth of a cooperative length scaléOre G4(F,1) s a candidate to measure the heterogeneity and
dates back at least to Adam and Gitjtig But it is only a cooperativity of the dynamics. The best theoretical justifica-

few years back that this idea has started being substantiatc%) ?a:r? (ratgu?grm?h éh'; aqslga?rtgzszﬁ otr? irseaall||$§ag;/atatht5voo_rt;joedry
by convmé:lng elxper_lment$2.—6], ndumenczal 23|mulat|0r;s object—namely, the density-density correlation function
[7-14}, and simple microscopic mode]35-25,27. One of ¢ (yy=(,(0,0)p(0,t))—which decays to zero in the liquid
the basic problems has been to find an observable that allows - <o"211d to a constant value in the frozen phase. The four-
one fo define an_d measure objeqnvely such a cooperativigyins correlationG,(r,t) therefore plays the same role as the
length scale. An interesting quantity, proposed a few year

inth P o i al tandard two-point correlation function for a one-body order
ago in the context of mean-fiefitspin glassef28] (seel29]  parameter in usual phase transitions. Correspondingly, the
for an important early insightand measured in simulations, aqqociated susceptibility,(t) is defined as the volume inte-
is a four-point density correlator, defined as

gral of G4(f,t) and is equal to the variance of the correlation

G,4(F,1) =(p(0,0)p(0,t) p(F, 0) p(F, 1)) function [28,32,33. The susceptibilityy,(t) has been com-
~ ~ puted numerically for different model glass formers and in-
= (p(0,0p(0,t)Xp(r,0)p(F,1)), (D) deed exhibits a maximum fa=t” ~ 7. the relaxation time

wherep(F,t) represents the density fluctuations at position Of the systen{11-14. The peak valuey,(t’) is seen to in-

and timet. In practice one has to introduce an overlap func-crease as the temperature decreases, indicating that the range
tion w [28] to avoid a singularity due to the evaluation of the Of G4(',t') increases as the system becomes more sluggish.
density at the same point or consider slightly different corre-The dynamical correlation lengtk,(t') extracted from

lation functions[30]. This quantity measures the correlation G4(f',t") in molecular dynamics simulations grows and be-

in space of local-time correlation functions. Intuitively, if at comes of the order of roughly 10 interparticle distances when
point 0 an event has occurred that leads to a decorrelation dlfie time scale is of the order of 1énicroscopic time scales

the local density over the time scaleG,(r,t) measures the 7, with 75~ 0.1 ps for an atomic liquid. In experiments close
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to the glass transition the dynamical correlation length hashe motion of particles is triggered by “mobility defects” that
been found to be only slightly larger, between 10 and 2diffuse and possibly interact within the system. As the tem-
interparticle distancel®,4]. This is puzzling because experi- perature is lowered or the density is increased, the concen-
ments are done on systems with relaxation times that argation of defects goes down and the relaxation time of the
several orders of magnitude larger than in simulations. Insystem increases. The dynamics is obviously heterogeneous
fact, extrapolating simulation results in the experimental resince it is catalyzed by defects that cannot be everywhere
gime would lead to much larger dynamical correlationsimultaneously. The characteristic length scale in this case is
lengths. The origin of this puzzle is still unclear; see Ref.related to the average distance between defects to some
[18] for a recent discussion. Experiments on dynamical hetygdel- and dimension-dependent exporjdst 18,20,23,2p
erogeneity bridging the gap between numerical and macrorpe deas behind these models are somehow similar to the
scopic time scales would be extremely valuable to resolvgy,s of free-volume theories and can be traced back to the

this paradox. . irst explanation of slow dynamics in terms of defects motion
Several scenarios have been proposed to understand t ]. Kinetically constrained models have the important

existence of nontrivial dynamical correlations and their rela-=_ " . . . .
y merit of showing how from simple local microscopic rules a

tion to thermodynamical singularities. Adam and Gilph§ relaxation governed by the diffusiofor subdiffusion of

Kirkpatrick et al.[34] (for a different formulation, see Ref. - .
[35]), and Kivelson and Tarju$36] have proposed, using nontrivial defe_cts may anse. .
somewhat different arguments, the idea of collectively rear- Understanding the mechanism behind the growth of the
ranging region$CRR’9), of size¢, that increase as the tem- dynamical correlat|lon length is certainly an important step—
perature is decreased. The evolution of the system is sucyguably the mostimportant one—to understand the cause of
that these regions are either frozen or allowed to temporarilj® slowing down of the dynamics. Furthermore, the differ-
and collectively unjam for a short time until a new jammed &Nt Scenarios for the glass transition can be tested, contrast-
configuration is found. ing thelr quzintltatlve predlctl_on for the four-point correlat|o_n
In apparent contradiction with the existence of the grow-TunctionGy(r',t) to the numerical, and hopefully soon experi-
ing length scale, the mode-coupling the¢WCT) of glasses mgntal, results. Follqwmg these premises we |nve§t|gate in
states that the self-consistent freezing of particles in theifhis paper the analytical shape Gf(rt) for several simple
cages is a purely local process with no diverging length scal@odels. We show thaB,(r',t) indeed contains some impor-
at the transitior{37]. However, this point of view is in dis- tant information concerning the basic relaxation mecha-
agreement with the results found for mean-field disorderediisms. However, we show that, perhaps disappointingly,
systemg 28,29 that are conjectured to provide a mean-fieldmodels where cooperativity is absent or trivial lead to four-
description of the glass transition and display an MCT-likepoint correlation functions and dynamical susceptibilitigs
dynamical transition. Indeed it was recently shown thatthat exhibit nontrivial features. Other, more complex observ-
within MCT G,(f,1) in fact develops long-range correlations ables will have to be defined to really grasp the nature of the
close to the critical MCT temperatur€, [32]. Within a  collective motions involved in the relaxation process of
phase-space interpretation of the MCT transition, the mechaglasseg8,40].
nism for this cooperative behavior fdr>T, is the progres- Let us summarize the main results of our study in terms of
sive rarefaction of energy lowering directiof8]. Within a  the susceptibilityx,(t) and time sectors. In a supercooled
real-space interpretation, the MCT transition is due to thdiquid there are separate regimes of time scales correspond-
formation of a large number of metastable states, each origg to different physical behaviofsee Fig. 1 On micro-
characterized by a surface tension that increases from zero $gopic time scales particles move ballistically if the dynam-
T.. As one approachek. from above, the relevant eigenvec- ics is Newtonian or diffusively if the dynamics is Brownian.
tors of the dynamical Hessian become more and more eXon a longer time scale, interactions start playing a role,
tended, which means that the modes of motion that allow th#hich can be described approximately using elasticity
system to decorrelate are made of very-well-defined, collectheory, before a truly collective phenomenon sets in. This
tive rearrangements of larger and larger clusters of particlegontrivial glassy regime is thg regime, within which cor-
(see the recent work of Montanari and Semer{iag)). For  relation functions, such as, for example, the dynamical struc-
smaller temperatureB< T, “activated events” are expected ture factor, develop a plateau. The regime is divided
to play a crucial role. They are believed to be responsible fofurther in an early- and a latg-regime corresponding, re-
the destruction of the freezing transition Bt This regime  Spectively, to the approach and departure from the plateau of
has been tentatively described by adding “hopping terms” irthe correlation function. Finally the structural relaxation time
the MCT equation$37] or within a CRR scenari§34,35. scale on which correlation functions decay to zero is ¢he
Note that the random first-order theory [@4] unifies MCT  regime. All previous studies have focused on the behavior of
with CRR’s predicting a first temperature regintelose to  xa(t) at times of the order of, which correspond to the peak
Tucy Where MCT applies and then a crossover towardof x,(t). We show thaty,(t) has in fact a rich structure in
CRR's (the mosaic stajethat describe the physical behavior time and different behavior in different time sectors. In many
close to the Kauzman temperature. of these regimesy,(t) behaves as a power law of tinié
Exploiting yet a different set of ideas, models of dynami-with different values ofw. During the ballistic time scale one
cal facilitation, such as the Frederickson-Ander$&fl] or  finds u=4 (u=2 for Brownian dynamids whereas during
Kob-Andersen modelg24], have recently been proposed asthe elastic regimémost relevant deep in the glass phasee
paradigms for glassy dynami¢5,20,23. In these models, exponent becomes=1 for ballistic phonons angt=1/2 for
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some of the physics of the problem. Instead models of dif-
fusing, defects do not describe well the numerical results.
This is perhaps not very surprising since we are focusing on
two fragile liquids(at least in the numerical time windgwat
temperatures well above the experimental glass transition. It
might be that the predictions of these models work only on
larger time scales. In any case, we expect instead that for
strong liquids displaying an Arrhenius behavior the predic-
tions for y,(t) obtained studying the model of simple diffus-
ing defects might hold quantitatively, since it seems quite
well established from numerical simulations that relaxation
in strong liquids is triggered by the diffusion of connectivity
defects[41,42. Finally, the CRR picture does not agree
quantitatively with our present numerical data. However, this
picture is supposed to describe the liquid dynamics precisely
in the low-temperature and long-time regime, which is pres-
FIG. 1. Sketch of the time behavior gf(t), with all the differ-  €Ntly beyond numerical capabilities. Again, experimental re-
ent time regimes, within the MCT description that we find to be aSUltS probing the behavior gf,(t) in this regime would be
good description around,. As the temperature is lowered, we ex- highly valuable to put strong constraints on the different the-

pect the elastic regime to extend up4g oretical scenarios of glass formation.
The organization of the paper is as follows. In Sec. Il we

diffusive phonons. The behavior in th®2 and « regimes is  discuss the behavior of,(t) on microscopic time scales.

intimately related to the physical mechanism for relaxationThen, we analyze the predictions of elasticity theory in Sec.

and indeed we find quite different answers depending omil. In Secs. IV and V we focus on the behavior gf(t) in

which scenario we focus on. MCT predicts exponentsa  the 8 and a regimes for MCT and CRR’s. In Sec. VI we

and u=b on time scales corresponding, respectively, to thejiscuss the predictions of defect models analytically using an

early- and latg8 regimes, wherea and b are the standard independent defect approximation and by numerical simula-

MCT exponents obtained from the study of the dynamicakions of kinetically constrained models. In Sec. VIl we com-

structure factor. The power la extends until the peak in pare the different predictions to the results of numerical

Xa(1) is reached. simulations of models of glass-forming liquids. We present
The other scenarios only make predictions in thee-  our conclusions in Sec. VIII.

gime. In the case of CRR’s one hgs~t or y,~ (In t)4*1¥

before the peak depending whether one assumes that the re-

laxation occurs via bulk nucleation events or domain wall II. MICROSCOPIC DYNAMICS

fluctuations; see below. For diffusing defects in dimension ) )
d=3, the exponent ig.=2. If defects have a nontrivial dif-  On very short time scales the behavioryafcan be com-

fusion exponentz, such that their displacement at time Puted exactly. For simplicity, we characterize the dynamics

scales as'’? thenu=2d/z for d<zandu=2 otherwise. The through the self-intermediate scattering function

overall behavior ofy,(t) is summarized by Fig. 1, which 1 )

specializes to the MCT predictions for simplicity. Fo(k,t) = NE (cosk-[Fi(t) = F;(0)]) (2
Another important feature of, is the growth of the peak i

compared to the growth of the tinte:t ~ 7, at which Efge and define the dynamic susceptibility as the variance of the
peak takes placd®1]. This is found to scale ag,(t’) ~t™*, fluctuations ofF(k,t):
s\K, U

with A=0 (logarithm) for CRR’s, A=1 for freely diffusing
defects,\=d/z for anomalously diffusing defects fat<z, 1 I R 2
ihat if the x4<t>:N[<(NZ Cosk-[rxt)—ri(on) >
|

log X4

p=a

=12 /

Early beta regime
Late beta regime
Alpha regime

Ballistic
Plateau

logt

and A=1 again ford>z Note that if the defect diffusion

coefficient itself scales with as 147, such as, for example, ,

in the one-spin facilitated FA model, there is an extra contri- 1 I R

bution that gives\=1—-f for d>z. Finally, one has.=1/yin B <NE cosk-- [ri(t) - ri(O)]> 1 : )

the context of MCT, wherey describes the power-law diver- '

gence of the relaxation time as the critical MCT temperaturelhe full intermediate four-point scattering function defined

is approached. in Eq. (1) in fact contains very similar information, even for
We have checked these predictions in two model systemisiteracting systems—as shown by numerical simulations

of glass-forming liquids: a Lennard-Jones and a soft-sphergl2,13.

mixture. Concerning the behavior gf(t) in the lateg and On a very short time scale particles move ballistically if

- regimes, the most interesting time sectors, we have founthe dynamics is Newtoniar(t) = f;(0) =v;t+O(t?), whereg;

reasonable agreement with the MCT predictions for fours the velocity of the particlé at timet. Since the system is

point correlators. This agreement is by no means trivial andn equilibrium all thev;'s are independent Gaussian variables

is actually quite unexpected unless MCT indeed capturewith variance(v;-v;)=8;3kgT/m, whereT is the tempera-
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ture, m the mass of the particles, akd the Boltzmann con- We consider an isotropic solid immersed in a viscous ther-
stant. Using this property it is straightforward to obtain mal bath. The energy of the system is given by
KeT 1
Fs(k,t) = eX[.'(_ R)thz) (4) H= f ddr_Kl E Ui 2 + KZE Uizj, (7)
2m 275 o
and where «;,k, are the Lamé coefficienty;;=3[d¢;/dx

+d¢;/dx] is the deformation tensor, anlethe displacement

field from an undeformed reference state. Note tﬁ(a() is
. . . L . simply the continuum limit of the displacement of each par-
For an interacting particle systems this is only valid on shortjee yith respect to its equilibriuntbottom of the well po-
time scales—for example, smaller than the collision time forg;iq
short-ranged interactions. This leads to an initial power-law 5 is well known. the above energy leads to three inde-

increase that reads pendent phonon modéene longitudinal and two transverse

xa(t) = Fs(k,t)z{cosl'(— 2?%?) - 1} . (5)

1 keT )2 modes. For simplicity, we only consider one deformation
xa(t) = 5('22)2(?> t*+0(t°). (6)  mode and write the Hamiltonian in Fourier space as
d
Note trlat'if one had chosen Langevin dynamits., ar; H= }Kf d_kdkzd’k(b—k’ (8)
=g:H+7,) instead of Newtonian dynamics, EdS) and (6) 2 J (2m)

would have been identical except for the replacement o
kgTt?/m by 2Tt, again for small times. Thus changing from
Newtonian to Langevin dynamics, the initial power-law in-
crease ofy,(t) changes front* to t2. This is similar to the

{vhere « is an effective elasticity modulus. The mokéas
an energyE, = kk?¢p_ /2 and therefore we expect, in equi-
librium, (¢yp_»=T/kk? where the Boltzmann constant has

been set to unity. Our goal is to calculate the dynamical

change in thg mean-square di;placement thaF increasés 8%orrelation functions of the system. We describe the dynam-
andt, respectively, for Newtonian and Langevin dynamics. ics by a Langevin equation with a local noise:

In the above example, however, it is clear that the increase
of x, with time has nothing to do with the increase of a PP(Ft)  ap(T,t) . .
correlation length, since particles are assumed to be indepen- m—2 Va4 - KAG(F, 1) + (F,1), (9)
dent. In other words, the four-point correlati@a(r,t) has a
trivial 5-function spatial dependence, but the height of she Where{(x,t) is a Gaussian noise uncorrelated in space and
peak increases with time. As will be discussed later in thdime, of variance equal to:. Taking the Fourier transform
paper, it is important to normalizg,(t) by the value of P o
G,(r=0,t) to conclude from the four-point susceptibility that mTZK + VR" = — kP + 4(1), (10
a length scale is indeed growing in the system.

£ (1) is again a Gaussian noise uncorrelated for diffeként
and time.
lll. ELASTIC CONTRIBUTION In this section, we only consider in details the over-
gamped casen=0 and seD=«/v, but also give at the end

starts playing a role. Generically one expects that in the tim(I:he result for the purely propagative case0 (see also Ap-

regime where the displacements of particles remain small, ap€"dix A. One easily deduces the non-equal-time correla-

elastic description should be valid. In a solid or in a glasst'on in the overdamped case:

For longer time scales the interaction between particle

deep belowT, there is no further relaxation channels and the T )

elastic contribution tgy, should be the only relevant one. In (1) p-(0)) = ?e_Dk . (11

a supercooled liquid around the mode-coupling temperature K

T., the elastic regime is interrupted by the collect@ere- Let us now define the function

gime, where in some sense phonon-phonon interactions com-

pletely change the physical picture. Although we expect such FO(r,t) = E a(r —ri(0))codalri() -r; (0]}, (12

a crossover, we have at present no detailed theoretical de- :

scription of it. whose average equals the self-intermediate scattering func-

In the following we analyze again the behavior of thetion up to a constantthe particle density
four-point self-intermediate scattering function assuming that Using the microscopic definition crf> we obtain that

the dynamical behavior of the liquid can be described, within
a restricted time sector, as an elastic netw@rk will discuss  C(q,t) = (FO(r,t)) = (el D-¢(0ly = g @B - 67,0 /2,
later how to include, in a phenomenological way, viscous

. i e (13
flow). Perhaps surprisingly, we find a nontrivial structure for
G, in this model, with an ever growing “cooperative” length where the last equality comes from the Gaussian nature of
scale which comes from the dynamics of phonons, whichthe deformation field. Using the above results on the corre-
represents the simplest form of cooperativity. lation of the Fourier modes, we find
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As is well known, this integral behaves differently fdr

1-e DKt gdg

([(F,0) = $(F,0]%) = 2 2m (14)

<2 and ford> 2, reflecting the fact that phonons destroy"mit TPA <k (
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GY(F,1) =f§[cosr( Tq )— 1].

27TKr
Suppose for simplicity that we are in a regime where the
argument of the cosh is always small, corresponding to the
remember that by definition>a=2#/A,

(18

translational order in low dimensions. As above, we will Onlywherea is the interatomic distangeThen, G,(F,t) ~r2 for

consider here the physical cade 3, relegating the discus-
sion of the other cases to Appendix A. Fibr 3, we need to
introduce an ultraviolet cutoff on the wave vectok, which

is the inverse of the underlying lattice spaciagThen, the
above integral goes to a constanA at large times, reflect-
ing the fact that particles are localized in their “cage.” There
fore, the self-intermediate scattering functiGfq,t) decays
at small timesA?Dt<1 before saturating to a “plateau”
value given by

wherec is a numerical constantNote thatTAg?/« has no

2

TA
fa=CQt— =)= exp(— c d (15)
K

A"l<r<gt). For larger scalesr>&(t) decays as a
Gaussian—i.e., superexponentially fast. Note that the small-
r behavior of G4(r,t) is not of the Ornstein-Zernike form
(1/r in d=3). IntegratingG, over i we find the dynamical
_susceptibility

2 42
K0 ~ T, (19
This result is_actually valid both for in the diffusive limit
where &t)=\Dt and in the propagative regime whegé)
=Vt. Thereforexiq)(t) increases either ad or ast (note that
in the limit of small times one recovers ttié or t* laws
obtained in the previous sectiprin the general case, one

dimension and is expected, from a Lindemann criterion, t®Xpects a crossover between a propagative regime at small

be of the order of 0.05 at half the melting temperature an

dimest<m/v=D/V? (of the order of ps in glass formers; see

for g=A.) In real glass-forming liquids, this plateau phase[43]) and a diffusive regime for longer time scales. Thus,

does not persist forever, ar@(q,t) finally decays to zero
beyondt=7,, in the so-calledx-relaxation regime. A modi-

looking atXflq)(t) as a function of time in a log-log plot one
should see first a straight line corresponding to the ballistic

fication of the model to account for this decorrelation will be or diffusive motion leading, respectively, to slope=4 or

discussed later. Furthermore, the above pseBidegime pre-
dicted by elastic theory does not explain quantitatively ghe

©=2, bending over toward a smaller slofdeor 1/2, or both,
depending on the strength of the dissipatiofhe order of

regime in supercooled fragile liquids, except probably onmagnitude ofo)(t), as given by Eq(19), can be estimated
relatively short time scales—say, up to a few picosecondso be ~(1073-10?)a?&(t) for g=A. In the propagative re-

On the other hand, at temperatures beldyvor for strong

gime witht=1 ps,V=3x 10° m/s, anda=0.3 nm, one finds

glasses, we expect that the elastic regime will extend upto  ¢=10a and XZQ)~(1CTZ—101)a3—i.e., a small, but perhaps
and compete with other mechanisms, such as the defecietectable signal from the phonons. Only on much larger

mediated correlation discussed in Sec. VI below.
The calculation of GP(F,t)=(FO(r" HFO(r +r,1),

time scales will the elastic contribution be significant, a re-
gime that can be reached deep in the glass phégk As

is detailed in Appendix A. One immediately sees thatmentioned above, other collective modes come into play in

Gf)(_r”,t) is governed by a diffusive correlation lengé(t)
~ Dt with D=«/v, as expected from the structure of the

supercooled fragile liquids, in particular around the mode-
coupling temperature, and give rise to tBeregime where

Langevin equation that describes relaxational dynamics:cages” themselves become more complex, extended objects

Clearly, in the case of propagative phonons, one figds
~Vt with V2=k/m. The final result, see Appendix A, is

GP(F,t) = C¥(q,t){cosH20?R(F,t)] - 1}, (16)
where
R(F.1) = I(Dt)l"”zF(%) (17)
K \Dt

and we find(see Appendix AF(z)= (472! for z<1 and
F(2) = (2732t exp(-Z%/4) 1 Z? for z>1. Note the similarity
between the expression in E(L6) and the corresponding

one (5) derived in the previous section. One can check that

indeed the short-time behavior is indeed the one derived b

[32].

The above calculation shows that in an elastic solid with
diffusive or propagative phonon modes, the dynamical sus-
ceptibility increases without bound, reflecting the presence
of Goldstone soft modes in the system. Of course, in a real
glass the correlation functio€@(t) eventually decays to
zero beyond ther-relaxation timer,, as particles start dif-
fusing out of their cages, far away from their initial position.
If phonons were the only relevant excitations, this would
cause the dynamical susceptibility to peak arotmt! =7,

A phenomenological model that describes the decay of
Xf)(t) within the above elastic framework is to assume a
(Maxwell) viscoelastic local modulus:

IP(F,t)
pants

e_

t ]
K“ dt’e‘”t‘t')A% +{(11), (20

fore in the case of Langevin dynamics for the particles, as
expected. Let us now focus on long times, but still within thewith y~ 7-;1, corresponding to a frequency-dependent elastic

elastic regimeA2Dt>1, and forr < &(t),

modulusx(w) =ikw/(im+y). In this model, the dynamics of
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¢ becomes diffusive at times ™ and the dynamic struc- entirely clear. There should be, on the one hand, activated
ture factor therefore decays exponentially beyond that timefluctuations of domain walls between different states, again
Of course, the model itself becomes inconsistent at largeinned by self-generated disorder. However, the fluctuations
times, since the underlying lattice needed to define the defoleading to a change of state may be the nucleation of a com-
mation field ¢ has by then totally melted. pletely different state starting from the bulk. The latter pro-
The conclusion of this section, however, is that since sueess can be modeled as a nearly instantaneous event with a
percooled liquids behave at high frequendies> y,7.%) like  certain(smal) nucleation rate. In the following we shall ana-
solids, the four-point correlation and dynamical susceptibillyze separately these two types of fluctuations and their con-
ity are expected to reveal, in a certain time domain, a nonsequences on the shapexaft).
trivial behavior unrelated to the structure of the “collective
processes” discussed beldMCT, diffusive defects, CRR)s A Instantaneous events
that one usually envisions to explain glassy dynamics. '
Suppose that the dynamics is made of nearly instanta-
neous events that decorrelate the system in a compact “blob”
of radius &. The probability per unit time and volume for
As mentioned in the Introduction the mode-couplingSuch an event to appear around sits I'. We compute the
theory of supercooled liquids predicts the growth of a coopfour-body correlation of the persistenag(t), defined to be
erative length as the temperature is decreased or the densgyual to one if no event happened-atetween times 0 and
increased 28,29,32 and makes detailed predictions on theand equal to zero otherwise. The four-body correlation is
shape ofy,(t). The four-point correlation function becomes then defined as
critical near the mode-coupling transition temperatii I 2
The behavior of the susceptibility,(t) is encoded in Iadgeer G410 = (nr (OIno(1)) = (e (D))" (23)
diagrams[29,32. From the analytical and numerical results Clearly, the averaged correlation functid®(t)=(n,(t)) is
of [32] and analyzing the ladder diagraif82,45, we have  simply given byC(t)=exp(-QT &) where() is the volume
found that, in thes regime, of the unit sphere. FaB,(F,t) to be nonzero, an event must

IV. MODE-COUPLING THEORY

Xa(t) ~ fl(t€1/2a)/\/; t~ 15 (21) have happeneij simultaneouslyraand at 0, leading to
and in thea regime, Gy(F,1) = CH){exd I't&f(r/&)] - 1}, (24)
Yalt) ~ Fo(te/2H Dyt o 22 where f(x) is the volume of the intersection between two
4 2 ’ al

spheres of unit radius with centers at distanceapart.

wheree=T-T,, a, b, and y=1/2a+1/2b are the MCT ex- Clearly, f(x>2)=0. Therefore G,(r,t) is nonzero only ifr
ponents for the dynamical structure factor, ah@x) and <2¢&, and is in fact roughly constant there. For a given
fo(x) are two scaling functions. Requiring that the depen-satisfying this boundG, first grows linearly with time,
dence one drop out whente’?<1 one finds thatf;(x) reaches a maximum fdlzt*zl"‘lggd and decays exponen-
~x2 when x<1. This leads to a power-law behavigy  tially beyond that time. The same behavior is foundgft),
~t?in the earlys regime—i.e., when the intermediate scat- which grows initially ast* with =1 and reaches a maxi-
tering functions approaches a plateau. In the same waynum such tha}m(t*)ocgg. Assuming finally that these events
matching the behavior df, whenx> 1 to the one of , when  are activated34,35, with a barrier growing likeY &2, where
x<1 one finds another power-law behavigf~t® on time ¢ is a certain exponent, one expetits- 7, exp(Y£&/T), and
scales between the departure from the plateau and the pegttereforey,(t*) o< (In t") 9%« gg_
of x4. We give in Fig 1 a schematic summary of the shape of  The rearranging regions could have of course more com-
xa(t) within the MCT description of supercooled liquids.  plicated shapes than the simple sphere assumed above. As

Finally, as discussed {182, at timest=t" ~ 7, x, reaches |ong as these objects are reasonably compact, the above re-
a maximum of heigh{T-T,)™. Using the relationr,~(T  sults will still hold qualitatively. On the other hand, if these
~To)™?, valid within MCT, one finally findsy,(t") ~t™/7. regions are fractal with a dimensiah<d/2, the above re-

Note that all the predictions made above are valid in thesults onG, will hold with the argument in the exponential
microcanoncial NVE ensemble, spt5] for a further discus-  given by T'tr?4¢; one also findg™ ~ 1/T'&) and y,(t") = .
sion.

B. Domain wall fluctuations

V. COLLECTIVELY REARRANGING REGIONS . . . S
In this case the picture that we have in mind is similar to

Under the term CRR, we gather many similar scenariogshe case of a disordered ferromagnet with pinned domain
that differ in their details, as discussed in the Introductionwalls, where the typical time to flip a domain is comparable
[1,34-34. Within the frustration-limited domains scenario of to the interevent time. In that case, an “event” is in fact the
Ref. [36] it seems natural to envision the dynamics as theslow fluctuation of domain walls that progressively invade
activated motion of domains pinned by self-generated disorthe bulk of the domairfin the follow we neglect the fast
der. In the case of the random first-order theory of Refsequilibrium dynamics taking place inside the domains that
[34,35, the details of the decorrelation mechanism are notletermines the evolution gf,(t) on short time scaldsThe
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early-time behavior ofy,(t) is given by the square of the t=0 andt, and zero otherwise. Thugn,(t)) represents a
number of particles that relax per unit volume thanks to thedensity-density dynamical correlation function whereas
same domain wallsee[31] for the same situation out of (ny(t)n:t))—{ny(t))?> corresponds t@3,(r',t).
equilibrium in pure systems Let againg, be the typical size From now on we will denote b, the number of vacan-
of a domain and/(t) the length scale over which the domain cjes, byV the total volume, by,=N,/V=1-p the vacancy
walls fluctuate during time. Considedr_irlmg that on the surface density and byP(t) the probability that a vacancy startszn
of eaph domain there are ordefp/ ) _subdc_)malns of lin- at time zero and never reachesntil time t. The probability
ear sizet and that the number of pagtlcles in each of thesethat a vacancy starts imat time zero and reaches for the first
subdomains is proportional toff, we get x4t) timex at a timeu<t is thereforeP%(t)=1-PXt).
o E4(g/ €)1 ac ¢l &) We are descarding for simplicit i is identi i

o (o o 0 _ 9 plicity - The computation ofn,(t)) is identical to the target anni-
both the possibility of fractal domains and that transversejjation problem considered {i#7]. Since we assume defects

fluctuations behave differently from longitudinal ones. As-{, pe independent, the defect distribution is uniform and we
suming thermal activation over pinning energy barriers thay,gye

grow like Y€¥ [46], we finally get y,(t) o & (In 1)+,

Therefore, in this case, the exponenis formally zero and 1 N,

the growth ofy,(t) is only logarithmic. The maximum of, (n,(t)) = [V > P§(t)1

occurs at time” such that((t") = &,, which implies that the 22#X

maximum of the susceptibility also scales logarithmically 1 N,

with t', x(t") < &X(In t)*Woc &8 The same scaling of the = [V % (1- Pi(t))l
Z,Z#¥X

maximum of the susceptibility with the typical domain size
is obtained in nondisordered coarsening systgi$ =exp - p, - p, > PAY) |. (25)
The conclusion of the above analysis is that if the CRR v X

relaxation is due to both instantaneous events and domain . .
wall fluctuations, the latter will dominate the time behavior '€ correlation functioin,(t)n,(t)) can be also expressed

of x4 before the peak as can be readily deduced by compal? terms of probability distributions of a single random walk
ing their relative contributions tay,(t). If for some reason N & similar way:
domain walls are particularly strongly pinned and bulk _

Z2,Z#X

nucleation becomes dominant, then the expongmatl |1 z No

should be observable. The height of the peak, on the other (nOny(0) = Zgy Px—y(t)l

hand, behaves identically in both models. Thus, as the tem- - N

perature is reduced, one should see a power-law behavior _ 1 S [1-P3t) - P2(1)] v

before the peak with an exponent®<1 in the MCT re- V,7rxy X X

gime followed by an effective exponept either decreasing -

toward zero or increasing toward one depending on whether =1- 2 1 S opyt) - 1

the domain wall contribution dominates or not. However, at |V Vi X 2V

lower temperatures, the elastic contribution will also start N

playing a role, which might completely dominate over the X > [PZAt) + P2()] ’

CRR contribution. This suggests that other observables, 2rixy i

which quantify more specifically the collective dynamics,

should be devised to reveal a CRR dynamics. = exr<— 2p, = py, > PA(t) +p,PY(t)
Z,2#X

VI. DEFECT-MEDIATED MOBILITY P
- PL 1) + Pesft 26
A. Independently diffusing defects 2 Z’Z%y[ v+ Pt )]> (26)
As the simplest realization of the defect-mediated sce- _ 3 _
nario for glassy dynamics advocated[i5,16,19,20,24 we  where P%y(t) is the probability that a vacancy starts Zzrat
consider a lattice model in which mobility defects, or vacan-time zero and never reaches eitheor y until time t and
cies, perform independent symmetric random walks. We asP)Z(y(t) is the probability that a vacancy startsziat time zero
sume for the moment that these vacancies cannot be creatadd reacheg atu<t but never reacheguntil timet. In Egs.
or destroyed spontaneously. We shall compute the sames) and(26) we are left with the calculation of probabilities
function G,(r,t) as in Eq.(23) above, arguing that when of the form P{(t), P;(t)+P%(t) for a single random walk.
such a vacancy crosses sitethe local configuration is re-  This can be done using Laplace transforms and, concerning
shuffled and the local correlation drops to zero. Thereforepi(t), the computation has been performed a while Bg.
n,(t) is equal to one, if no vacancy ever visited siteetween Al the details can be found in Appendix B.
In the continuum limit,(x—y)/yDt/2~O(1); i.e., for in-
'We are implicitly assuming that the varianceNf, the number ~ dependent Brownian motion with diffusion coefficidby the
of particles that relax per unit volume thanks to the same domaifinal expression foKn,(t)) on time scales much larger than
wall, equals the square of the averaygg one is, in three dimensions,
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(n(t)) = exd - p, — c1Dp,t], (27) One can also study this problem in dimensidal or
_ _ d=2. Qualitatively, the same conclusions héttiffusive cor-
where ¢, is a constant fixed by the short-length-scale g|ation lengthyDt, correlation timet* set by the density of
physics—i.e., the underlying lattice structuiee Appendix \acancies, etg, although the quantitative results differ be-
B). It is clear from this expression which is valid in all di- .5,,se a random walk id< 2 visits a number of sites that
mensions larger than 2 that the relaxation time scale is 99Vgrows sublinearly with time; see Appends 1 and B 3. One
ernec_j by the vacancy densify, _and readST:ll(clpvQ). finds in particular thaty,(t') ~ (Dt")¥2~ &(t"), with loga-
Physmallyf corr_e'_sponds to the time such that each site hagiymic corrections ford=2. The above arguments can be
typlcally_ been V'S'teq once by a defv_act_ generalized if for some reason the vacancies have an anoma-
The final expression fo6, is, for time and length scales o5 giffusion motion, in the sense that their typical excur-
much larger than 1, and in the small vacancy density limitgjon hetween timé=0 and timet scales as'? wherez is the

p,—0, dynamical exponent. Wher=2, the usual diffusion is ob-
c ot\ [ t\2 (L u o r2/2Dut s_erve_zd, but many _models like diffusion in random media or
G4(F,t):—zexp<— —)<—> f duf dv—5, kinetically constrained models may lead to subdiffusion,
b T/\1) Jo Jo (27Dt wherez>2 [21,49. In this case, one expects the small-time

(28)  behavior ofy,(t) to be given byya(t) ~ t24Z for d<z andt?

) . for d>z with logarithmic corrections fod=z. Similarly, the
wherec; is a constant of order unity. Note that the correla-pehavior ofy,(t") is a power lawy,(t') ~t™, with \=d/z for

tion length at fixedt is given by &t)=\VDt. For r<&(t), g<zandr=1 for d>z.
G,4(r,t) ~1/r, whereas for > &(t), G, decays at leading or- | the above model, mobility defects were assumed to be
der as a Gaussian—that is, much faster than exponentiallgonserved in time. However, it is certainly more realistic to
The 1k behavior is cut off on short-length scales, where Eq.think that these defects can be spontaneously created and
(28) does not hold. For=0 one finds, whet> 1, disappear with time. Suppose that defects are created with a
_ _ 9 rate I per unit time and unit volume and disappear with a
Ga(r =00 = {ny(t)) — (n(1))" = expl~ U7)[1 — expl- /7], rate y per unit time. The equilibrium density of defects is
(29 thenp,=I"/y. The above results og, can easily be gener-
alized. At small times, the number of pairs of visited sites
will now behave aSpv(Dt)z—gF(Dt)3/D. Because of the
death of vacancies, there is an extra decay of the dynamical
susceptibility. The dominant rate of decay depends on the
c, (t)? 2t adimensional numbeyr.
Xa(t) = 20\ 7 S (30 A very similar model for glassy dynamics was suggested
v in [50], where free volume is described as a diffusing coarse-
For short timed < 7, the dynamical susceptibility is propor- grained density fielgb(f,t) with a random Langevin noise
tional tot?, so thatu=2. This is due to the diffusing nature term. Mobility of particles is allowed whenever the dengity
of the defects. The main contribution jg is given by the exceeds a certain threshqglg. The mobile regions are then
square of the number of sites visited by the same defectelimited by the contour lines of a random field, which al-
which behaves ag,(Dt)?=(1/p,)(t/7)?, since a random ready gives rise to a quite complex problem of statistical
walk in three dimensions typically visitdifferent sites. For geometry{51]. The particle density correlation in this model
t> 7, on the other hand, the correlation decreases becaugs a simple exponential with relaxation time~ exp(po/p),
sites start being visited by different vacancies. The maXimunWhereFis the average free-volume density. One can also
of x,(t) is reached fort=t"=7, for which one hasy,(t')  computey,(t) in this model to find, ind=3,
~p,*~Dt". Note that because random walks are fractals of
dimensiond;=2, the above relation can also be written as t t
xa(t) ~ a9 &di(t"), where we have added the lattice spacing Xa(t) ~ t{exp(— ;) {1 - exp(— ;)} } (32
ato give toy, the dimension of a volume. If for some reason ) o
D depends Orpv, as happenS, for examp|E, for the 0ne-spin-Wh|C.h behaves V.ery.much.“ke the pOIntllke Vacancy model
facilitated Fredrickson-AndersefffA) model whereDxp,,  Studied above, with in particulag,(t) ~t* for t<r.

which behaves a 7 at small times.
By integrating Eq.(28) overr we get the dynamical sus-
ceptibility

then one findg"* ~p;2 and y,(t") ~t1/2, Let us finally note that from the point of view of interact-
Taking the Fourier transform @,(r ,t) given by Eq.(28),  ing particles on a lattice we have studied the persistence
we find the four-point structure fact@(k, t), dynamical susceptibility, instead of the density-density cor-

relations discussed in the Introduction. This is because for

B ) 2 _u the lattice gas problem at hand, the former does not show

Sy(k,t) = x4() F(DKD),  Flu) = E(U_ 1+€"). 3D  any interesting properties: except when a defect passes by,

the local state is always the same—i.e., occupied. For com-

Note that S(k=0,t)=x4(t), as it should. Furthermore, for pleteness, we give the corresponding results in Appendix B
large and smalk, S,(k,t) behaves, respectively, &~k 4. In a real system, however, the local configuration is going
and S,~ x4+0(k?), just as the Ornstein-Zernike form, to be affected by the passage of a mobility defect, and one
though the detaile#t dependence is different. can expect that the density-density correlations will in fact
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behave more like the persistence dynamical susceptibility 1 Ty
computed before. The correspondence between persistence
and self-intermediate scattering function is studied explicity - 0-8 T
in kinetically constrained models in R¢E2)]. =
§ 0.6 -
B. Kinetically constrained models: Numerical results ::; 04 .
Kinetically constrained model$KCM'’s) postulate that ] |
glassy dynamics can be modeled by forgetting about static
interactions between particles, putting all the emphasis on 0 N, : L
dynamical aspects. Among those models are, for example, 10° 10! 10?

r

the FA model or the Kob-AndersdiXA) model on hypercu-
bic lattices[15,25. The dynamics of these models can be  FiG. 2. Four-point spatial correlat¢83) in the d=1 FA model
understood in terms of diffusion of defedt$7,21,23 and  at fixed temperatur@=0.2 and various times=10%3x 1¢°, 10/,
the models can be classified into cooperative and noncoo:x 104 10°,1¢%,3x 10P,6 x 10P (from left to right. The correlator is
erative models, depending on the properties of such defectsormalized by itsr=0 value. At this temperature, the relaxation
For cooperative models the siZg the density, and the time time is 7~ 10°, so that time scales cover both regimes whéreis
scale for motion of the defects depends on the particle dersmaller and larger than 1.

sity (for conservative model®r temperaturéfor nonconser-

vative modelyand change very rapidly with increasing den- gpproximated as a system of independent freely diffusing
sity or decreasing temperatui25]. KA and FA models with  gefects and deriving a quantitative prediction for the behav-
more than one neighboring vacancy needed in order to alloyyy of four-point correlation and susceptibility would deserve
the motion of other vacancies belong to this class. On theyrther work. Such avoided transition should then be fol-
other hand, for the one-spin isotropically facilitated FA|owed at lower temperature or higher density by an

model, a single facilitating spin is a mobile defect at all 3symptotic behavior described in terms of cooperative dif-
values of temperature and the model is noncooperative. fysing defects.

recent analysi$21] suggests that for these models defects
can be considered as noninteractingdr 4, while for d 1. One dimension
<4 the role of fluctuations becomes important. Therefore we | ot ys start with the simplest model, tde1 FA model.

expect that the previous results for the independent diffusing.or o given temperature, we consider the time evolution of

defects model should apply exactly for FA one-spin facili- the following quantities. The analog of the spatial four-point
tated in d>4. Furthermore, since the corrections to the.grelator for this model is

Gaussian exponents are not very lafgé] in three dimen-

sions, we still expect a semiquantitative agreement. In par- 1 N

ticular the initial increase of the dynamic susceptibility as Gy(r,t) = NE [(ni(®)m (1) = n?(D)], (33
X2(H) ~N()2, whereN(t) is the total number of distinct vis- =1

ited sites, is expected to be quite a robust result. Also, WWhereﬂ(t)=N_1Ei'\ll<ﬂi(t)) is the mean persistencey(t) be-
expect a diffusive growth of the dynamical length scél®  ing the persistence at siteWe also measure the correspond-
governing the scaling dB,, at least in the limit&(t) > &,. At ing four-point structure factor

smaller times, one expects a crossover between a CRR re-
gime whenDt< & (where the dynamics inside the defects
becomes relevant in cooperative models to a mobility defect
regime for longer times Hence, in principle, looking at the
detailed properties o6,(r,t) one should be able to extract and as usual we get the four-point susceptibility as khe
the defect properties—density, size, time scale—and decide>0 limit of the structure factory,(t)=S,(k=0,t). We gen-
which theoretical scenario is most consistent with numericakrally find that the results are in good agreement with the

N
> [ne®ng(0) - n2() 1™, (34)

1
Skt ==
N(,m:l

results. free-defect model described above, at least at sufficiently low
In the following, we discuss numerical results for the one-temperatures.
spin-facilitated FA model both iWl=1 andd=3 and for the In Fig. 2, we show the evolution of the spatial correlator

d=1 East model where facilitation is anisotropits]. The (33) at a given low temperature=0.2 and various times. At
two models can be described, respectively, in terms of diffuthis temperature, the relaxation time is abeut10°, so that
sive and subdiffusive noncooperative defects and indeed thihe time scales presented in Fig. 2 cover a range of times
numerical results are in quantitative agreement with the preboth smaller and larger than The dynamic susceptibility
dictions of the previous section, as will be explained in de-y,(t) has the usual shape with a maximum at a time close to
tail. We do not address the case of cooperative KCM modelss, indicating that dynamics is maximally heterogeneous
for which a more complicated behavior is expected. Indeed &here. This nonmonotonic behavior gf, in fact does not
first slowing down of dynamics should occur near a dynami-show up in the spatial correlators of Fig. 2, which display
cal crossover displaying the properties of an MCT-likeinstead a smooth monotonic evolution with time. The spatial
avoided transitiorf25]. In this regime the model cannot be decay ofG,(r,t) becomes slower whenincreases, indicat-
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ing the presence of a monotonically growing dynamic lengthsions is indeed in full agreement with the independent defect

scaleé(t). diffusion computation; see the previous section and Appen-
One can estimate the time dependencé(dfby collaps-  dix B.
ing the data of Fig. 2 using a form like Results are qualitatively similar in the one-dimensional
East model. The dynamic susceptibilify,(t) develops a
r oo ;
_ r peak that grows and whose position is slaved to the increas-
Calr,1) ~ G401 ( ) (35 ing relaxation time when temperature decreases. At fixed

. ) . . temperature, a monotonically growing length scale is ob-
Doing so, we find thag~t%#°is a reasonable representation served, while the scaling relatiop,~ £ still holds within
of the data aff=0.2. Correspondingly, we find that the in- oy numerical precision. The novelty of this model lies in the
crease ofy,(t) for t<ris well described by a power law fact that exponents are now temperature dependent, as all
xa~1%%, so that the expected scaling~ ¢ is reasonably  other dynamic exponents in this model. For instance, we find
verified given the unavoidable freedom in estimating theihat &(t) ~19-28 gt T=0.4, &(t) ~t%15 at T=0.2. These results
range of time scales where power laws apply. The values ofre in agreement with the above predictions of the indepen-
these exponents are not far from the ones expected frojent defect model if the defect motion is subdiffusive, with a
freely diffusing defects in one dimension, although S“gh“ydynamic exponent=T,/T, as expected fronil7]. Due to
smaller. Indeed, we recall that the results in Appendix B lihe quasi-one-dimensional nature of the relaxation process in
predicté=\Dt, x4(t) < pé(t)? andx,(t')=1/p, wherep isthe  the three-dimensional generalization of the East mptg),
density of defectsp their diffusion coefficient, and” the  these results most probably carry over to larger dimensions
time at Wh|ChX4(t) reaChes |tS maXimum Value. Th|S |aSt Where they W0u|d differ by numerica' factors On'y_
prediction is also in good agreement with the numerical re-
sults(see, e.g.[20]).

Repeating the simulation at lower temperatdre0.15,
we obtain y,~1%%, showing that deviations from theoreti-  In d=3, the situation is more subtle. Results for the nor-
cally expected values are partly due to preasymptotic effectgalized susceptibility of the one-spin-facilitated FA model
that presumably disappear at very low temperatures. were presented in Ref22], where it was found to have the

It is important to remark that the scaling for(®5) is only ~ standard nonmonotonic shape already described several
approximately supported by the data. The scaling in fact detimes above. We find that the non-normalizegdt) has the
teriorates when times become larger thaithis can be seen same qualitative behavior. Therefore, contrary to thel
in Fig. 2 where data for large times become more and morease normalization is not a crucial issue in three dimensions.
stretched, indicating an increasing polydispersity of the dy- In the following we check the predictions for independent
namical clusters. Note that a change in the shape of the spdiffusing defects in three dimensions for the susceptibility
tial correlator makes a quantitative determinatiorégfrob-  and correlation length obtained above—i.g(t)=Dt,
lematic. Usually, one wants to collapse various curves using,(t) = p&(t)4, and y,(t")=1/p, wherep is the density of de-

a form like Eq.(35) to numerically extract. Strictly speak-  fects, D their diffusion coefficient, and’ the time at which

ing, this is not possible here if one works at fixédand  y,(t) reaches its maximum value. We find a semiquantitative
varyingt over a large time window. This difficulty provides agreement with above prediction, with small deviations in

a second possible explanation for the small discrepancy behe exponents that should be due to the interaction among
tween the measured values of exponents and the theoreticgéfects. In particular the scaling of the peak with the density
expectations. of defects was already analyzed [i82], where the result

The observation of a monotonically growing length begs,,(t") « 1/p'¢ was obtained, witke=0.03. As for the corre-
the question: how can the correlation length increase monqation length, we find(t) «t42 which shows again a small
tonically with time while the volume integral of the spatial geviation from the diffusive prediction. Regarding the in-
correlator x4 is nonmonotonic, as reported in the previouscrease at< r of the susceptibility we find a power law as
section? This is due to the fact that we have presented in Figyredicted. As ind=1, the exponent changes slightly when
2 results for the normalized correlat@,(r,t)/Ga(r=0.1).  decreasing temperature because the scaling regime where the
By definition, G4(0,t)=n(1-n); hence, the normalization it- power law applies becomes more and more extended. We
self exhibits a nonmonotonic behavior. If one considers théind y,~t*at T=0.25, y,~t%®at T=0.17, andy,~t"®at
normalized  susceptibility ¥,=[G4(0, NI, [(nny  T=0.095. This seems to indicate that the deviation from the
-n?(t)], one indeed finds that, is monotonically growing as  scaling y,(t) «t? calculated for the independent diffusing de-
well. fect model is partly due to preasymptotic effects that are less

In numerical works, the quantities that have been studiedind less important at lower temperature. Unfortunately, we
are in fact, most of the time, normalized, and the correspondwere not able to measugégat much lower temperatures with
ing x4(t) observed for realistic systems shows a peak, asufficient accuracy. We expect that even at very low tempera-
variance with what is observed in tide=1 FA model. As we ture a small deviation from the exponent of independent de-
shall show below, this is due to the one-dimensional naturéects should survive due to the interaction among defects.
of the model, and this difference is not observed in three In Fig. 3 we show the four-point correlations in both real
dimensions. This difference in the behavior of the normal-and Fourier space, Eq§33) and (34). In these curves the
ized dynamical susceptibility between one and three dimentemperature is fixed at a low valug=0.17, and time is

2. Three dimensions
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10%% Si(k,t) at all times; see Fig. 3. We find thgtdecreases from
L\, B=2.5 at small times tg3=1 for the longest time scales
910_1; s, investigated, which corresponds te=57. At such large
s L times, the dynamic susceptibility has already decreased by a
o 1072 factor of =300 from its maximum value &t=r, and corre-
= sl lations become very weak indeed. The values fofound
S0 from the fits are consistent with the valge=2.15 reported
<] in Ref.[22] where only fixed time ratio/ #(T)=1 at different

—4
107%¢ temperatures have been studied. From this fitting procedure,
we deduce a monotonically growing dynamic lengitn),
even beyondt=7(T). Fitting its time dependence with a
power law, we get~ t®*?which appears to be slightly sub-
diffusive, but close to the value found above in the one-
dimensional case.

In conclusion we find that on small enough time scales,
one indeed has good agreement with the above calculations
based on freely diffusing defects; therefore, defect branching
and defect coagulation can be neglected. However, for longer
time scales, significant deviations appear which correspond
to the evolution of the exponeri(t) and should be respon-
o o o sible for the small deviations of the predicted exponent for

10-1 10° xa- Physically, the time evolution of the exponeit) char-

k acterizing the largé-behavior of the dynamic structure fac-
tor is reasonable. At very short times, dynamic clusters con-

FIG. 3._ Four-point correlations in thé_:S one-spin-facili_tated sist of coils created by random walkers, and an exponent
FA model in both real spacgeft) and Fourier spacgight) at fixed  ¢|ose t08=2 can be expected. For times 7, clusters look
temperatureT:O.l_Y and various tlmes_lndlcated |n_the flgur_es. In critical, as described in Ref§21,27, and the exponeng
ol SPece, Dol eeserL el G, WS SO0 W1eS S22, <0 i expected. At very lrge fmes, clustrs are

" most probably extremely polydisperse because the remaining
varied in a wide range that includes the relaxation tifie ~ SPatial correlations at large times are due to the largest re-
=0.17~5x10% where the dynamic susceptibility also gions of space that were devoid of defects at time O and that
peaks. For times<r, the spatial decay of,(r,t) is fast.  take therefore a large time to relax. But at large times, some
When't increases, the spatial decay becomes slower, ondgolated sites that have not been visited by defects during the
again indicative of an increasing dynamic correlation lengthrelaxation might survive so that the distribution of dynamic
&(t). Whent becomes larger than however, spatial corre- Clusters at large times is very wide; see Hé] for snap-
lations seem to become weaker. It is obvious from Fig. 3 thaghots. A small value oB can therefore be expected.
the volume integral ofG,(r,t)/G4(0,t) decreases wheh
grows larger thanr. This is very different from the one-
dimensional case in Fig. 2, but consistent with all known VII. NUMERICAL RESULTS ON ATOMISTIC MODEL
numerical results. SYSTEMS

However, a closer look at Fig. 3 reveals that even though
the initial spatial decay o6,(r,t) is stronger at larger times,
the contrary is true at large distances. This indicates that th
topology of the dynamic clusters changes whegrows
larger thanz, but that&(t) may keep increasing in a mono-
tonic manner. Since the spatial correlator is very small a

large distances, quantitative measurementg(ofare more [38,55,58. We do not give details about our numerical pro-

easily performed n Founer space_\Fbg(k,t). . cedures since these were given several times in the literature
At short time, a fit ofSy(k,t) using the functional form [21,30,53

given by Eq.(31) works reasonably well, but the fit quickly
deteriorates at long time. We have therefore used the follow-

1051

Su(k,t)

In this section, we study numerical results for the dynamic
ausceptibility and structure factor of a supercooled liquid
simulated by molecular dynamics simulations. The model we
study is mainly the well-known binary Lennard-Jons)
{nixture as first defined and studied in RER3], but we
report also some results for a soft-sphere mixture studied in

ing generalization of Eq(31): A. Dynamical susceptibility
Sik ) = xa(OFLCED)], Folu) = ﬂ}(u— 1 +u)B2 In previous works on various realistic liquids, the dy-
A = Xal) S g Uk uf ' namic susceptibility was reported several tifh@40,12,28.

(36) It is known to exhibit at peak at a time scale enslaved to the
~ quantity chosen to quantify local dynamics. Typically, par-
Freely diffusing defects correspond =2 and £(t)~\t. ticle displacements are chosen, and one computes therefore
Using B(t) as an additional free parameter, we are able to fithe variance of some dynamical correlation,
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10? P e o cally constrained models above, it is not clear how the re-
2 ; 6695’60000 E stricted time window used to determine the exponents might
/ E e affect their values. However, the data in the Lennard-Jones
10°F 050 system behave quar!t|tat|vely very d|ﬁer_entl_y from both the-
= 2 0903,/ FEREREgeee] oretical results obtained from freely diffusing defects and
3 - 9 E numerical results in the one-spin-facilitatdet3 FA model,
10-2F .‘_.é?é,/" T=041 5 whereu=2. The small temperature evolution in the LJ liquid
LB Dol ] differs even qualitatively from the one-spin-facilitatelet 3
:"E ‘ g7 ——m FA mod(_al where the exponent was foun.d to increase_ when
T r] P T T T U T T TR I decreasing temperature. These observations tend to discard a
1071 10! t103 105 107 description of this supercooled liquid via a scenario with

simple independently diffusing defects, even interacting
) _ o ones. The above value @f is in principle compatible with
FIG. 4. Time dependence of the dynamic susceptibility in thethe predictions of elasticity theory, which yields=1/2 or
binary LJ mixture at two different temperaturé@mposed using a w=1 depending on the damping of phonons. However, the
“velocity rescaling” thermostat The lines are power-law fits with 4 o scale in which the above-mentioned power-law behav-
exponents indicated in the label. ior holds in the Lennard-Jones mixture corresponds tg3the
regime where the displacement of particles is no longer small

Xa(t) = N[(F2(t)) — (F(1))?], (37) and the elastic description unjustified. Within MCT, on the
. other hand,y, should increase in that regime with an expo-
with nent u=b that is known from previous analysi®~0.63
N [54]. The values found above are somewhat larger, but it is
F(t) = 1 D Fi(t). (39) hard to know how preasymptotic effects influence the nu-
NS merical data. Moreover, the value closestbtou=0.73, is

obtained forT=0.42, a temperature already lower than the
The dynamic quantity;(t) can be chosen as some “persis- mode-coupling singularity located @~ 0.435 in this sys-
tence” function, in which casé(t)) resembles the overlap tem (a linear interpolation between the valuesTat0.47 and
function usually measured in spin systefi§,12,2§. Other  T=0.42 givesu~0.78 atT=0.435. MCT also provides a
choices ar¢21,30 prediction for the height of the pea}g2~t*1’7, wherey was
. predicted to be=2.3, leading tan=1/y=0.43. This predic-
Fi(t) = codq - ori(t)], (39 tion is in good agreement with the results of H&fL] where

*\ 1404 i i -~
whered is a wave vector chosen in the first Brillouin zone Xa(t )~ "% was reported. It is important to remark, how
and &F;(1) is the displacement of particlén a time intervat. ever, that the MCT exponents are not very well determmed..
In the limit of small [k, it is better to studyF(t) The exponents we reported are the ones computed theoreti-

=011 370, e i he mea sauars dplace: S o4, 7S 290ment otaned e s of e
ment of the particleg9, 11]. . . particularb~=0.5 and 1/~=0.37. '
Whereas the general shapexqft) is well documented in - ="\¢ (0 insists on using a noncooperative kinetically con-
the literature, its precise time dependence was never digyrained model to describe the Lennard-Jones liquid, the
cussed. In Fig. 4, we present the time dependeng@©fin sl value of the short time exponept forces one to
the binary Lennard-Jones mixtL_Jre at two different.tempera-chOose a “fragile” KCM model, such as the East model de-
tures. The data are presented in a log-log scale, in order tg.riped above, where the exponent for the dynamic suscep-
emphasize the existence of several time regimes that are gefjjity is found to be much smaller than the diffusive value
erally hidden in the existing reports. To build these curves, =2 and indeed to decrease when temperature is decreased.
we choose Eq(39) as the local observable, for a wave vector op, the other hand, the large dynamic length scales observed
that corresponds roughly to the typical interparticle distancei, the Lennard-Jones system are not expected for fragile
In the ballistic regime at very short times, we find that xc\m's such as the East modgL8]. Our results do not dis-
).(4(t) ~t4,_ as described in Sgc. II. The system then _enters theard the possibility that cooperative KCMi a proper den-
time regime where dynamic structure factors typically ex-sjty or temperature regimelisplay a four-point correlation
hibit plateaus, as a result of particle caging. As seen in Fig. 43nq susceptibility quantitatively similar to the one of the
this is also the case fop,(t). Finally, x4(t) reaches a maxi- [ ennard-Jones liquid. Indeed, as stressed, in £2§), for
mum located close to the relaxation time extracted from thg@hese models one expects a first regime of slowing down of
time dependence ofF(t)) and then rapidly decays to its dynamics due to an avoided mode-coupling transition. The
long-time limit, equal to 1/2 in the present case. In Fig. 4,susceptibility and four-point correlation could then well be
we fitted the time dependence of the increaseysit) to-  quantitatively comparable to that of Lennard-Jones liquids.
wards its maximum with power law,~t*. The fits are sat- Concerning these comparisons between theoretical scenarios
isfactory, although they only hold on restricted time win- and molecular dynamics simulation results it is important to
dows. We find a slight temperature dependence of theotice that the the relevance of supposedly “fragile” numeri-
exponentu. For instance, we finge=0.9 atT=0.47 andu  cal models for supercooled liquids in shedding light on real
~0.73 atT=0.42. As already discussed in the case of kineti-fragile glass formers has been questiof&d.
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FIG. 5. Dynamic susceptibility,(t) at T=0.3 and 0.26from
left to right) in a log-log plot as a function of time for the soft-
sphere binary mixture of Ref$38,56. The data were kindly pro-
vided to us by D. Reichman and R. A. Denny, who worked in the =
NVE ensemble. The straight line represents the MCT prediction for \fé
the power-law behavior before the peak. =
0.1F

~—

-

Finally, it is of course a natural question to ask whether
the above agreement between MCT predictions and numeri-
cal results is only restricted to the Lennard-Jones system.
Using the unpublished data of RdE6] for a soft-sphere 0.013 T "%
binary mixture whereT,=0.22-0.24[38,55 we actually k
found very similar results. Close i a power-law behavior
of x, as a function of time can again be observed. For in- FIG. 6. Left: dynamic susceptibility af=0.5 andq=4.21. The
stancey,~ t%%3for T=0.26. In Fig. 5 we plo},, defined as Vertical lines indicate the times at whi@(k,t) is evaluated in the
in Ref. [28], as a function of time. We also display the bottom figure. Right: the corresponding thiggk,t) (the last two
power-law behavior predicted by MCT before the peak withhave been mulltlplledl by 2 for clarity Lines are flts.to the form
the exponenb=0.59 taken from Ref[55]. There is a simi- (40)_, thek—0 _I|m|t being fixed by the value of,(t), with a mono-
lar agreement between the exponantmeasured from the tonically growing length scalé(t).

height of the peak and the value ofjl éxtracted from an practice, to extraci(t,T) from the four-point correlation
MCT analysis of the datdAs in the previous case we used fnction either in real space or in Fourier space, one needs to
the theoretical MCT exponents computed9). In the case  postulate a specific functional form @;. In this respect, the
of the soft-sphere system the MCT exponents from numeriresyits of the previous section on simple lattice KCM’s with
cal fits have probably a large error bars; see the discussion o underlying liquid structure prove instructive. It is clear
[54].) that with data similar to Fig. 3, but obtained with much
The fact that the predictions of MCT for the four-point smaller system sizes, with much less statistics, and polluted
susceptibility are in reasonable agreement with numericaby the underlying structure of the liquid, the precise extrac-
simulations in both systems is significant, since the expotion of dynamical length scales from molecular dynamics
nentsb and 1/y are measured oftocal) two-point functions  simulations is not an easy task. More fundamentally, extract-
and . and X\ on four-point functions. The relation between ing ¢ from fitting either G,(r,t) or S,(k,t) to a time-
these exponents test a rather deep structural prediction gidependent scaling form necessarily biases the data as dis-
MCT that relates time scales to length scal88]. More  cussed above. This also shows that it is a much easier and
numerical work, on other model systems with different val-safer procedure to work, say, & «T) and different tem-
ues ofb, for example, would be needed to establish moreperature to observe the growth of a cooperative leggtir)
firmly whether the coincidence observed in the present pap&fhen decreasing. On the other hand, it is naa priori
is or not accidental. granted that the growth law @fwith t=7(T) when changing
T is identical to that of(t, T) with t at a given temperaturge
We will not be able to answer this question with our numeri-
cal data.
We focus now more directly on the dynamic length scale. With the above caveats in mind, we present in Fig. 6 some
In previous works, the dynamic length scélextracted from  numerical data in the binary Lennard-Jones mixture at a
four-point correlations was measured either at fixed temperdixed temperaturd =0.5 and three different times which fall
ture for various times where it was found to be nonmono- before, at, and after the peak jn(t). The difficulty of get-
tonic [12,13,27, but monotonic in[11], or at fixed timet  ting clear-cut quantitative determinations féris obvious
=7(T), for different temperatures, where it is found to befrom Fig. 6. One would need much larger system sizes to
increasing when the temperature decreas®42,24. In  properly measur&,(k,t) at small wave vectors, large times,

B. Growing length scale?
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and low temperatures. The system simulated here contains In this spirit, we first simulated some noncooperative
1372 particles. One could possibly increase the number dkCM'’s as the one-spin-facilitated FA model o=1 andd
particles by a factor of 10, but the increase in linear size=3 and the East model. The assumption of pointlike defects
would be very modest, a factor of 48~ 2.15. Nonetheless, that diffuse, possibly with an anomalous diffusion exponent,
we have fitted the data in Fig. 6 with a simple empirical formgives a good account of the shape of the four-point correla-
tion function and of the four-point susceptibility which are in
Si(kt) = X - C (40)  Quantitative agreement with the above results for the inde-
1+ (ké)P pendent defect model. For strong glasses such ag, 8i®

. " ' . results might lead to quantitative predictions if the relaxation
<k< ~7. s e : .
Iﬁ(raostal:ic I;Ofrtlj(z:tur?ezgagteol Pgp'fzefé)roilltlon3oLX1en:°g3';lpet?]|;In is indeed due to defect diffusion. It would be very interesting

. - ~ to reconsider numerical simulations of the dynamics of SiO
B i 7 1 i e eIt of e presen paer 1o chck n mor dea
stant C in Eq. (40), which accounts for the fact that the hat the defect picture is indeed correct in this casse that

structure of the liquid starts to be visible and creates som@! results should enable one to extract, in principle, the
signal inS,(k,t) whenk— ko. The results of the fitting pro- %ropertles, density, and relaxation times of defects from the

cedure are presented in Fig. 6 with lines going through théour-point correlation function For the d=3 one-spin-
oY . acilitated FA model, we see clear indications of the interac-
data. Note that the fits in Fig. 6 are constrained at loly

. L . tions between defects as time increases. This leads to small
the value of the dynamic susceptibiligs(t). The most im-

. : ) , deviations of the numerically obtained exponents with re-
portant. result from Fig. 6 is that if th? funct!onal form of spect to those predicted by our analysis of the independent
Su(k,1) is given some freedom, here via the time-dependenfiefect model, which does not account for interactions be-
exponens(t), the extracted dynamic length scdlé) indeed  yyeen defects. As far as the identification of a growing length
continues to grow monotonically after the peak of the dy-gcqjeg(t) from numerical data, we have seen that even within
namic susceptibility, contrary to reported previously yis simplified lattice model, this can be a rather difficult
[12,13,27, but in agreement with11]. We emphasize once (55 Our results point toward a dynamical correlation length
more that tkys result physically makes sense. At t|n_1es muckp ¢ grows forever and a behavior 8f(k,t) different from
larger thant , only very rare but very large dynamical do- o Ostein-zemike form but with similar asymptotic be-
mains contribute to the dynamic structure factor, so that SP&avior. We leave the study of cooperative KCM's, for which

tial correlati;ans are weak, 'butlextrehmelyllorjg ranged. The, ore complicated behavior should occur, for future work.
existence of an ever growing length scale is supported by, naicylar, the detailed form d,(k,t) should contain in-

any model with an hyd_rodynam|ca_l I'.rmeh as th_e phonon formation about the inner structure of the corresponding de-
or defect models studied herand is in a sense trivial. The fects

really interesting pie(;e of information is the valug of this We have also analyzed the four-point susceptibility of
length scale fot=7,—i.e., when the relevant relaxation pro- both a Lennard-Jones system and a soft-sphere system, and
cesses take place. . . . hown that the initial exponent of the four-point suscepti-

We conclude that our numerical data are not inconsiste ility is decreasing with the temperature and rather small,

with a monotomc_ally growing 'ef.‘gﬂ_‘ sc_ale even for 7, < 1. We have found, perhaps unexpectedly, a reasonable
although addressing more quantitative issues such as fung-

tional f tth wih | dits t ture d d greement fop and\ with the predictions of MCT but not
lonaj form at the growth law and Its temperature dependency,, iner theoretical scenarios, such as simple diffusive or
would require quite an important, but certainly worthwhile

: ' subdiffusive defects, strong KCM'’s, or CRRalthough this
numerical effort. might be a question of temperature and time scales, since
both CRR and cooperative KCM's are supposed to apply
closer to the glass transition temperajur€inally we con-

Let us summarize the results and various points made ifirm that the extraction of the growth law @ft) at a given
this rather dense paper. First, we have computed numericaltgmperature is difficult, and we can only say at this stage that
and analytically, exactly or approximatively, the four-point the data are not incompatible with the idea t§é) grows
correlation function designed to characterize nontrivial coopmonotonically, even beyond- 7, in the Lennard-Jones sys-
erative dynamics in glassy systems within several theoreticakm.
models: mode-coupling theory, collectively rearranging re- As for further work and perspectives, we think that the
gions, diffusing defects, kinetically constrained models, andollowing points would be worth investigating. First, it
elastic and plastic deformations. The conclusion is that thevould be very interesting to develop a detailed theory of the
behavior ofy,(1) is rather rich, with different regimes sum- crossover between the elastic regime described in Sec. IlI
marized in the Introduction and in Fig. 1. We have computedand the mode-coupling relaxation regime. Is it possible, in
the early time exponent and the peak exponentfor quite  particular, to describe approximately the “melting” of the
a few different models of glass-forming liquids and shownglass as one approaches the mode-coupling transition tem-
that the values of these exponents resulting from these mogberature from below? Second, we only considered systems in
els are quite different, suggesting that the detailed study o&quilibrium. One in fact expects that the four-point suscepti-
xa4(t,T) should allow one to eliminate or confirm some of the bility also contains very useful information in the aging re-
theoretical models for glass formation. gime (see[31,59). Detailed predictions in this regime may

VIIl. CONCLUSION AND FINAL COMMENTS
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enable one to probe the mechanisms for slow dynamics and . . .
the issue of the cooperative length at low temperature in théa(r,t) = —<COSQ[¢(f t) — d(r,0) + $(r=0,t) - H(r=0,0])
aging regime[59]. In particular, the elastic contribution

should not age whereas the CRR contributioharacterized 1 R R R

by the same exponept) should exhibit some aging, possibly + §<COSQ[¢(KU - ¢(r,00 - p(r=0,)
allowing one to separate the two effects. Third, since it is

clear from the present paper that simpler KCM's +¢(f=0,0]) - C%qt).

(Fredrickson-Andersen one-spin-facilitated, East model an
its generalization seem to fail at describing quantitatively
X4(t) obtained by molecular dynamics simulationgaff least G4(F,t) = C%(q,t){cosi2g?R(F, )] - 1}, (A2)
two) fragile systems, it would be important to understand if it

is possible to find a generalization of these KCM’s that carivhere

be in agreement with numerics. For the same reason a quan- . . . L L

titative study of four-point functions in cooperative KCM'’s R(FD =10 - ¢ O ¢(F=0,0) - #(F=0,0])
where defects have a complex inner structure would be in- T ddk
teresting. Fourth, it would be important to define more com- =
plicated correlation functions—for example, a fully general

four point function or higher-order correlation functions—in Hence,
order to test in a more stringent way the idea of cooperativity

in glassy systems and distinguish systems where the growth R(F 1) = _( pip( L (Ad)
of x,(t) is trivial, such as elastic solids, from those in which ' \Kt '

a truly nontrivial cooperativity governs the dynamics. Fi-

nally, it seems clear that this issue of cooperativity and itgvith

associated length scale can only be convmcmgly settled if

long-time scales and low-temperature regimes can be probed F(z) = 2|(x) - 1(2)], 1(2) :f
quantitatively in experimental systems. We hope that the (2m)w?

present paper will motivate ways to directly access four- (A5)
point functions experimentally in glassy systefsee[31));

natural candidates for this are colloif3] and granular ma- We thus see immediately th&t,(7,t) will be governed by a
terials[58,60], although there might be ways to investigate “diffusive” correlation length{(t) ~ Vkt, as expected from
this question in molecular glasses and spin glasses as waHe structure of the Langevin equation that describes relax-
[61]. ational dynamics. Note that for underdamped dynamics,
dynamical susceptibility can be quite different in the canoni- |t js useful to consider the following quantity:

cal NVT ensemble and in the NVE ensemble. A full discus-

sion of this point, and its consequences for the analysis of 2= (z) dw w2 (AB)
numerical and experimental results, will be presentdd . '

%sing the fact that the fiele is Gaussian, we finally find

SiKFq _ okt
(277)dk2e (L-eh), (A3)

—iwl—WZ/z2

A T 22

Figure 5 was obtained from the unpublished data of D. RIn d=3, after integrating ovedw,, one has
Reichman and R. A. Denny. We are very grateful to them for
providing these results. We thank E. Bertin, D. Chandler, O. J(2)=
Dauchot, J. P. Garrahan, A. Pan, and D. R. Reichman for
discussions. G.B. is partially supported by the Europeamng
Community’'s Human Potential Programme Contract No. .
HPRN—CT—2002-00307(DYGLAGEMEM). CT. is sup- I(2) = f oA (A8)
ported by the European Community’s Human Potential Pro- 47312
gramme Contract No. HPRN-CT-2002-003@®TIPCO.

Be M (A7)

8’773/2

Y4

Therefore, forz<1, one findsF(z)= (472~ and R(F,t)
APPENDIX A: DYNAMICS OF ELASTIC 2T/(47TKI‘), whereas foiz> 1,

NETWORKS
F(2) = 272 Y exp(- 2214)/7.

Thus, forr<g(t) and kA%t>1, the four-point correlation
function behaves as

1. Four-point correlation function: Overdamped case
We will defineG,(r,t) for the elastic model defined in the

text as
Gy(r,t) =(cosq[ ¢(T't) - ¢(r,0)] Gy(F\t) = fé{cosk( qu:r) - 1] . (A9)
Xcosq[#(F=0,t) - ¢(F=0,0]) - C*(q,b),
(AL) 2. Four-point correlation function: Underdamped case
which is equivalent to We have now
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FP(F,1) R
T = kA @(r,1), (A10)
which has for solutions in Fourier space
() = explikV) ¢y (0), (Al11)

with V=(x/m)¥2. We now have

Lo 2T [ lexplikve) - 117 d%
<[¢(r,t) ¢(r10)] >_ K k2 (27T)d

-4 f (1-cofVkihdk.  (A12)

In d=3, we find obviously the same result f§y and G, as
above, butR(f,t) is now equal to

T d% s
R(F,t) =~ f 2t k1 -cogkvp],  (A13)
which we write
R0 = LIF,0) = 1(.0)], (A1)
where
N ddk _ik-F
I(r,t):f (27T)d|(2e KT cogkV). (A15)

By introducingz=Vt/r and changing the variab=rk and
alsou=cosé and integrating oveu, one finds

I(F,t) = — f dqq{sin(q(1 +2)] +sinq(1 -2)]}.
(A16)

Consider the first term

I(rt) = quq sinfq(1 +2)]. (A17)
Changing variabley=q(1+2) directly shows that this inte-
gral do not depend om as long ag1+2) is positive. This is

true for the other integral, which does not dependzoms

long as 1-zis positive. If 1-z is negative, then the integral

changes sign. Therefore we have thatt)=1(r,0) if z<1
and I(f,t)=0 if z>1. ThereforeR(r,t)=0 if z<1 and
R(F,t)=T/4mkr when z>1. The result is very intuitive:

whenz<1 the information does not have time to travel the

distancer and there are no correlation. Far>1 the two

regions are “connected” and one finds the free-field correla-
tions. Brownian and Newtownian dynamics furnish the same
correlation for a giverr when the time diverges, as we ex-

PHYSICAL REVIEW E 71, 041505(2005

an anomalous, subdiffusing way, 8. Correspondingly, the
dynamical structure factor decays as a stretched exponential:
In C(q,t) ~ {qztl’z. (A18)
Note that the'* comes from a collective displacement of the
cages and is similar to the anomalous diffusion observed for
hard spheres in one dimension, since the latter problem can
be mapped onto the Edwards-Wilkinson problem in one di-
mension60,62. We expect that the results obtained here for
G, should also hold for this case as well. In fact, this model
was recently discussed in the context of a singdl granu-
lar compaction model, s¢&0].

In d=2, the displacement grows logarithmically with
time, leading to a power-law decay of the dynamical struc-
ture factor with ag-dependent exponent:

T
y= q_.

A19
8wk ( )

C(q,t) ~t7,
Turning now to x4(t), we find that after a short transient,
X4(t) grows ast?in d=1 and behaves a8 in d=2.

APPENDIX B: CALCULATIONS FOR THE DEFECT
MODEL

In Sec. VI we have reduced the computation@f(r,t)
and y,(t) to probability distributions of a single random
walk. In the following we shall show how these quantities
can be computed in any spatial dimension.

Let us callFi(u) be the probability that a random walk
starting inz reaches for the first time at timeu. P(t), the
probability that a vacancy starts #at time zero and reaches
for the first timex at a time less that reads

t
Pi(t) =J Fx(u)du. (B1)
0

Therefore, we need to calcula®é(u). The trick to do that
is writing a linear equation relatingz, which we want to
compute, toP%(x,t), the probability that a random walk with
self-diffusion coefficientD, starting inz, is in x at timet,
which is well known. This linear equation is
t

FZ(u)P*(x,t —u)du.

PZ(Xut) = 5x,25t,0 + f (BZ)

0

By taking the Laplace transforiirom now ons is the vari-

able conjugated to and £ indicates the Laplace transfoym
e obtain

pect. Finally, it is straightforward to obtain the result quotedand

in the text fory,(t).

3. Low-dimensional case

We give here, without much detail, the results for elastic
networks ind=1 andd=2. Ind=1, as is well known, each
particle wanders arbitrary far from its initial position but in

F2(t —ﬁ—l(—cpz(x’s) - 5“) t B3
= Px9 (1) (B3)

PA(t f ( PAx.S) - 5“) t')dt’ B4
()= LX) (t") (B4)
L EPS) =8 ©5)

s LPXx,9)
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A similar strategy can be used to calcul&fg;(t). Indeed  (n(t)ny(1)) = exd - 2p, = 2p,N(1) + 2p,PY(1) + p,G(t,x ~ y)],

the following equality holds: (B13)
t — Z(ty i it ;
7 o . o whereN(t)=2,.,Ps(t) is the average number of distinct sites
Px,y{t) - fo Fx,y{t )Py{t_t )dt’, (minus 1 visited by a random walk during the interval of
timet and
t LPA(x,8) + LPAy,s) 1 LPY(x,9)
z - Z an\pY(t — +\dt! G(t,x-y) = L_l - :
P24 JO FZ,(t)PYt - t)dt’, (B6) (tx-y) LEy CP(.9 + LP(x9) s LPxS)
2 . _— (B14)
whereF (1) is the probability that a random walk starting in _
z at time zero reacheg for the first time att but never Since
H Z
tou;:hesx at s<t. Therefore,zm ordzer to cglc_ulat@xjt) (n(0)2 = exd— 2p, - 2p,N(], (B15)
+Py’¢t) we need to calculatEX]y{t)+Fy]x4t). It is immediate ) .
to check that the following equations hold for any choice ofthe expression o6, is
XzY- G4(X - Y-t) = exd_ 2pv - ZPUN(t)]
t x{exd 2p,Pt) + p,G(t,x—y)] - 1}.
FA(1) = 8,00+ f dsl%‘y(s)Fi(t -9+ Fi,y{t)v " (B16)
0

In the following we shall analyze separately the one-

, t . , dimensional case, the three- or higher-dimensional case, and
FU() = 8y 200+ . dsE(9Fj(t-9) +F5 (), (B7)  the two-dimensional case.

L . . . . 1. One dimension
which implies, again by Laplace transfor(nis always dif-

ferent fromx andy in the following so we will skip the Consider a symmetric random walk on a one-dimensional

lattice with lattice spacing. By Laplace transforming the

Kronecker§'s), ;
master equation
z 4
FZ (1) + FiAt) = c—l—EFx(S) HERS , (B8) dPi(x,t) _ PAx+at) + PAx-at) - 2P%(x,b) (B17
Y Y LF(s) + LF(s) dt 2 ’
Using the expressiofB3) for F§(s) we get one immediately obtains
mla ik(x=2)
LP4x,9) + LP4y,s) , B f dk €

2 2y 1) = -1 LP(x,s) = — : (B18)

FRY.D + R, t) = £ Py LP(XS) (B9) a2 LK) +S
Furthermore PX(t)=1—-P)(t). Hence we obtain where {(k)=(1-cosk). In the continuum limita—0, (x

-y)xa\/Dt/2=a?, the above integral can be solved with the
well-known result

1(1 LPY(X,s)

1
LPi{s)=g—£P¥(s)=g _LPX(xs)>' (B10)

1 ol B
LPA(x,5) = ———=e" D, (B19)
Finally, we obtain the expression for V4Ds

z Z y which correspond to the solution of the diffusion equation
L[P:As) + P2 (9)]= LPAx,s) + LPAy,s) }( _LPx9) ) for a one-dimensional Brownian motion with diffusion coef-
xy yx LPX(y,s) + LPX(x,9) s LPX(X,9) ficient D—i.e.,
(B11) dP_ P
A useful way to rewrite this expression is obtained by dt ~ Dd_xz' (B20)
summing and subtracting the Laplace transform Rjft) ,
+PZ(t): Let us now compute all the functions needed to Get
e First,
Pyt + Py(t) = PX(1) + PY(0) 1 LPA(x,s
Xy Y. X X y N(t) = 2 P)z((t):E £_1<_ X( )>(t 1
_1,CPZ(X,S) + ﬁPZ(y,S) 1 [,Py(X,S) zZ#X 7#X s LPX(x,9)
LPX(y,s) + LPX(x,5) s LPX(x,8) where we used EqB4). Whent>1 we get
(B12) /Dt
Finally putting together all the different terms we have N = 4\_7_7
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Second, using the expressigB14) of G in terms of (x9) dik k-2
N P4x,s) = )
LP*(x,s) we get L, 2mik) + s

(B25)

\D e \S‘X—yl/\D

SMW whereBZ means Brillouin zone ané(k) = E —,(1-cosk;) for
' Tl a hypercubic latticék; is the component df in the direction

Changing variable in the inverse Laplace transform we)- AlsO_in this case we consider the continuum linfit

LG(s,x-y)=2

get -y)/\Dt/2O(1) and look for timest much larger than 1.
Let us again compute all the needed quantities: fix&t).
G(t) = 4y th(' —yl), In this case fott>1 we find that
\'2Dt d
[y Ni®) =D ﬂ ﬁ—ll
wheref((|x-y|)/2Dt) equals (t)= - 2
Hioo— -\2sx-2|/\Dt
(Ix yl) f e -sd_f;_ HenceN(t) =c,tD wherec,=[ [g,d%/ mZ(K)] ™.

V2Dt iy €V2X7ANDLL TSP Again, we neglect th&(t) term and we focus of in the

Finally P%(t) can be computed easily but it is always continuum limit, fort>a. We get

much smaller than the other terms in the exponential, so we j dk k2
1 Jez (

are going to neglect it. The resulting expression®&yris ?)dm
LG=— .
8 d 2
G4(x—y,t):eXp<—2pv o \’Dt) s J dk 1
\ BZ (27T)d Dk2
X{exp|: pvz\,th< X y|>} _ 1}_ (B21) Changing variable in the inverse laplace transform we get
V2Dt

Note that the typical time scale is 1/va and since we
focus onp,— 0, we can rewrite the above expression as
~ Since we know the inverse laplace transform of the func-

\’t/T)

ey d% €X*2 expts)
G(t) = D? d
( ) f joo—y f BZ (27T)d Dk2 +S CZS2 S

Gu(x-y,t) = exp(— \_E tion resulting from the integral ovek [it is simply PY(x,1t)]
| and each 14 adds an integral, we finally get

N
p[z ” f( |x ‘Wﬂ 1 e (x=y)?/2Dt

X exp| 2V b . 2 e -
Vt/f| p 2ur G(t) cz(Dt)J duf v (2Dt0)%2

(B22) wherec, is a numerical constant of order unity. From this
Integrating ovex—y to get they, we find expression, we finally obtain
2 8 — +0oo
Xa(t) = — exp(— \/_TTW r) \2ur J . dx{exd 2\t/7f(x)] - 1. Gu(x=y,t) = exp(= 2p, = 2p,C,Dt) [exp<pu(Cth)2
v
(823) -(x - y)%/2Dty
In particular whernt/7<1 we have f duf dv (27Dtv)%? -1 (B26)
Yalt) i(t/T). (B24)  and the results quoted in the main text.

v

The interpretation of this result is that at short times the
defects do not intersect and theg is just the square of the
number of average sites visited by a random walk until time’

3. Two dimensions

In two dimensions things are a bit tricky because of loga-
rithmic corrections. Briefly, we obtain that

t. We will see that this interpretation is indeed correct in any cst 1 .

dimension. G4(x—y,t):ex;<—2 n t) c4(t/7)? (in tD)ZJ du
Finally, after some algebra it is @ssmle to obtain from 0

EQ. (B24) that y,(t)=(c/p,)exd (-4/\ )t/ 7] at very large U g(x-y)%2Dut

times (c is a numerical constantThus, as found in simula- f dvm’ (B27)

tions, the normalizegy, does not go to zero as it happens in
three dimensions. with c; and ¢, constants of order unity. Hence, integrating

2. Three dimensions and higher overx-—y, we get

i i i i Cat 1
Consider a sy.mmetr;c ranc_iom walk on a cubic lattice. The Ya(t) = ex;( 3" > At/ n)2——— 5. (B29)
general expression fdP4(x,s) is Tint/ 2p, (IntD)
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In particular whert/ 7<1 we have () 7(0))2 = exp(— 4p,){exrp, PX(x,1)] - 1}2.
1( t \2 (B31)
xa(t) —(—> : (B29) .
p,\ TNt In the limit p, —0 we have

Again, since the number of sites visited on average by a RW () 7,002 = [ p,PX(x, 1) 2. (B32)
in two dimensions goes liké/Int, at short timesy, is the o .
square of the number of average sites visited until ime  Similarly we find that

Nl)
(1) 17 0) 7 (1) 79(0)) = <\—1/ 2 [1-PAx - Pz(y,t)])

4. Density-density correlations 22# Xy
We now sketch the calculation for the density four point =exfd - 4p, + 2p,P*(x,t)
correlation, defined as
) + 2p,PY(x,1)].
_ = _ 2 _ 2
Calx=¥.0 = [l 02(0) = Pl 7,(0) = p7]) Collecting all the pieces together we finally get, at leading
= (0 7(0))2, (B30)  orderinp,,

with 7,(t)=0,1 if thesite x is empty or occupied at timg Gg(x— y,t) = 2p,PY(x,t) (B33

respectively. We start from . : . Lo
P y for x#y. The interpretation of this equation is that the dy-

s (|1 . Ny 5 2 namical correlation betweenandy is due to the fact that the
(O (0))c = v > [1-Pxbl| -p7) . same vacancwas inx at time 0 and at timet or vice versa.
X Integrating overx-y one finds that at long timegu,(t)
Using that=,P%(x,t)=1 we get o« 1/t%2, showing no interesting structure.
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