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We compute analytically and numerically the four-point correlation function that characterizes nontrivial
cooperative dynamics in glassy systems within several models of glasses: elastoplastic deformations, mode-
coupling theorysMCTd, collectively rearranging regionssCRR’sd, diffusing defects, and kinetically constrained
modelssKCM’sd. Some features of the four-point susceptibilityx4std are expected to be universal: at short
times we expect a power-law increase in time ast4 due to ballistic motionst2 if the dynamics is Browniand
followed by an elastic regimesmost relevant deep in the glass phased characterized by at or Ît growth,
depending on whether phonons are propagative or diffusive. We find in both theb and earlya regime that
x4, tm, wherem is directly related to the mechanism responsible for relaxation. This regime ends when a
maximum ofx4 is reached at a timet= t* of the order of the relaxation time of the system. This maximum is
followed by a fast decay to zero at large times. The height of the maximum also follows a power lawx4st*d
, t*l. The value of the exponentsm and l allows one to distinguish between different mechanisms. For
example, freely diffusing defects ind=3 lead tom=2 andl=1, whereas the CRR scenario rather predicts
either m=1 or a logarithmic behavior depending on the nature of the nucleation events and a logarithmic
behavior ofx4st*d. MCT leads tom=b and l=1/g, whereb and g are the standard MCT exponents. We
compare our theoretical results with numerical simulations on a Lennard-Jones and a soft-sphere system.
Within the limited time scales accessible to numerical simulations, we find that the exponentm is rather small,
m,1, with a value in reasonable agreement with the MCT predictions, but not with the prediction of simple
diffusive defect models, KCM’s with noncooperative defects, and CRR’s. Experimental and numerical deter-
mination ofx4std for longer time scales and lower temperatures would yield highly valuable information on the
glass formation mechanism.

DOI: 10.1103/PhysRevE.71.041505 PACS numberssd: 64.70.Pf

I. INTRODUCTION

The idea that the sharp slowing down of supercooled liq-
uids is related to the growth of a cooperative length scale
dates back at least to Adam and Gibbsf1g. But it is only a
few years back that this idea has started being substantiated
by convincing experimentsf2–6g, numerical simulations
f7–14g, and simple microscopic modelsf15–25,27g. One of
the basic problems has been to find an observable that allows
one to define and measure objectively such a cooperative
length scale. An interesting quantity, proposed a few years
ago in the context of mean-fieldp-spin glassesf28g sseef29g
for an important early insightd and measured in simulations,
is a four-point density correlator, defined as

G4srW,td = krs0,0drs0,tdrsrW,0drsrW,tdl

− krs0,0drs0,tdlkrsrW,0drsrW,tdl, s1d

wherersrW ,td represents the density fluctuations at positionrW
and timet. In practice one has to introduce an overlap func-
tion w f28g to avoid a singularity due to the evaluation of the
density at the same point or consider slightly different corre-
lation functionsf30g. This quantity measures the correlation
in space of local-time correlation functions. Intuitively, if at
point 0 an event has occurred that leads to a decorrelation of
the local density over the time scalet, G4srW ,td measures the

probability that a similar event has occurred a distancerW
away within the same time intervalt ssee, e.g.,f31gd. There-
fore G4srW ,td is a candidate to measure the heterogeneity and
cooperativity of the dynamics. The best theoretical justifica-
tion for studying this quantity is to realize that the order
parameter for the glass transition is already a two-body
object—namely, the density-density correlation function
Cstd=krs0,0drs0,tdl—which decays to zero in the liquid
phase and to a constant value in the frozen phase. The four-
point correlationG4srW ,td therefore plays the same role as the
standard two-point correlation function for a one-body order
parameter in usual phase transitions. Correspondingly, the
associated susceptibilityx4std is defined as the volume inte-
gral of G4srW ,td and is equal to the variance of the correlation
function f28,32,33g. The susceptibilityx4std has been com-
puted numerically for different model glass formers and in-
deed exhibits a maximum fort= t* ,ta, the relaxation time
of the systemf11–14g. The peak valuex4st*d is seen to in-
crease as the temperature decreases, indicating that the range
of G4srW ,t*d increases as the system becomes more sluggish.
The dynamical correlation lengthj4st*d extracted from
G4srW ,t*d in molecular dynamics simulations grows and be-
comes of the order of roughly 10 interparticle distances when
the time scale is of the order of 105 microscopic time scales
t0 with t0,0.1 ps for an atomic liquid. In experiments close
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to the glass transition the dynamical correlation length has
been found to be only slightly larger, between 10 and 20
interparticle distancesf2,4g. This is puzzling because experi-
ments are done on systems with relaxation times that are
several orders of magnitude larger than in simulations. In
fact, extrapolating simulation results in the experimental re-
gime would lead to much larger dynamical correlation
lengths. The origin of this puzzle is still unclear; see Ref.
f18g for a recent discussion. Experiments on dynamical het-
erogeneity bridging the gap between numerical and macro-
scopic time scales would be extremely valuable to resolve
this paradox.

Several scenarios have been proposed to understand the
existence of nontrivial dynamical correlations and their rela-
tion to thermodynamical singularities. Adam and Gibbsf1g,
Kirkpatrick et al. f34g sfor a different formulation, see Ref.
f35gd, and Kivelson and Tarjusf36g have proposed, using
somewhat different arguments, the idea of collectively rear-
ranging regionssCRR’sd, of sizej, that increase as the tem-
perature is decreased. The evolution of the system is such
that these regions are either frozen or allowed to temporarily
and collectively unjam for a short time until a new jammed
configuration is found.

In apparent contradiction with the existence of the grow-
ing length scale, the mode-coupling theorysMCTd of glasses
states that the self-consistent freezing of particles in their
cages is a purely local process with no diverging length scale
at the transitionf37g. However, this point of view is in dis-
agreement with the results found for mean-field disordered
systemsf28,29g that are conjectured to provide a mean-field
description of the glass transition and display an MCT-like
dynamical transition. Indeed it was recently shown that
within MCT G4srW ,td in fact develops long-range correlations
close to the critical MCT temperatureTc f32g. Within a
phase-space interpretation of the MCT transition, the mecha-
nism for this cooperative behavior forT.Tc is the progres-
sive rarefaction of energy lowering directionsf38g. Within a
real-space interpretation, the MCT transition is due to the
formation of a large number of metastable states, each one
characterized by a surface tension that increases from zero at
Tc. As one approachesTc from above, the relevant eigenvec-
tors of the dynamical Hessian become more and more ex-
tended, which means that the modes of motion that allow the
system to decorrelate are made of very-well-defined, collec-
tive rearrangements of larger and larger clusters of particles
ssee the recent work of Montanari and Semerjianf39gd. For
smaller temperaturesT,Tc, “activated events” are expected
to play a crucial role. They are believed to be responsible for
the destruction of the freezing transition atTc. This regime
has been tentatively described by adding “hopping terms” in
the MCT equationsf37g or within a CRR scenariof34,35g.
Note that the random first-order theory off34g unifies MCT
with CRR’s predicting a first temperature regimesclose to
TMCTd where MCT applies and then a crossover toward
CRR’s sthe mosaic stated that describe the physical behavior
close to the Kauzman temperature.

Exploiting yet a different set of ideas, models of dynami-
cal facilitation, such as the Frederickson-Andersenf19g or
Kob-Andersen modelsf24g, have recently been proposed as
paradigms for glassy dynamicsf15,20,23g. In these models,

the motion of particles is triggered by “mobility defects” that
diffuse and possibly interact within the system. As the tem-
perature is lowered or the density is increased, the concen-
tration of defects goes down and the relaxation time of the
system increases. The dynamics is obviously heterogeneous
since it is catalyzed by defects that cannot be everywhere
simultaneously. The characteristic length scale in this case is
related to the average distance between defects to some
model- and dimension-dependent exponentf15,18,20,23,25g.
The ideas behind these models are somehow similar to the
one of free-volume theories and can be traced back to the
first explanation of slow dynamics in terms of defects motion
f26g. Kinetically constrained models have the important
merit of showing how from simple local microscopic rules a
relaxation governed by the diffusionsor subdiffusiond of
nontrivial defects may arise.

Understanding the mechanism behind the growth of the
dynamical correlation length is certainly an important step—
arguably the most important one—to understand the cause of
the slowing down of the dynamics. Furthermore, the differ-
ent scenarios for the glass transition can be tested, contrast-
ing their quantitative prediction for the four-point correlation
functionG4srW ,td to the numerical, and hopefully soon experi-
mental, results. Following these premises we investigate in
this paper the analytical shape ofG4srW ,td for several simple
models. We show thatG4srW ,td indeed contains some impor-
tant information concerning the basic relaxation mecha-
nisms. However, we show that, perhaps disappointingly,
models where cooperativity is absent or trivial lead to four-
point correlation functions and dynamical susceptibilitiesx4
that exhibit nontrivial features. Other, more complex observ-
ables will have to be defined to really grasp the nature of the
collective motions involved in the relaxation process of
glassesf8,40g.

Let us summarize the main results of our study in terms of
the susceptibilityx4std and time sectors. In a supercooled
liquid there are separate regimes of time scales correspond-
ing to different physical behaviorssee Fig. 1d. On micro-
scopic time scales particles move ballistically if the dynam-
ics is Newtonian or diffusively if the dynamics is Brownian.
On a longer time scale, interactions start playing a role,
which can be described approximately using elasticity
theory, before a truly collective phenomenon sets in. This
nontrivial glassy regime is theb regime, within which cor-
relation functions, such as, for example, the dynamical struc-
ture factor, develop a plateau. Theb regime is divided
further in an early- and a late-b regime corresponding, re-
spectively, to the approach and departure from the plateau of
the correlation function. Finally the structural relaxation time
scale on which correlation functions decay to zero is thea
regime. All previous studies have focused on the behavior of
x4std at times of the order ofta which correspond to the peak
of x4std. We show thatx4std has in fact a rich structure in
time and different behavior in different time sectors. In many
of these regimes,x4std behaves as a power law of timetm

with different values ofm. During the ballistic time scale one
finds m=4 sm=2 for Brownian dynamicsd, whereas during
the elastic regimesmost relevant deep in the glass phased, the
exponent becomesm=1 for ballistic phonons andm=1/2 for
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diffusive phonons. The behavior in theb and a regimes is
intimately related to the physical mechanism for relaxation
and indeed we find quite different answers depending on
which scenario we focus on. MCT predicts exponentsm=a
and m=b on time scales corresponding, respectively, to the
early- and late-b regimes, wherea and b are the standard
MCT exponents obtained from the study of the dynamical
structure factor. The power lawtb extends until the peak in
x4std is reached.

The other scenarios only make predictions in thea re-
gime. In the case of CRR’s one hasx4, t or x4,sln tdd+1/c

before the peak depending whether one assumes that the re-
laxation occurs via bulk nucleation events or domain wall
fluctuations; see below. For diffusing defects in dimension
d=3, the exponent ism=2. If defects have a nontrivial dif-
fusion exponentz, such that their displacement at timet
scales ast1/z, thenm=2d/z for d,z andm=2 otherwise. The
overall behavior ofx4std is summarized by Fig. 1, which
specializes to the MCT predictions for simplicity.

Another important feature ofx4 is the growth of the peak
compared to the growth of the timet= t* ,ta at which the
peak takes placesf21g. This is found to scale asx4st*d, t*l,
with l=0 slogarithmd for CRR’s, l=1 for freely diffusing
defects,l=d/z for anomalously diffusing defects ford,z,
and l=1 again ford.z. Note that if the defect diffusion
coefficient itself scales witht* as 1/t* f, such as, for example,
in the one-spin facilitated FA model, there is an extra contri-
bution that givesl=1−f for d.z. Finally, one hasl=1/g in
the context of MCT, whereg describes the power-law diver-
gence of the relaxation time as the critical MCT temperature
is approached.

We have checked these predictions in two model systems
of glass-forming liquids: a Lennard-Jones and a soft-sphere
mixture. Concerning the behavior ofx4std in the late-b and
-a regimes, the most interesting time sectors, we have found
reasonable agreement with the MCT predictions for four
point correlators. This agreement is by no means trivial and
is actually quite unexpected unless MCT indeed captures

some of the physics of the problem. Instead models of dif-
fusing, defects do not describe well the numerical results.
This is perhaps not very surprising since we are focusing on
two fragile liquidssat least in the numerical time windowd at
temperatures well above the experimental glass transition. It
might be that the predictions of these models work only on
larger time scales. In any case, we expect instead that for
strong liquids displaying an Arrhenius behavior the predic-
tions for x4std obtained studying the model of simple diffus-
ing defects might hold quantitatively, since it seems quite
well established from numerical simulations that relaxation
in strong liquids is triggered by the diffusion of connectivity
defects f41,42g. Finally, the CRR picture does not agree
quantitatively with our present numerical data. However, this
picture is supposed to describe the liquid dynamics precisely
in the low-temperature and long-time regime, which is pres-
ently beyond numerical capabilities. Again, experimental re-
sults probing the behavior ofx4std in this regime would be
highly valuable to put strong constraints on the different the-
oretical scenarios of glass formation.

The organization of the paper is as follows. In Sec. II we
discuss the behavior ofx4std on microscopic time scales.
Then, we analyze the predictions of elasticity theory in Sec.
III. In Secs. IV and V we focus on the behavior ofx4std in
the b and a regimes for MCT and CRR’s. In Sec. VI we
discuss the predictions of defect models analytically using an
independent defect approximation and by numerical simula-
tions of kinetically constrained models. In Sec. VII we com-
pare the different predictions to the results of numerical
simulations of models of glass-forming liquids. We present
our conclusions in Sec. VIII.

II. MICROSCOPIC DYNAMICS

On very short time scales the behavior ofx4 can be com-
puted exactly. For simplicity, we characterize the dynamics
through the self-intermediate scattering function

Fssk,td =
1

N
o

i

kcoskW · frWistd − rWis0dgl s2d

and define the dynamic susceptibility as the variance of the
fluctuations ofFssk,td:

x4std = NFKS 1

N
o

i

coskW · frWistd − rWis0dgD2L
−K 1

N
o

i

coskW · frWistd − rWis0dgL2G . s3d

The full intermediate four-point scattering function defined
in Eq. s1d in fact contains very similar information, even for
interacting systems—as shown by numerical simulations
f12,13g.

On a very short time scale particles move ballistically if
the dynamics is Newtonian,rWistd−rWis0d=vW it+Ost2d, wherevW i

is the velocity of the particlei at time t. Since the system is
in equilibrium all thevW i’s are independent Gaussian variables
with variancekvW i ·vW jl=di j3kBT/m, whereT is the tempera-

FIG. 1. Sketch of the time behavior ofx4std, with all the differ-
ent time regimes, within the MCT description that we find to be a
good description aroundTc. As the temperature is lowered, we ex-
pect the elastic regime to extend up tota.
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ture,m the mass of the particles, andkB the Boltzmann con-
stant. Using this property it is straightforward to obtain

Fssk,td = expS− kW2kBT

2m
t2D s4d

and

x4std = Fssk,td2FcoshS− 2kW2kBT

m
t2D − 1G . s5d

For an interacting particle systems this is only valid on short
time scales—for example, smaller than the collision time for
short-ranged interactions. This leads to an initial power-law
increase that reads

x4std =
1

2
skW2d2SkBT

m
D2

t4 + Ost6d. s6d

Note that if one had chosen Langevin dynamicssi.e., ]trWi
=]rWH+hW id instead of Newtonian dynamics, Eqs.s5d and s6d
would have been identical except for the replacement of
kBTt2/m by 2Tt, again for small times. Thus changing from
Newtonian to Langevin dynamics, the initial power-law in-
crease ofx4std changes fromt4 to t2. This is similar to the
change in the mean-square displacement that increases ast2

and t, respectively, for Newtonian and Langevin dynamics.
In the above example, however, it is clear that the increase

of x4 with time has nothing to do with the increase of a
correlation length, since particles are assumed to be indepen-
dent. In other words, the four-point correlationG4srW ,td has a
trivial d-function spatial dependence, but the height of thed
peak increases with time. As will be discussed later in the
paper, it is important to normalizex4std by the value of
G4srW=0,td to conclude from the four-point susceptibility that
a length scale is indeed growing in the system.

III. ELASTIC CONTRIBUTION

For longer time scales the interaction between particles
starts playing a role. Generically one expects that in the time
regime where the displacements of particles remain small, an
elastic description should be valid. In a solid or in a glass
deep belowTg, there is no further relaxation channels and the
elastic contribution tox4 should be the only relevant one. In
a supercooled liquid around the mode-coupling temperature
Tc, the elastic regime is interrupted by the collectiveb re-
gime, where in some sense phonon-phonon interactions com-
pletely change the physical picture. Although we expect such
a crossover, we have at present no detailed theoretical de-
scription of it.

In the following we analyze again the behavior of the
four-point self-intermediate scattering function assuming that
the dynamical behavior of the liquid can be described, within
a restricted time sector, as an elastic networkswe will discuss
later how to include, in a phenomenological way, viscous
flowd. Perhaps surprisingly, we find a nontrivial structure for
G4 in this model, with an ever growing “cooperative” length
scale which comes from the dynamics of phonons, which
represents the simplest form of cooperativity.

We consider an isotropic solid immersed in a viscous ther-
mal bath. The energy of the system is given by

H =E ddr
1

2
k1Fo

i

uiiG2
+ k2o

i,j
ui,j

2 , s7d

where k1,k2 are the Lamé coefficient,ui,j =
1
2fdfi /dxj

+df j /dxig is the deformation tensor, andfW the displacement

field from an undeformed reference state. Note thatfW sxd is
simply the continuum limit of the displacement of each par-
ticle with respect to its equilibriumsbottom of the welld po-
sition.

As is well known, the above energy leads to three inde-
pendent phonon modessone longitudinal and two transverse
modesd. For simplicity, we only consider one deformation
mode and write the Hamiltonian in Fourier space as

H =
1

2
kE ddk

s2pddk2fkf−k, s8d

wherek is an effective elasticity modulus. The modek has
an energyEk=kk2fkf−k/2 and therefore we expect, in equi-
librium, kfkf−kl=T/kk2, where the Boltzmann constant has
been set to unity. Our goal is to calculate the dynamical
correlation functions of the system. We describe the dynam-
ics by a Langevin equation with a local noise:

m
]2fsrW,td

]t2
+ n

]fsrW,td
]t

= kDfsrW,td + zsrW,td, s9d

wherezsx,td is a Gaussian noise uncorrelated in space and
time, of variance equal to 2nT. Taking the Fourier transform

m
]2fk

]t2
+ n

]fk

]t
= − kk2fk + zkstd, s10d

zkstd is again a Gaussian noise uncorrelated for differentk’s
and time.

In this section, we only consider in details the over-
damped casem=0 and setD=k /n, but also give at the end
the result for the purely propagative casen=0 ssee also Ap-
pendix Ad. One easily deduces the non-equal-time correla-
tion in the overdamped case:

kfkstdf−ks0dl =
T

kk2e−Dk2t. s11d

Let us now define the function

Fsqdsr,td = o
i

d„r − r is0d…coshqfr istd − r is0dgj, s12d

whose average equals the self-intermediate scattering func-
tion up to a constantsthe particle densityd.

Using the microscopic definition offW we obtain that

Csq,td = kFsqdsr,tdl . keiqffsrW,td−fsrW,0dgl = e−q2kfsfsrW,td − fsrW,0ddg2l/2,

s13d

where the last equality comes from the Gaussian nature of
the deformation field. Using the above results on the corre-
lation of the Fourier modes, we find
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kffsrW,td − fsrW,0dg2l =
2T

k
E 1 − e−Dk2t

k2

ddk

s2pdd . s14d

As is well known, this integral behaves differently ford
ø2 and for d.2, reflecting the fact that phonons destroy
translational order in low dimensions. As above, we will only
consider here the physical cased=3, relegating the discus-
sion of the other cases to Appendix A. Ford=3, we need to
introduce an ultraviolet cutoffL on the wave vectork, which
is the inverse of the underlying lattice spacinga. Then, the
above integral goes to a constant~L at large times, reflect-
ing the fact that particles are localized in their “cage.” There-
fore, the self-intermediate scattering functionCsq,td decays
at small timesL2Dt!1 before saturating to a “plateau”
value given by

fq ; Csq,t → `d = expS− c
TLq2

k
D , s15d

wherec is a numerical constant.sNote thatTLq2/k has no
dimension and is expected, from a Lindemann criterion, to
be of the order of 0.05 at half the melting temperature and
for q=L.d In real glass-forming liquids, this plateau phase
does not persist forever, andCsq,td finally decays to zero
beyondt=ta, in the so-calleda-relaxation regime. A modi-
fication of the model to account for this decorrelation will be
discussed later. Furthermore, the above pseudo-b regime pre-
dicted by elastic theory does not explain quantitatively theb
regime in supercooled fragile liquids, except probably on
relatively short time scales—say, up to a few picoseconds.
On the other hand, at temperatures belowTg or for strong
glasses, we expect that the elastic regime will extend up tota

and compete with other mechanisms, such as the defect-
mediated correlation discussed in Sec. VI below.

The calculation of G4
sqdsrW ,td=kFsqdsr8 ,tdFsqdsr8+r ,tdlc

is detailed in Appendix A. One immediately sees that
G4

sqdsrW ,td is governed by a diffusive correlation lengthjstd
,ÎDt with D=k /n, as expected from the structure of the
Langevin equation that describes relaxational dynamics.
Clearly, in the case of propagative phonons, one findsjstd
,Vt with V2=k /m. The final result, see Appendix A, is

G4
sqdsrW,td = C2sq,tdhcoshf2q2RsrW,tdg − 1j, s16d

where

RsrW,td =
T

k
sDtd1−d/2FS r

ÎDt
D s17d

and we findssee Appendix Ad Fszd.s4pzd−1 for z!1 and
Fszd.s2p3/2d−1 exps−z2/4d /z2 for z@1. Note the similarity
between the expression in Eq.s16d and the corresponding
one s5d derived in the previous section. One can check that
indeed the short-time behavior is indeed the one derived be-
fore in the case of Langevin dynamics for the particles, as
expected. Let us now focus on long times, but still within the
elastic regime,L2Dt@1, and forr !jstd,

G4
sqdsrW,td = fq

2FcoshS Tq2

2pkr
D − 1G . s18d

Suppose for simplicity that we are in a regime where the
argument of the cosh is always small, corresponding to the
limit Tq2L!k sremember that by definitionr .a=2p /L,
wherea is the interatomic distanced. Then,G4srW ,td, r−2 for
L−1! r !jstd. For larger scalesr @jstd decays as a
Gaussian—i.e., superexponentially fast. Note that the small-
r behavior ofG4srW ,td is not of the Ornstein-Zernike form
s1/r in d=3d. IntegratingG4 over rW we find the dynamical
susceptibility

x4
sqdstd ,

T2q4fq
2

k2 jstd. s19d

This result is actually valid both for in the diffusive limit
where jstd=ÎDt and in the propagative regime wherejstd
=Vt. Thereforex4

sqdstd increases either asÎt or ast snote that
in the limit of small times one recovers thet4 or t2 laws
obtained in the previous sectiond. In the general case, one
expects a crossover between a propagative regime at small
timest,m/n=D /V2 sof the order of ps in glass formers; see
f43gd and a diffusive regime for longer time scales. Thus,
looking atx4

sqdstd as a function of time in a log-log plot one
should see first a straight line corresponding to the ballistic
or diffusive motion leading, respectively, to slopem=4 or
m=2, bending over toward a smaller slopes1 or 1/2, or both,
depending on the strength of the dissipationd. The order of
magnitude ofx4

sqdstd, as given by Eq.s19d, can be estimated
to be ,s10−3–10−2da2jstd for q=L. In the propagative re-
gime with t=1 ps,V=33103 m/s, anda=0.3 nm, one finds
j=10a and x4

sqd,s10−2–10−1da3—i.e., a small, but perhaps
detectable signal from the phonons. Only on much larger
time scales will the elastic contribution be significant, a re-
gime that can be reached deep in the glass phasef44g. As
mentioned above, other collective modes come into play in
supercooled fragile liquids, in particular around the mode-
coupling temperature, and give rise to theb regime where
“cages” themselves become more complex, extended objects
f32g.

The above calculation shows that in an elastic solid with
diffusive or propagative phonon modes, the dynamical sus-
ceptibility increases without bound, reflecting the presence
of Goldstone soft modes in the system. Of course, in a real
glass the correlation functionCsqdstd eventually decays to
zero beyond thea-relaxation timeta, as particles start dif-
fusing out of their cages, far away from their initial position.
If phonons were the only relevant excitations, this would
cause the dynamical susceptibility to peak aroundt= t* =ta.
A phenomenological model that describes the decay of
x4

sqdstd within the above elastic framework is to assume a
sMaxwelld viscoelastic local modulus:

]fsrW,td
]t

= kFE
−`

t

dt8e−gst−t8dD
]fsrW,t8d

]t8 G + zsrW,td, s20d

with g,ta
−1, corresponding to a frequency-dependent elastic

modulusksvd= ikv / siv+gd. In this model, the dynamics of
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f becomes diffusive at times.g−1 and the dynamic struc-
ture factor therefore decays exponentially beyond that time.
Of course, the model itself becomes inconsistent at large
times, since the underlying lattice needed to define the defor-
mation fieldf has by then totally melted.

The conclusion of this section, however, is that since su-
percooled liquids behave at high frequenciessv@g ,ta

−1d like
solids, the four-point correlation and dynamical susceptibil-
ity are expected to reveal, in a certain time domain, a non-
trivial behavior unrelated to the structure of the “collective
processes” discussed belowsMCT, diffusive defects, CRR’sd
that one usually envisions to explain glassy dynamics.

IV. MODE-COUPLING THEORY

As mentioned in the Introduction the mode-coupling
theory of supercooled liquids predicts the growth of a coop-
erative length as the temperature is decreased or the density
increasedf28,29,32g and makes detailed predictions on the
shape ofx4std. The four-point correlation function becomes
critical near the mode-coupling transition temperatureTc.
The behavior of the susceptibilityx4std is encoded in ladder
diagramsf29,32g. From the analytical and numerical results
of f32g and analyzing the ladder diagramsf32,45g, we have
found that, in theb regime,

x4std , f1ste1/2ad/Îe, t , tb, s21d

and in thea regime,

x4std , f2ste1/2a+1/2bd/e, t , ta, s22d

wheree=T−Tc, a, b, andg=1/2a+1/2b are the MCT ex-
ponents for the dynamical structure factor, andf1sxd and
f2sxd are two scaling functions. Requiring that the depen-
dence one drop out whente1/2a!1 one finds thatf1sxd
,xa when x!1. This leads to a power-law behaviorx4
, ta in the early-b regime—i.e., when the intermediate scat-
tering functions approaches a plateau. In the same way,
matching the behavior off1 whenx@1 to the one off2 when
x!1 one finds another power-law behaviorx4, tb on time
scales between the departure from the plateau and the peak
of x4. We give in Fig. 1 a schematic summary of the shape of
x4std within the MCT description of supercooled liquids.

Finally, as discussed inf32g, at timest= t* ,ta, x4 reaches
a maximum of heightsT−Tcd−1. Using the relationta,sT
−Tcd−g, valid within MCT, one finally findsx4st*d, t*1/g.

Note that all the predictions made above are valid in the
microcanoncial NVE ensemble, seef45g for a further discus-
sion.

V. COLLECTIVELY REARRANGING REGIONS

Under the term CRR, we gather many similar scenarios
that differ in their details, as discussed in the Introduction
f1,34–36g. Within the frustration-limited domains scenario of
Ref. f36g it seems natural to envision the dynamics as the
activated motion of domains pinned by self-generated disor-
der. In the case of the random first-order theory of Refs.
f34,35g, the details of the decorrelation mechanism are not

entirely clear. There should be, on the one hand, activated
fluctuations of domain walls between different states, again
pinned by self-generated disorder. However, the fluctuations
leading to a change of state may be the nucleation of a com-
pletely different state starting from the bulk. The latter pro-
cess can be modeled as a nearly instantaneous event with a
certainssmalld nucleation rate. In the following we shall ana-
lyze separately these two types of fluctuations and their con-
sequences on the shape ofx4std.

A. Instantaneous events

Suppose that the dynamics is made of nearly instanta-
neous events that decorrelate the system in a compact “blob”
of radiusj0. The probability per unit time and volume for
such an event to appear around siterW is G. We compute the
four-body correlation of the persistence,nrstd, defined to be
equal to one if no event happened atrW between times 0 andt
and equal to zero otherwise. The four-body correlation is
then defined as

G4srW,td = knrstdn0stdl − knrstdl2. s23d

Clearly, the averaged correlation functionCstd=knrstdl is
simply given byCstd=exps−VGj0

dtd whereV is the volume
of the unit sphere. ForG4srW ,td to be nonzero, an event must
have happened simultaneously atrW and at 0, leading to

G4srW,td = C2stdhexpfGtj0
dfsr/j0dg − 1j, s24d

where fsxd is the volume of the intersection between two
spheres of unit radius with centers at distancex apart.
Clearly, fsx.2d=0. Therefore,G4srW ,td is nonzero only ifr
,2j0, and is in fact roughly constant there. For a givenr
satisfying this bound,G4 first grows linearly with time,
reaches a maximum fort= t* <G−1j0

−d and decays exponen-
tially beyond that time. The same behavior is found forx4std,
which grows initially astm with m=1 and reaches a maxi-
mum such thatx4st*d~j0

d. Assuming finally that these events
are activatedf34,35g, with a barrier growing likeYj0

c, where
c is a certain exponent, one expectst* ,t0 expsYj0

c /Td, and
thereforex4st*d~ sln t*dd/c~j0

d.
The rearranging regions could have of course more com-

plicated shapes than the simple sphere assumed above. As
long as these objects are reasonably compact, the above re-
sults will still hold qualitatively. On the other hand, if these
regions are fractal with a dimensiondf ,d/2, the above re-
sults onG4 will hold with the argument in the exponential
given byGtr2df−d; one also findst* <1/Gj0

df andx4st*d~j0
df.

B. Domain wall fluctuations

In this case the picture that we have in mind is similar to
the case of a disordered ferromagnet with pinned domain
walls, where the typical time to flip a domain is comparable
to the interevent time. In that case, an “event” is in fact the
slow fluctuation of domain walls that progressively invade
the bulk of the domainfin the follow we neglect the fast
equilibrium dynamics taking place inside the domains that
determines the evolution ofx4std on short time scalesg. The

TONINELLI et al. PHYSICAL REVIEW E 71, 041505s2005d

041505-6



early-time behavior ofx4std is given by the square of the
number of particles that relax per unit volume thanks to the
same domain wallssee f31g for the same situation out of
equilibrium in pure systemsd.1 Let againj0 be the typical size
of a domain and,std the length scale over which the domain
walls fluctuate during timet. Considering that on the surface
of each domain there are ordersj0/,dd−1 subdomains of lin-
ear size, and that the number of particles in each of these
subdomains is proportional to,d, we get x4std
~j0

−dsj0/,dd−1,2d~,d+1/j0. We are descarding for simplicity
both the possibility of fractal domains and that transverse
fluctuations behave differently from longitudinal ones. As-
suming thermal activation over pinning energy barriers that
grow like Y,c f46g, we finally get x4std~j0

−1sln tdd+1/c.
Therefore, in this case, the exponentm is formally zero and
the growth ofx4std is only logarithmic. The maximum ofx4

occurs at timet* such that,st*d<j0, which implies that the
maximum of the susceptibility also scales logarithmically
with t* , x4st*d~j0

−1sln t*dd+1/c~j0
d. The same scaling of the

maximum of the susceptibility with the typical domain size
is obtained in nondisordered coarsening systemsf31g.

The conclusion of the above analysis is that if the CRR
relaxation is due to both instantaneous events and domain
wall fluctuations, the latter will dominate the time behavior
of x4 before the peak as can be readily deduced by compar-
ing their relative contributions tox4std. If for some reason
domain walls are particularly strongly pinned and bulk
nucleation becomes dominant, then the exponentm=1
should be observable. The height of the peak, on the other
hand, behaves identically in both models. Thus, as the tem-
perature is reduced, one should see a power-law behavior
before the peak with an exponent 0,b,1 in the MCT re-
gime followed by an effective exponentm either decreasing
toward zero or increasing toward one depending on whether
the domain wall contribution dominates or not. However, at
lower temperatures, the elastic contribution will also start
playing a role, which might completely dominate over the
CRR contribution. This suggests that other observables,
which quantify more specifically the collective dynamics,
should be devised to reveal a CRR dynamics.

VI. DEFECT-MEDIATED MOBILITY

A. Independently diffusing defects

As the simplest realization of the defect-mediated sce-
nario for glassy dynamics advocated inf15,16,19,20,24g, we
consider a lattice model in which mobility defects, or vacan-
cies, perform independent symmetric random walks. We as-
sume for the moment that these vacancies cannot be created
or destroyed spontaneously. We shall compute the same
function G4srW ,td as in Eq. s23d above, arguing that when
such a vacancy crosses siterW, the local configuration is re-
shuffled and the local correlation drops to zero. Therefore,
nrstd is equal to one, if no vacancy ever visited siterW between

t=0 and t, and zero otherwise. Thus,knrstdl represents a
density-density dynamical correlation function whereas
kn0stdnrWstdl−kn0stdl2 corresponds toG4srW ,td.

From now on we will denote byNv the number of vacan-
cies, byV the total volume, byrv=Nv /V=1−r the vacancy
density and byPx̄

zstd the probability that a vacancy starts inz
at time zero and never reachesx until time t. The probability
that a vacancy starts inz at time zero and reaches for the first
time x at a timeuø t is thereforePx

zstd=1−Px̄
zstd.

The computation ofknxstdl is identical to the target anni-
hilation problem considered inf47g. Since we assume defects
to be independent, the defect distribution is uniform and we
have

knxstdl = F 1

V
o

z,zÞx

Px̄
zstdGNv

= F 1

V
o

z,zÞx

s1 − Px
zstddGNv

= expF− rv − rv o
z,zÞx

Px
zstdG . s25d

The correlation functionknxstdnystdl can be also expressed
in terms of probability distributions of a single random walk
in a similar way:

knxstdnystdl = F 1

V
o

z,zÞx,y
Px̄,ȳ

z stdGNv

= F 1

V
o

z,zÞx,y
f1 − Px

zstd − Py,x̄
z stdgGNv

= F1 −
2

V
−

1

V
o

z,zÞx,y
Px

zstd −
1

2V

3 o
z,zÞx,y

fPy,x̄
z std + Px,ȳ

z stdgGNv

= expS− 2rv − rv o
z,zÞx

Px
zstd + rvPx

ystd

−
rv

2 o
z,zÞx,y

fPy,x̄
z std + Px,ȳ

z stdgD s26d

wherePx̄,ȳ
z std is the probability that a vacancy starts inz at

time zero and never reaches eitherx or y until time t and
Px,ȳ

z std is the probability that a vacancy starts inz at time zero
and reachesx at uø t but never reachesy until time t. In Eqs.
s25d ands26d we are left with the calculation of probabilities
of the form Px

zstd, Px,ȳ
z std+Pyx̄

z std for a single random walk.
This can be done using Laplace transforms and, concerning
Px

zstd, the computation has been performed a while agof48g.
All the details can be found in Appendix B.

In the continuum limit,sx−yd /ÎDt /2,Os1d; i.e., for in-
dependent Brownian motion with diffusion coefficientD, the
final expression forknxstdl on time scales much larger than
one is, in three dimensions,

1We are implicitly assuming that the variance ofNa, the number
of particles that relax per unit volume thanks to the same domain
wall, equals the square of the averageNa
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knxstdl = expf− rv − c1Drvtg, s27d

where c1 is a constant fixed by the short-length-scale
physics—i.e., the underlying lattice structuressee Appendix
Bd. It is clear from this expression which is valid in all di-
mensions larger than 2 that the relaxation time scale is gov-
erned by the vacancy densityrv and readst=1/sc1rvDd.
Physicallyt corresponds to the time such that each site has
typically been visited once by a defect.

The final expression forG4 is, for time and length scales
much larger than 1, and in the small vacancy density limit
rv→0,

G4srW,td =
c2

rv
expS−

2t

t
DS t

t
D2E

0

1

duE
0

u

dv
e−r2/2Dvt

s2pDvtd3/2,

s28d

wherec2 is a constant of order unity. Note that the correla-
tion length at fixedt is given by jstd=ÎDt. For r !jstd,
G4srW ,td,1/r, whereas forr @jstd, G4 decays at leading or-
der as a Gaussian—that is, much faster than exponentially.
The 1/r behavior is cut off on short-length scales, where Eq.
s28d does not hold. Forr =0 one finds, whent@1,

G4sr = 0,td = knxstdl − knxstdl2 = exps− t/tdf1 − exps− t/tdg,

s29d

which behaves ast /t at small times.
By integrating Eq.s28d over rW we get the dynamical sus-

ceptibility

x4std =
c2

2rv
S t

t
D2

expS−
2t

t
D . s30d

For short timest,t, the dynamical susceptibility is propor-
tional to t2, so thatm=2. This is due to the diffusing nature
of the defects. The main contribution tox4 is given by the
square of the number of sites visited by the same defect,
which behaves asrvsDtd2=s1/rvdst /td2, since a random
walk in three dimensions typically visitst different sites. For
t.t, on the other hand, the correlation decreases because
sites start being visited by different vacancies. The maximum
of x4std is reached fort= t* =t, for which one hasx4st*d
,rv

−1,Dt* . Note that because random walks are fractals of
dimensiondf =2, the above relation can also be written as
x4st*d,ad−dfjdfst*d, where we have added the lattice spacing
a to give tox4 the dimension of a volume. If for some reason
D depends onrv, as happens, for example, for the one-spin-
facilitated Fredrickson-AndersensFAd model whereD~rv,
then one findst* ,rv

−2 andx4st*d, t*1/2.
Taking the Fourier transform ofG4sr ,td given by Eq.s28d,

we find the four-point structure factorS4sk,td,

S4sk,td = x4stdFsDk2td, Fsud ;
2

u2su − 1 +e−ud. s31d

Note that Ssk=0,td=x4std, as it should. Furthermore, for
large and smallk, S4sk,td behaves, respectively, asS4,k−2

and S4,x4+Osk2d, just as the Ornstein-Zernike form,
though the detailedk dependence is different.

One can also study this problem in dimensiond=1 or
d=2. Qualitatively, the same conclusions holdsdiffusive cor-
relation lengthÎDt, correlation timet* set by the density of
vacancies, etc.d, although the quantitative results differ be-
cause a random walk indø2 visits a number of sites that
grows sublinearly with time; see Appendix B 1 and B 3. One
finds in particular thatx4st*d,sDt*dd/2,jdst*d, with loga-
rithmic corrections ford=2. The above arguments can be
generalized if for some reason the vacancies have an anoma-
lous diffusion motion, in the sense that their typical excur-
sion between timet=0 and timet scales ast1/z, wherez is the
dynamical exponent. Whenz=2, the usual diffusion is ob-
served, but many models like diffusion in random media or
kinetically constrained models may lead to subdiffusion,
wherez.2 f21,49g. In this case, one expects the small-time
behavior ofx4std to be given byx4std, t2d/z for d,z and t2

for d.z with logarithmic corrections ford=z. Similarly, the
behavior ofx4st*d is a power lawx4st*d, t*l, with l=d/z for
d,z andl=1 for d.z.

In the above model, mobility defects were assumed to be
conserved in time. However, it is certainly more realistic to
think that these defects can be spontaneously created and
disappear with time. Suppose that defects are created with a
rate G per unit time and unit volume and disappear with a
rate g per unit time. The equilibrium density of defects is
then rv=G /g. The above results onx4 can easily be gener-
alized. At small times, the number of pairs of visited sites
will now behave asrvsDtd2− 2

3GsDtd3/D. Because of the
death of vacancies, there is an extra decay of the dynamical
susceptibility. The dominant rate of decay depends on the
adimensional numbergt.

A very similar model for glassy dynamics was suggested
in f50g, where free volume is described as a diffusing coarse-
grained density fieldrsrW ,td with a random Langevin noise
term. Mobility of particles is allowed whenever the densityr
exceeds a certain thresholdr0. The mobile regions are then
delimited by the contour lines of a random field, which al-
ready gives rise to a quite complex problem of statistical
geometryf51g. The particle density correlation in this model
is a simple exponential with relaxation timet,expsr0/ r̄d,
where r̄ is the average free-volume density. One can also
computex4std in this model to find, ind=3,

x4std , tHexpS−
t

t
DF1 − expS−

t

t
DGJ , s32d

which behaves very much like the pointlike vacancy model
studied above, with in particular,x4std, t2 for t!t.

Let us finally note that from the point of view of interact-
ing particles on a lattice we have studied the persistence
dynamical susceptibility, instead of the density-density cor-
relations discussed in the Introduction. This is because for
the lattice gas problem at hand, the former does not show
any interesting properties: except when a defect passes by,
the local state is always the same—i.e., occupied. For com-
pleteness, we give the corresponding results in Appendix B
4. In a real system, however, the local configuration is going
to be affected by the passage of a mobility defect, and one
can expect that the density-density correlations will in fact
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behave more like the persistence dynamical susceptibility
computed before. The correspondence between persistence
and self-intermediate scattering function is studied explicitly
in kinetically constrained models in Ref.f52g.

B. Kinetically constrained models: Numerical results

Kinetically constrained modelssKCM’sd postulate that
glassy dynamics can be modeled by forgetting about static
interactions between particles, putting all the emphasis on
dynamical aspects. Among those models are, for example,
the FA model or the Kob-AndersensKA d model on hypercu-
bic latticesf15,25g. The dynamics of these models can be
understood in terms of diffusion of defectsf17,21,25g and
the models can be classified into cooperative and noncoop-
erative models, depending on the properties of such defects.
For cooperative models the sizej0, the density, and the time
scale for motion of the defects depends on the particle den-
sity sfor conservative modelsd or temperaturesfor nonconser-
vative modelsd and change very rapidly with increasing den-
sity or decreasing temperaturef25g. KA and FA models with
more than one neighboring vacancy needed in order to allow
the motion of other vacancies belong to this class. On the
other hand, for the one-spin isotropically facilitated FA
model, a single facilitating spin is a mobile defect at all
values of temperature and the model is noncooperative. A
recent analysisf21g suggests that for these models defects
can be considered as noninteracting ind.4, while for d
,4 the role of fluctuations becomes important. Therefore we
expect that the previous results for the independent diffusing
defects model should apply exactly for FA one-spin facili-
tated in d.4. Furthermore, since the corrections to the
Gaussian exponents are not very largef21g in three dimen-
sions, we still expect a semiquantitative agreement. In par-
ticular the initial increase of the dynamic susceptibility as
x4std,Nstd2, whereNstd is the total number of distinct vis-
ited sites, is expected to be quite a robust result. Also, we
expect a diffusive growth of the dynamical length scalejstd
governing the scaling ofG4, at least in the limitjstd@j0. At
smaller times, one expects a crossover between a CRR re-
gime whenDt!j0

2 swhere the dynamics inside the defects
becomes relevant in cooperative models to a mobility defect
regime for longer timesd. Hence, in principle, looking at the
detailed properties ofG4sr ,td one should be able to extract
the defect properties—density, size, time scale—and decide
which theoretical scenario is most consistent with numerical
results.

In the following, we discuss numerical results for the one-
spin-facilitated FA model both ind=1 andd=3 and for the
d=1 East model where facilitation is anisotropicf15g. The
two models can be described, respectively, in terms of diffu-
sive and subdiffusive noncooperative defects and indeed the
numerical results are in quantitative agreement with the pre-
dictions of the previous section, as will be explained in de-
tail. We do not address the case of cooperative KCM models,
for which a more complicated behavior is expected. Indeed a
first slowing down of dynamics should occur near a dynami-
cal crossover displaying the properties of an MCT-like
avoided transitionf25g. In this regime the model cannot be

approximated as a system of independent freely diffusing
defects and deriving a quantitative prediction for the behav-
ior of four-point correlation and susceptibility would deserve
further work. Such avoided transition should then be fol-
lowed at lower temperature or higher density by an
asymptotic behavior described in terms of cooperative dif-
fusing defects.

1. One dimension

Let us start with the simplest model, thed=1 FA model.
For a given temperature, we consider the time evolution of
the following quantities. The analog of the spatial four-point
correlator for this model is

G4sr,td =
1

N
o
i=1

N

fknistdni+rstdl − n2stdg, s33d

wherenstd=N−1oi=1
N knistdl is the mean persistence,nistd be-

ing the persistence at sitei. We also measure the correspond-
ing four-point structure factor

S4sk,td =
1

N
o

,,m=1

N

fkn,stdnmstdl − n2stdgeik·s,−md, s34d

and as usual we get the four-point susceptibility as thek
→0 limit of the structure factor,x4std=S4sk=0,td. We gen-
erally find that the results are in good agreement with the
free-defect model described above, at least at sufficiently low
temperatures.

In Fig. 2, we show the evolution of the spatial correlator
s33d at a given low temperatureT=0.2 and various times. At
this temperature, the relaxation time is aboutt,106, so that
the time scales presented in Fig. 2 cover a range of times
both smaller and larger thant. The dynamic susceptibility
x4std has the usual shape with a maximum at a time close to
t, indicating that dynamics is maximally heterogeneous
there. This nonmonotonic behavior ofx4 in fact does not
show up in the spatial correlators of Fig. 2, which display
instead a smooth monotonic evolution with time. The spatial
decay ofG4sr ,td becomes slower whent increases, indicat-

FIG. 2. Four-point spatial correlators33d in the d=1 FA model
at fixed temperatureT=0.2 and various timest=103,33103, 104,
33104,105,106,33106,63106 sfrom left to rightd. The correlator is
normalized by itsr =0 value. At this temperature, the relaxation
time is t,106, so that time scales cover both regimes wheret /t is
smaller and larger than 1.
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ing the presence of a monotonically growing dynamic length
scalejstd.

One can estimate the time dependence ofjstd by collaps-
ing the data of Fig. 2 using a form like

G4sr,td , G4s0,tdGS r

j
D . s35d

Doing so, we find thatj, t0.45 is a reasonable representation
of the data atT=0.2. Correspondingly, we find that the in-
crease ofx4std for t,t is well described by a power law
x4, t0.85, so that the expected scalingx4,j2 is reasonably
verified given the unavoidable freedom in estimating the
range of time scales where power laws apply. The values of
these exponents are not far from the ones expected from
freely diffusing defects in one dimension, although slightly
smaller. Indeed, we recall that the results in Appendix B 1
predictj=ÎDt, x4std~rjstd2, andx4st*d=1/r, wherer is the
density of defects,D their diffusion coefficient, andt* the
time at whichx4std reaches its maximum value. This last
prediction is also in good agreement with the numerical re-
sults ssee, e.g.,f20gd.

Repeating the simulation at lower temperatureT=0.15,
we obtainx4, t0.93, showing that deviations from theoreti-
cally expected values are partly due to preasymptotic effects
that presumably disappear at very low temperatures.

It is important to remark that the scaling forms35d is only
approximately supported by the data. The scaling in fact de-
teriorates when times become larger thant. This can be seen
in Fig. 2 where data for large times become more and more
stretched, indicating an increasing polydispersity of the dy-
namical clusters. Note that a change in the shape of the spa-
tial correlator makes a quantitative determination ofj prob-
lematic. Usually, one wants to collapse various curves using
a form like Eq.s35d to numerically extractj. Strictly speak-
ing, this is not possible here if one works at fixedT and
varying t over a large time window. This difficulty provides
a second possible explanation for the small discrepancy be-
tween the measured values of exponents and the theoretical
expectations.

The observation of a monotonically growing length begs
the question: how can the correlation length increase mono-
tonically with time while the volume integral of the spatial
correlatorx4 is nonmonotonic, as reported in the previous
section? This is due to the fact that we have presented in Fig.
2 results for the normalized correlatorG4sr ,td /G4sr =0,td.
By definition,G4s0,td=ns1−nd; hence, the normalization it-
self exhibits a nonmonotonic behavior. If one considers the
normalized susceptibility x̃4=fG4s0,tdNg−1o,,mfkn,nml
−n2stdg, one indeed finds thatx̃4 is monotonically growing as
well.

In numerical works, the quantities that have been studied
are in fact, most of the time, normalized, and the correspond-
ing x̃4std observed for realistic systems shows a peak, at
variance with what is observed in thed=1 FA model. As we
shall show below, this is due to the one-dimensional nature
of the model, and this difference is not observed in three
dimensions. This difference in the behavior of the normal-
ized dynamical susceptibility between one and three dimen-

sions is indeed in full agreement with the independent defect
diffusion computation; see the previous section and Appen-
dix B.

Results are qualitatively similar in the one-dimensional
East model. The dynamic susceptibilityx4std develops a
peak that grows and whose position is slaved to the increas-
ing relaxation time when temperature decreases. At fixed
temperature, a monotonically growing length scale is ob-
served, while the scaling relationx4,j2 still holds within
our numerical precision. The novelty of this model lies in the
fact that exponents are now temperature dependent, as all
other dynamic exponents in this model. For instance, we find
that jstd, t0.28 at T=0.4, jstd, t0.15 at T=0.2. These results
are in agreement with the above predictions of the indepen-
dent defect model if the defect motion is subdiffusive, with a
dynamic exponentz=T0/T, as expected fromf17g. Due to
the quasi-one-dimensional nature of the relaxation process in
the three-dimensional generalization of the East modelf18g,
these results most probably carry over to larger dimensions
where they would differ by numerical factors only.

2. Three dimensions

In d=3, the situation is more subtle. Results for the nor-
malized susceptibility of the one-spin-facilitated FA model
were presented in Ref.f22g, where it was found to have the
standard nonmonotonic shape already described several
times above. We find that the non-normalizedx4std has the
same qualitative behavior. Therefore, contrary to thed=1
case normalization is not a crucial issue in three dimensions.

In the following we check the predictions for independent
diffusing defects in three dimensions for the susceptibility
and correlation length obtained above—i.e.,jstd=ÎDt,
x4std~rjstd4, andx4st*d=1/r, wherer is the density of de-
fects,D their diffusion coefficient, andt* the time at which
x4std reaches its maximum value. We find a semiquantitative
agreement with above prediction, with small deviations in
the exponents that should be due to the interaction among
defects. In particular the scaling of the peak with the density
of defects was already analyzed inf22g, where the result
x4st*d~1/r1−e was obtained, withe.0.03. As for the corre-
lation length, we findjstd~ t0.42, which shows again a small
deviation from the diffusive prediction. Regarding the in-
crease att!t of the susceptibility we find a power law as
predicted. As ind=1, the exponent changes slightly when
decreasing temperature because the scaling regime where the
power law applies becomes more and more extended. We
find x4, t1.4 at T=0.25,x4, t1.55 at T=0.17, andx4, t1.89 at
T=0.095. This seems to indicate that the deviation from the
scalingx4std~ t2 calculated for the independent diffusing de-
fect model is partly due to preasymptotic effects that are less
and less important at lower temperature. Unfortunately, we
were not able to measurej at much lower temperatures with
sufficient accuracy. We expect that even at very low tempera-
ture a small deviation from the exponent of independent de-
fects should survive due to the interaction among defects.

In Fig. 3 we show the four-point correlations in both real
and Fourier space, Eqs.s33d and s34d. In these curves the
temperature is fixed at a low value,T=0.17, and time is
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varied in a wide range that includes the relaxation timetsT
=0.17d,53104, where the dynamic susceptibility also
peaks. For timest!t, the spatial decay ofG4sr ,td is fast.
When t increases, the spatial decay becomes slower, once
again indicative of an increasing dynamic correlation length
jstd. When t becomes larger thant, however, spatial corre-
lations seem to become weaker. It is obvious from Fig. 3 that
the volume integral ofG4sr ,td /G4s0,td decreases whent
grows larger thant. This is very different from the one-
dimensional case in Fig. 2, but consistent with all known
numerical results.

However, a closer look at Fig. 3 reveals that even though
the initial spatial decay ofG4sr ,td is stronger at larger times,
the contrary is true at large distances. This indicates that the
topology of the dynamic clusters changes whent grows
larger thant, but thatjstd may keep increasing in a mono-
tonic manner. Since the spatial correlator is very small at
large distances, quantitative measurements ofjstd are more
easily performed in Fourier space viaS4sk,td.

At short time, a fit ofS4sk,td using the functional form
given by Eq.s31d works reasonably well, but the fit quickly
deteriorates at long time. We have therefore used the follow-
ing generalization of Eq.s31d:

S4sk,td = x4stdFbfk2j2stdg, Fbsud ;
22/b

ub su − 1 +e−udb/2.

s36d

Freely diffusing defects correspond tob=2 and jstd,Ît.
Using bstd as an additional free parameter, we are able to fit

S4sk,td at all times; see Fig. 3. We find thatb decreases from
b<2.5 at small times tob<1 for the longest time scales
investigated, which corresponds tot<5t. At such large
times, the dynamic susceptibility has already decreased by a
factor of <300 from its maximum value att=t, and corre-
lations become very weak indeed. The values forb found
from the fits are consistent with the valueb<2.15 reported
in Ref. f22g where only fixed time ratiot /tsTd=1 at different
temperatures have been studied. From this fitting procedure,
we deduce a monotonically growing dynamic lengthjstd,
even beyondt=tsTd. Fitting its time dependence with a
power law, we getj, t0.42 which appears to be slightly sub-
diffusive, but close to the value found above in the one-
dimensional case.

In conclusion we find that on small enough time scales,
one indeed has good agreement with the above calculations
based on freely diffusing defects; therefore, defect branching
and defect coagulation can be neglected. However, for longer
time scales, significant deviations appear which correspond
to the evolution of the exponentbstd and should be respon-
sible for the small deviations of the predicted exponent for
x4. Physically, the time evolution of the exponentbstd char-
acterizing the large-k behavior of the dynamic structure fac-
tor is reasonable. At very short times, dynamic clusters con-
sist of coils created by random walkers, and an exponent
close tob=2 can be expected. For timest,t, clusters look
critical, as described in Refs.f21,22g, and the exponentb
=2−h, h,0 is expected. At very large times, clusters are
most probably extremely polydisperse because the remaining
spatial correlations at large times are due to the largest re-
gions of space that were devoid of defects at time 0 and that
take therefore a large time to relax. But at large times, some
isolated sites that have not been visited by defects during the
relaxation might survive so that the distribution of dynamic
clusters at large times is very wide; see Ref.f18g for snap-
shots. A small value ofb can therefore be expected.

VII. NUMERICAL RESULTS ON ATOMISTIC MODEL
SYSTEMS

In this section, we study numerical results for the dynamic
susceptibility and structure factor of a supercooled liquid
simulated by molecular dynamics simulations. The model we
study is mainly the well-known binary Lennard-JonessLJd
mixture as first defined and studied in Ref.f53g, but we
report also some results for a soft-sphere mixture studied in
f38,55,56g. We do not give details about our numerical pro-
cedures since these were given several times in the literature
f21,30,53g.

A. Dynamical susceptibility

In previous works on various realistic liquids, the dy-
namic susceptibility was reported several timesf9,10,12,28g.
It is known to exhibit at peak at a time scale enslaved to the
quantity chosen to quantify local dynamics. Typically, par-
ticle displacements are chosen, and one computes therefore
the variance of some dynamical correlation,

FIG. 3. Four-point correlations in thed=3 one-spin-facilitated
FA model in both real spacesleftd and Fourier spacesrightd at fixed
temperatureT=0.17 and various times indicated in the figures. In
Fourier space, points represent numerical data, while solid lines are
fits to the forms36d with fitting parameters described in the text.
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x4std = NfkF2stdl − kFstdl2g, s37d

with

Fstd =
1

N
o
i=1

N

Fistd. s38d

The dynamic quantityFistd can be chosen as some “persis-
tence” function, in which casekFstdl resembles the overlap
function usually measured in spin systemsf10,12,28g. Other
choices aref21,30g

Fistd = cosfqW · drWistdg, s39d

whereqW is a wave vector chosen in the first Brillouin zone
anddrWistd is the displacement of particlei in a time intervalt.
In the limit of small ukWu, it is better to study Fistd
= udrWistdu /ÎDr2std, whereDr2std is the mean-square displace-
ment of the particlesf9,11g.

Whereas the general shape ofx4std is well documented in
the literature, its precise time dependence was never dis-
cussed. In Fig. 4, we present the time dependence ofx4std in
the binary Lennard-Jones mixture at two different tempera-
tures. The data are presented in a log-log scale, in order to
emphasize the existence of several time regimes that are gen-
erally hidden in the existing reports. To build these curves,
we choose Eq.s39d as the local observable, for a wave vector
that corresponds roughly to the typical interparticle distance.

In the ballistic regime at very short times, we find that
x4std, t4, as described in Sec. II. The system then enters the
time regime where dynamic structure factors typically ex-
hibit plateaus, as a result of particle caging. As seen in Fig. 4,
this is also the case forx4std. Finally, x4std reaches a maxi-
mum located close to the relaxation time extracted from the
time dependence ofkFstdl and then rapidly decays to its
long-time limit, equal to 1/2 in the present case. In Fig. 4,
we fitted the time dependence of the increase ofx4std to-
wards its maximum with power lawx4, tm. The fits are sat-
isfactory, although they only hold on restricted time win-
dows. We find a slight temperature dependence of the
exponentm. For instance, we findm<0.9 atT=0.47 andm
<0.73 atT=0.42. As already discussed in the case of kineti-

cally constrained models above, it is not clear how the re-
stricted time window used to determine the exponents might
affect their values. However, the data in the Lennard-Jones
system behave quantitatively very differently from both the-
oretical results obtained from freely diffusing defects and
numerical results in the one-spin-facilitatedd=3 FA model,
wherem=2. The small temperature evolution in the LJ liquid
differs even qualitatively from the one-spin-facilitatedd=3
FA model where the exponent was found to increase when
decreasing temperature. These observations tend to discard a
description of this supercooled liquid via a scenario with
simple independently diffusing defects, even interacting
ones. The above value ofm is in principle compatible with
the predictions of elasticity theory, which yieldsm=1/2 or
m=1 depending on the damping of phonons. However, the
time scale in which the above-mentioned power-law behav-
ior holds in the Lennard-Jones mixture corresponds to theb
regime where the displacement of particles is no longer small
and the elastic description unjustified. Within MCT, on the
other hand,x4 should increase in that regime with an expo-
nent m=b that is known from previous analysis,b<0.63
f54g. The values found above are somewhat larger, but it is
hard to know how preasymptotic effects influence the nu-
merical data. Moreover, the value closest tob, m<0.73, is
obtained forT=0.42, a temperature already lower than the
mode-coupling singularity located atTc<0.435 in this sys-
tem sa linear interpolation between the values atT=0.47 and
T=0.42 givesm<0.78 atT=0.435d. MCT also provides a
prediction for the height of the peak,x4

* , t*1/g, whereg was
predicted to be<2.3, leading tol=1/g<0.43. This predic-
tion is in good agreement with the results of Ref.f21g where
x4st*d, t*0.4 was reported. It is important to remark, how-
ever, that the MCT exponents are not very well determined.
The exponents we reported are the ones computed theoreti-
cally in f54g. The exponents obtained from the fits of the
numerical data based on MCT are a bit differentf53g, in
particularb<0.5 and 1/g<0.37.

If one insists on using a noncooperative kinetically con-
strained model to describe the Lennard-Jones liquid, the
small value of the short time exponentm forces one to
choose a “fragile” KCM model, such as the East model de-
scribed above, where the exponent for the dynamic suscep-
tibility is found to be much smaller than the diffusive value
m=2, and indeed to decrease when temperature is decreased.
On the other hand, the large dynamic length scales observed
in the Lennard-Jones system are not expected for fragile
KCM’s such as the East modelf18g. Our results do not dis-
card the possibility that cooperative KCM’ssin a proper den-
sity or temperature regimed display a four-point correlation
and susceptibility quantitatively similar to the one of the
Lennard-Jones liquid. Indeed, as stressed, in e.g.,f25g, for
these models one expects a first regime of slowing down of
dynamics due to an avoided mode-coupling transition. The
susceptibility and four-point correlation could then well be
quantitatively comparable to that of Lennard-Jones liquids.
Concerning these comparisons between theoretical scenarios
and molecular dynamics simulation results it is important to
notice that the the relevance of supposedly “fragile” numeri-
cal models for supercooled liquids in shedding light on real
fragile glass formers has been questionedf57g.

FIG. 4. Time dependence of the dynamic susceptibility in the
binary LJ mixture at two different temperaturessimposed using a
‘‘velocity rescaling’’ thermostatd. The lines are power-law fits with
exponents indicated in the label.
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Finally, it is of course a natural question to ask whether
the above agreement between MCT predictions and numeri-
cal results is only restricted to the Lennard-Jones system.
Using the unpublished data of Ref.f56g for a soft-sphere
binary mixture whereTc.0.22–0.24f38,55g we actually
found very similar results. Close toTc a power-law behavior
of x4 as a function of time can again be observed. For in-
stance,x4, t0.63 for T=0.26. In Fig. 5 we plotx4, defined as
in Ref. f28g, as a function of time. We also display the
power-law behavior predicted by MCT before the peak with
the exponentb.0.59 taken from Ref.f55g. There is a simi-
lar agreement between the exponentl measured from the
height of the peak and the value of 1/g extracted from an
MCT analysis of the data.sAs in the previous case we used
the theoretical MCT exponents computed inf55g. In the case
of the soft-sphere system the MCT exponents from numeri-
cal fits have probably a large error bars; see the discussion in
f54g.d

The fact that the predictions of MCT for the four-point
susceptibility are in reasonable agreement with numerical
simulations in both systems is significant, since the expo-
nentsb and 1/g are measured onslocald two-point functions
and m and l on four-point functions. The relation between
these exponents test a rather deep structural prediction of
MCT that relates time scales to length scalesf32g. More
numerical work, on other model systems with different val-
ues of b, for example, would be needed to establish more
firmly whether the coincidence observed in the present paper
is or not accidental.

B. Growing length scale?

We focus now more directly on the dynamic length scale.
In previous works, the dynamic length scalej extracted from
four-point correlations was measured either at fixed tempera-
ture for various timest where it was found to be nonmono-
tonic f12,13,27g, but monotonic inf11g, or at fixed timet
=tsTd, for different temperatures, where it is found to be
increasing when the temperature decreasesf9,12,21g. In

practice, to extractjst ,Td from the four-point correlation
function either in real space or in Fourier space, one needs to
postulate a specific functional form ofG4. In this respect, the
results of the previous section on simple lattice KCM’s with
no underlying liquid structure prove instructive. It is clear
that with data similar to Fig. 3, but obtained with much
smaller system sizes, with much less statistics, and polluted
by the underlying structure of the liquid, the precise extrac-
tion of dynamical length scales from molecular dynamics
simulations is not an easy task. More fundamentally, extract-
ing j from fitting either G4sr ,td or S4sk,td to a time-
independent scaling form necessarily biases the data as dis-
cussed above. This also shows that it is a much easier and
safer procedure to work, say, att=tsTd and different tem-
perature to observe the growth of a cooperative lengthjst ,Td
when decreasingT. On the other hand, it is nota priori
granted that the growth law ofj with t=tsTd when changing
T is identical to that ofjst ,Td with t at a given temperatureT.
We will not be able to answer this question with our numeri-
cal data.

With the above caveats in mind, we present in Fig. 6 some
numerical data in the binary Lennard-Jones mixture at a
fixed temperatureT=0.5 and three different times which fall
before, at, and after the peak inx4std. The difficulty of get-
ting clear-cut quantitative determinations forj is obvious
from Fig. 6. One would need much larger system sizes to
properly measureS4sk,td at small wave vectors, large times,

FIG. 5. Dynamic susceptibilityx4std at T=0.3 and 0.26sfrom
left to rightd in a log-log plot as a function of time for the soft-
sphere binary mixture of Refs.f38,56g. The data were kindly pro-
vided to us by D. Reichman and R. A. Denny, who worked in the
NVE ensemble. The straight line represents the MCT prediction for
the power-law behavior before the peak.

FIG. 6. Left: dynamic susceptibility atT=0.5 andq=4.21. The
vertical lines indicate the times at whichS4sk,td is evaluated in the
bottom figure. Right: the corresponding threeS4sk,td sthe last two
have been multiplied by 2 for clarityd. Lines are fits to the form
s40d, thek→0 limit being fixed by the value ofx4std, with a mono-
tonically growing length scalejstd.
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and low temperatures. The system simulated here contains
1372 particles. One could possibly increase the number of
particles by a factor of 10, but the increase in linear size
would be very modest, a factor of 101/3<2.15. Nonetheless,
we have fitted the data in Fig. 6 with a simple empirical form

S4sk,td =
x4std − C

1 + skjdb + C s40d

for 0øk,k0, k0<7.21 being the position of the first peak in
the static structure factor. As for thed=3 FA model, the
exponentbstd and the dynamic lengthjstd are fitting param-
eters. There is an additional free parameter, the additive con-
stant C in Eq. s40d, which accounts for the fact that the
structure of the liquid starts to be visible and creates some
signal inS4sk,td whenk→k0. The results of the fitting pro-
cedure are presented in Fig. 6 with lines going through the
data. Note that the fits in Fig. 6 are constrained at lowk by
the value of the dynamic susceptibilityx4std. The most im-
portant result from Fig. 6 is that if the functional form of
S4sk,td is given some freedom, here via the time-dependent
exponentbstd, the extracted dynamic length scalejstd indeed
continues to grow monotonically after the peak of the dy-
namic susceptibility, contrary to reported previously
f12,13,27g, but in agreement withf11g. We emphasize once
more that this result physically makes sense. At times much
larger thant* , only very rare but very large dynamical do-
mains contribute to the dynamic structure factor, so that spa-
tial correlations are weak, but extremely long ranged. The
existence of an ever growing length scale is supported by
any model with an hydrodynamical limitssuch as the phonon
or defect models studied hered and is in a sense trivial. The
really interesting piece of information is the value of this
length scale fort=ta—i.e., when the relevant relaxation pro-
cesses take place.

We conclude that our numerical data are not inconsistent
with a monotonically growing length scale even fort.t,
although addressing more quantitative issues such as func-
tional form at the growth law and its temperature dependence
would require quite an important, but certainly worthwhile,
numerical effort.

VIII. CONCLUSION AND FINAL COMMENTS

Let us summarize the results and various points made in
this rather dense paper. First, we have computed numerically
and analytically, exactly or approximatively, the four-point
correlation function designed to characterize nontrivial coop-
erative dynamics in glassy systems within several theoretical
models: mode-coupling theory, collectively rearranging re-
gions, diffusing defects, kinetically constrained models, and
elastic and plastic deformations. The conclusion is that the
behavior ofx4std is rather rich, with different regimes sum-
marized in the Introduction and in Fig. 1. We have computed
the early time exponentm and the peak exponentl for quite
a few different models of glass-forming liquids and shown
that the values of these exponents resulting from these mod-
els are quite different, suggesting that the detailed study of
x4st ,Td should allow one to eliminate or confirm some of the
theoretical models for glass formation.

In this spirit, we first simulated some noncooperative
KCM’s as the one-spin-facilitated FA model ind=1 andd
=3 and the East model. The assumption of pointlike defects
that diffuse, possibly with an anomalous diffusion exponent,
gives a good account of the shape of the four-point correla-
tion function and of the four-point susceptibility which are in
quantitative agreement with the above results for the inde-
pendent defect model. For strong glasses such as SiO2, our
results might lead to quantitative predictions if the relaxation
is indeed due to defect diffusion. It would be very interesting
to reconsider numerical simulations of the dynamics of SiO2
under the light of the present paper to check in more detail
that the defect picture is indeed correct in this casesnote that
our results should enable one to extract, in principle, the
properties, density, and relaxation times of defects from the
four-point correlation functiond. For the d=3 one-spin-
facilitated FA model, we see clear indications of the interac-
tions between defects as time increases. This leads to small
deviations of the numerically obtained exponents with re-
spect to those predicted by our analysis of the independent
defect model, which does not account for interactions be-
tween defects. As far as the identification of a growing length
scalejstd from numerical data, we have seen that even within
this simplified lattice model, this can be a rather difficult
task. Our results point toward a dynamical correlation length
that grows forever and a behavior ofS4sk,td different from
the Ornstein-Zernike form but with similar asymptotic be-
havior. We leave the study of cooperative KCM’s, for which
a more complicated behavior should occur, for future work.
In particular, the detailed form ofS4sk,td should contain in-
formation about the inner structure of the corresponding de-
fects.

We have also analyzed the four-point susceptibility of
both a Lennard-Jones system and a soft-sphere system, and
shown that the initial exponentm of the four-point suscepti-
bility is decreasing with the temperature and rather small,
m,1. We have found, perhaps unexpectedly, a reasonable
agreement form andl with the predictions of MCT but not
with other theoretical scenarios, such as simple diffusive or
subdiffusive defects, strong KCM’s, or CRR’ssalthough this
might be a question of temperature and time scales, since
both CRR and cooperative KCM’s are supposed to apply
closer to the glass transition temperatured. Finally we con-
firm that the extraction of the growth law ofjstd at a given
temperature is difficult, and we can only say at this stage that
the data are not incompatible with the idea thatjstd grows
monotonically, even beyondt=ta, in the Lennard-Jones sys-
tem.

As for further work and perspectives, we think that the
following points would be worth investigating. First, it
would be very interesting to develop a detailed theory of the
crossover between the elastic regime described in Sec. III
and the mode-couplingb relaxation regime. Is it possible, in
particular, to describe approximately the “melting” of the
glass as one approaches the mode-coupling transition tem-
perature from below? Second, we only considered systems in
equilibrium. One in fact expects that the four-point suscepti-
bility also contains very useful information in the aging re-
gime sseef31,59gd. Detailed predictions in this regime may
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enable one to probe the mechanisms for slow dynamics and
the issue of the cooperative length at low temperature in the
aging regimef59g. In particular, the elastic contribution
should not age whereas the CRR contributionscharacterized
by the same exponentmd should exhibit some aging, possibly
allowing one to separate the two effects. Third, since it is
clear from the present paper that simpler KCM’s
sFredrickson-Andersen one-spin-facilitated, East model and
its generalizationd seem to fail at describing quantitatively
x4std obtained by molecular dynamics simulations ofsat least
twod fragile systems, it would be important to understand if it
is possible to find a generalization of these KCM’s that can
be in agreement with numerics. For the same reason a quan-
titative study of four-point functions in cooperative KCM’s
where defects have a complex inner structure would be in-
teresting. Fourth, it would be important to define more com-
plicated correlation functions—for example, a fully general
four point function or higher-order correlation functions—in
order to test in a more stringent way the idea of cooperativity
in glassy systems and distinguish systems where the growth
of x4std is trivial, such as elastic solids, from those in which
a truly nontrivial cooperativity governs the dynamics. Fi-
nally, it seems clear that this issue of cooperativity and its
associated length scale can only be convincingly settled if
long-time scales and low-temperature regimes can be probed
quantitatively in experimental systems. We hope that the
present paper will motivate ways to directly access four-
point functions experimentally in glassy systemssseef31gd;
natural candidates for this are colloidsf3g and granular ma-
terials f58,60g, although there might be ways to investigate
this question in molecular glasses and spin glasses as well
f61g.

Note added to proofs:We have recently realized that the
dynamical susceptibility can be quite different in the canoni-
cal NVT ensemble and in the NVE ensemble. A full discus-
sion of this point, and its consequences for the analysis of
numerical and experimental results, will be presented inf45g.
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APPENDIX A: DYNAMICS OF ELASTIC
NETWORKS

1. Four-point correlation function: Overdamped case

We will defineG4srW ,td for the elastic model defined in the
text as

G4srW,td = kcosqffsrW,td − fsrW,0dg

3cosqffsrW = 0,td − fsrW = 0,0dgl − C2sq,td,

sA1d

which is equivalent to

G4srW,td =
1

2
kcosqffsrW,td − fsrW,0d + fsrW = 0,td − fsrW = 0,0dgl

+
1

2
kcosqffsrW,td − fsrW,0d − fsrW = 0,td

+ fsrW = 0,0dgl − C2sq,td.

Using the fact that the fieldf is Gaussian, we finally find

G4srW,td = C2sq,tdhcoshf2q2RsrW,tdg − 1j, sA2d

where

RsrW,td = kffsrW,td − fsrW,0dgffsrW = 0,td − fsrW = 0,0dgl

=
T

k
E ddk

s2pddk2e−ikW·rWs1 − e−kk2td. sA3d

Hence,

RsrW,td =
T

k
sktd1−d/2FS r

Îkt
D , sA4d

with

Fszd = z2−dfIs`d − Iszdg, Iszd =E ddw

s2pddw2e−iw1−w2/z2
.

sA5d

We thus see immediately thatG4srW ,td will be governed by a
“diffusive” correlation lengthjstd,Îkt, as expected from
the structure of the Langevin equation that describes relax-
ational dynamics. Note that for underdamped dynamics,
sound waves would change this scaling.

It is useful to consider the following quantity:

Jszd =
]Iszd

]S 1

z2D =E ddw

s2pdde−iw1−w2/z2
. sA6d

In d=3, after integrating overdw1, one has

Jszd =
1

8p3/2z3e−z2/4 sA7d

and

Iszd =
1

4p3/2E
z

`

e−u2/4du. sA8d

Therefore, forz!1, one findsFszd.s4pzd−1 and RsrW ,td
.T/ s4pkrd, whereas forz@1,

Fszd . s2p3/2d−1 exps− z2/4d/z2.

Thus, for r !jstd and kL2t@1, the four-point correlation
function behaves as

G4srW,td = fq
2FcoshS Tq2

2pkr
D − 1G . sA9d

2. Four-point correlation function: Underdamped case

We have now
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m
]2fsrW,td

]2t
= kDfsrW,td, sA10d

which has for solutions in Fourier space

fkstd = expsikVtdfks0d, sA11d

with V=sk /md1/2. We now have

kffsrW,td − fsrW,0dg2l =
2T

k
E uexpsikVtd − 1u2

k2

ddk

s2pdd

=
4T

k
E s1 − cosfVktgddk. sA12d

In d=3, we find obviously the same result forfq andG4 as
above, butRsrW ,td is now equal to

RsrW,td =
T

k
E ddk

s2pddk2e−ikW·rWf1 − cosskVtdg, sA13d

which we write

RsrW,td =
T

k
fIsrW,0d − IsrW,tdg, sA14d

where

IsrW,td =E ddk

s2pddk2e−ikW·rW cosskVtd. sA15d

By introducingz=Vt/ r and changing the variableq; rk and
alsou=cosu and integrating overu, one finds

IsrW,td =
2p

r
E dqq−1hsinfqs1 + zdg + sinfqs1 − zdgj.

sA16d

Consider the first term

IsrW,td =
2p

r
E dqq−1 sinfqs1 + zdg. sA17d

Changing variablev=qs1+zd directly shows that this inte-
gral do not depend onz, as long ass1+zd is positive. This is
true for the other integral, which does not depend onz as
long as 1−z is positive. If 1−z is negative, then the integral
changes sign. Therefore we have thatIsrW ,td= IsrW ,0d if z,1
and IsrW ,td=0 if z.1. Therefore RsrW ,td=0 if z,1 and
RsrW ,td=T/4pkr when z.1. The result is very intuitive:
whenz,1 the information does not have time to travel the
distancer and there are no correlation. Forz.1 the two
regions are “connected” and one finds the free-field correla-
tions. Brownian and Newtownian dynamics furnish the same
correlation for a givenr when the time diverges, as we ex-
pect. Finally, it is straightforward to obtain the result quoted
in the text forx4std.

3. Low-dimensional case

We give here, without much detail, the results for elastic
networks ind=1 andd=2. In d=1, as is well known, each
particle wanders arbitrary far from its initial position but in

an anomalous, subdiffusing way, ast1/4. Correspondingly, the
dynamical structure factor decays as a stretched exponential:

ln Csq,td ,
T

k
q2t1/2. sA18d

Note that thet1/4 comes from a collective displacement of the
cages and is similar to the anomalous diffusion observed for
hard spheres in one dimension, since the latter problem can
be mapped onto the Edwards-Wilkinson problem in one di-
mensionf60,62g. We expect that the results obtained here for
G4 should also hold for this case as well. In fact, this model
was recently discussed in the context of a simpled=1 granu-
lar compaction model, seef60g.

In d=2, the displacement grows logarithmically with
time, leading to a power-law decay of the dynamical struc-
ture factor with aq-dependent exponent:

Csq,td , t−y, y =
q2T

8pk
. sA19d

Turning now tox4std, we find that after a short transient,
x4std grows ast1/2 in d=1 and behaves ast1−2y in d=2.

APPENDIX B: CALCULATIONS FOR THE DEFECT
MODEL

In Sec. VI we have reduced the computation ofG4sr ,td
and x4std to probability distributions of a single random
walk. In the following we shall show how these quantities
can be computed in any spatial dimension.

Let us callFx
zsud be the probability that a random walk

starting inz reachesx for the first time at timeu. Px
zstd, the

probability that a vacancy starts inz at time zero and reaches
for the first timex at a time less thant, reads

Px
zstd =E

0

t

Fx
zsuddu. sB1d

Therefore, we need to calculateFx
zsud. The trick to do that

is writing a linear equation relatingFx
z, which we want to

compute, toPzsx,td, the probability that a random walk with
self-diffusion coefficientD, starting inz, is in x at time t,
which is well known. This linear equation is

Pzsx,td = dx,zdt,0 +E
0

t

Fx
zsudPxsx,t − uddu. sB2d

By taking the Laplace transformsfrom now ons is the vari-
able conjugated tot andL indicates the Laplace transformd
we obtain

Fx
zstd = L−1SLPzsx,sd − dx,z

LPxsx,sd Dstd sB3d

and

Px
zstd =E

0

t

L−1SLPzsx,sd − dx,z

LPxsx,sd Dst8ddt8 sB4d

=L−11

s

LPzsx,sd − dx,z

LPxsx,sd
. sB5d
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A similar strategy can be used to calculatePx,ȳ
z std. Indeed

the following equality holds:

Px,ȳ
z std =E

0

t

Fx,ȳ
z st8dPȳ

xst − t8ddt8,

Py,x̄
z std =E

0

t

Fx̄,y
z st8dPx̄

yst − t8ddt8, sB6d

whereFx̄,y
z std is the probability that a random walk starting in

z at time zero reachesy for the first time att but never
touchesx at sø t. Therefore, in order to calculatePx,ȳ

z std
+Py,x̄

z std we need to calculateFx,ȳ
z std+Fy,x̄

z std. It is immediate
to check that the following equations hold for any choice of
x,z,y:

Fx
zstd = dx,zdt,0 +E

0

t

dsFx̄,y
z ssdFx

yst − sd + Fx,ȳ
z std,

Fy
zstd = dy,zdt,0 +E

0

t

dsFx,ȳ
z ssdFy

xst − sd + Fx̄,y
z std, sB7d

which implies, again by Laplace transformsz is always dif-
ferent from x and y in the following so we will skip the
Kroneckerd’sd,

Fx̄,y
z std + Fx,ȳ

z std = L−1
LFx

zssd + LFy
zssd

LFy
xssd + LFx

xssd
. sB8d

Using the expressionsB3d for Fy
xssd we get

Fx̄
zsy,td + Fȳ

zsx,td = L−1
LPzsx,sd + LPzsy,sd
LPxsy,sd + LPxsx,sd

. sB9d

Furthermore,Px̄
ystd=1−Px

ystd. Hence we obtain

LPx̄
yssd =

1

s
− LPx

yssd =
1

s
S1 −

LPysx,sd
LPxsx,sdD . sB10d

Finally, we obtain the expression for

LfPx,ȳ
z ssd + Py,x̄

z ssdg =
LPzsx,sd + LPzsy,sd
LPxsy,sd + LPxsx,sd

1

s
S1 −

LPysx,sd
LPxsx,sdD .

sB11d

A useful way to rewrite this expression is obtained by
summing and subtracting the Laplace transform ofPx

zstd
+Py

zstd:

Px,ȳ
z std + Py,x̄

z std = Px
zstd + Py

zstd

− 2L−1
LPzsx,sd + LPzsy,sd
LPxsy,sd + LPxsx,sd

1

s

LPysx,sd
LPxsx,sd

.

sB12d

Finally putting together all the different terms we have

knxstdnystdl = expf− 2rv − 2rvNstd + 2rvPx
ystd + rvGst,x − ydg,

sB13d

whereNstd=ozÞxPx
zstd is the average number of distinct sites

sminus 1d visited by a random walk during the interval of
time t and

Gst,x − yd = L−1F o
zÞx,y

LPzsx,sd + LPzsy,sd
LPxsy,sd + LPxsx,sd

1

s

LPysx,sd
LPxsx,sdG .

sB14d

Since

knxstdl2 = expf− 2rv − 2rvNstdg, sB15d

the expression ofG4 is

G4sx − y,td = expf− 2rv − 2rvNstdg

3hexpf2rvPx
ystd + rvGst,x − ydg − 1j.

sB16d

In the following we shall analyze separately the one-
dimensional case, the three- or higher-dimensional case, and
the two-dimensional case.

1. One dimension

Consider a symmetric random walk on a one-dimensional
lattice with lattice spacinga. By Laplace transforming the
master equation

dPzsx,td
dt

=
Pzsx + a,td + Pzsx − a,td − 2Pzsx,td

2
, sB17d

one immediately obtains

LPzsx,sd =E
−p/a

p/a dk

2p

eiksx−zd

zskd + s
, sB18d

where zskd=s1−coskd. In the continuum limit a→0, sx
−yd~aÎDt /2~a2, the above integral can be solved with the
well-known result

LPzsx,sd =
1

Î4Ds
e−Îsux−zu/ÎD, sB19d

which correspond to the solution of the diffusion equation
for a one-dimensional Brownian motion with diffusion coef-
ficient D—i.e.,

dP

dt
= D

d2P

dx2 . sB20d

Let us now compute all the functions needed to getG4.
First,

Nstd = o
zÞx

Px
zstd = o

zÞx

L−1S1

s

LPzsx,sd
LPxsx,sdDstd,

where we used Eq.sB4d. Whent@1 we get

Nstd = 4
ÎDt
Îp

.
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Second, using the expressionsB14d of G in terms of
LPzsx,sd we get

LGss,x − yd = 2
ÎD

s3/2

e−Îsux−yu/ÎD

e−Îsux−yu/ÎD + 1
.

Changing variable in the inverse Laplace transform we
get

Gstd = 4ÎDtfS ux − yu
Î2Dt

D ,

where f(sux−yud /Î2Dt) equals

fS ux − yu
Î2Dt

D =E
−i`−g

+i`−g e−Î2sux−zu/ÎDt

e−Î2sux−zu/ÎDt + 1
e−s ds

s3/2.

Finally Px
ystd can be computed easily but it is always

much smaller than the other terms in the exponential, so we
are going to neglect it. The resulting expression forG4 is

G4sx − y,td = expS− 2rv −
8rv

Îp
ÎDtD

3HexpFrv2ÎDtfS ux − yu
Î2Dt

DG − 1J . sB21d

Note that the typical time scale ist=1/rv
2D, and since we

focus onrv→0, we can rewrite the above expression as

G4sx − y,td = expS−
Î8
Îp

Ît/tD
3HexpF2Ît/tfSrv

ux − yu
Î2t/t

DG − 1J .

sB22d

Integrating overx−y to get thex4 we find

x4std =
2

rv
expS−

8
Îp

Ît/tDÎ2t/tE
0

+`

dxhexpf2Ît/tfsxdg − 1j.

sB23d

In particular whent /t!1 we have

x4std ~
1

rv
st/td. sB24d

The interpretation of this result is that at short times the
defects do not intersect and thex4 is just the square of the
number of average sites visited by a random walk until time
t. We will see that this interpretation is indeed correct in any
dimension.

Finally, after some algebra it is possible to obtain from
Eq. sB24d that x4std.sc/rvdexpfs−4/ÎpdÎt /tg at very large
times sc is a numerical constantd. Thus, as found in simula-
tions, the normalizedx4 does not go to zero as it happens in
three dimensions.

2. Three dimensions and higher

Consider a symmetric random walk on a cubic lattice. The
general expression forPzsx,sd is

Pzsx,sd =E
BZ

ddk

s2pdd

eiksx−zd

zskd + s
, sB25d

whereBZ means Brillouin zone andzskd=oi=1
d s1−coskid for

a hypercubic latticeski is the component ofkW in the direction
id. Also in this case we consider the continuum limitsx
−yd /ÎDt /2~Os1d and look for timest much larger than 1.

Let us again compute all the needed quantities: first,Nstd.
In this case fort@1 we find that

Nstd = DSE
BZ

ddk

pzskdD−1

L−1 1

s2 .

HenceNstd=c1tD wherec1=feBZd
dk/pzskdg−1.

Again, we neglect thePx
ystd term and we focus onG in the

continuum limit, fort@a. We get

LG =
1

s2

E
BZ

ddk

s2pdd

eiksx−zd

Dk2 + s

SE
BZ

ddk

s2pdd

1

Dk2D2 .

Changing variable in the inverse laplace transform we get

Gstd = D2E
−i`−g

+i`−g

etsE
BZ

ddk

s2pdd

eiksx−zd

Dk2 + s

expstsd
C2s2 ds.

Since we know the inverse laplace transform of the func-
tion resulting from the integral overk fit is simply Pysx,tdg
and each 1/s adds an integral, we finally get

Gstd = c2sDtd2E
0

1

duE
0

u

dv
e−sx − yd2/2Dtv

s2pDtvdd/2 ,

wherec2 is a numerical constant of order unity. From this
expression, we finally obtain

G4sx − y,td = exps− 2rv − 2rvc1DtdFexpSrvsc2Dtd2

3E
0

1

duE
0

u

dv
e−sx − yd2/2Dtv

s2pDtvd3/2 D − 1G sB26d

and the results quoted in the main text.

3. Two dimensions

In two dimensions things are a bit tricky because of loga-
rithmic corrections. Briefly, we obtain that

G4sx − y,td = expS− 2
c3t

t ln t
D 1

rv
c4

2st/td2 1

sln tDd2E
0

1

du

3E
0

u

dv
e−sx − yd2/2Dvt

s2pDvtd
, sB27d

with c3 and c4 constants of order unity. Hence, integrating
over x−y, we get

x4std = expS− 2
c3t

t ln t
D 1

2rv
c4

2st/td2 1

sln tDd2 . sB28d
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In particular whent /t!1 we have

x4std ~
1

rv
S t

t ln t
D2

. sB29d

Again, since the number of sites visited on average by a RW
in two dimensions goes liket / ln t, at short timesx4 is the
square of the number of average sites visited until timet.

4. Density-density correlations

We now sketch the calculation for the density four point
correlation, defined as

G4
dsx − y,td ; kfhxstdhxs0d − r2gfhystdhys0d − r2gl

− khxstdhxs0dlc
2, sB30d

with hxstd=0,1 if thesite x is empty or occupied at timet,
respectively. We start from

khxstdhxs0dlc
2 = SF 1

V
o

z,zÞx

f1 − Pzsx,tdgGNv

− r2D2

.

Using thatozP
zsx,td=1 we get

khxstdhxs0dlc
2 = exps− 4rvdhexpfrvP

xsx,tdg − 1j2.

sB31d

In the limit rv→0 we have

khxstdhxs0dlc
2 = frvP

xsx,tdg2. sB32d

Similarly we find that

khxstdhxs0dhystdhys0dl = S 1

V
o

z,zÞx,y
f1 − Pzsx,td − Pzsy,tdgDNv

= expf− 4rv + 2rvP
xsx,td

+ 2rvP
ysx,tdg.

Collecting all the pieces together we finally get, at leading
order inrv,

G4
dsx − y,td = 2rvP

ysx,td sB33d

for xÞy. The interpretation of this equation is that the dy-
namical correlation betweenx andy is due to the fact that the
same vacancywas inx at time 0 andt at timet or vice versa.
Integrating overx−y one finds that at long timesx4std
~1/td/2, showing no interesting structure.
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