PHYSICAL REVIEW E 76, 011507 (2007)

Revisiting the slow dynamics of a silica melt using Monte Carlo simulations
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We implement a standard Monte Carlo algorithm to study the slow, equilibrium dynamics of a silica melt in
a wide temperature regime, from 6100 K down to 2750 K. We find that the average dynamical behavior of the
system is in quantitative agreement with results obtained from molecular dynamics simulations, at least in the
long-time regime corresponding to the a-relaxation. By contrast, the strong thermal vibrations related to the
boson peak present at short times in molecular dynamics are efficiently suppressed by the Monte Carlo
algorithm. This allows us to reconsider silica dynamics in the context of mode-coupling theory, because several
shortcomings of the theory were previously attributed to thermal vibrations. A mode-coupling theory analysis
of our data is qualitatively correct, but quantitative tests of the theory fail, raising doubts about the very
existence of an avoided singularity in this system. We discuss the emergence of dynamic heterogeneity and
report detailed measurements of a decoupling between translational diffusion and structural relaxation, and of
a growing four-point dynamic susceptibility. Dynamic heterogeneity appears to be less pronounced than in

more fragile glass-forming models, but not of a qualitatively different nature.

DOLI: 10.1103/PhysRevE.76.011507

I. INTRODUCTION

Numerical simulations play a major role among studies of
the glass transition since, unlike in experimental works, the
individual motion of a large number of particles can be fol-
lowed at all times [1]. Computer simulations usually study
Newtonian dynamics (ND) by solving a discretized version
of Newton’s equations for a given interaction between par-
ticles [2]. Although this is the most appropriate dynamics to
study molecular liquids, it can be interesting to consider al-
ternative dynamics that are not deterministic, or which do
not conserve the energy. In colloidal glasses and physical
gels, for instance, the particles undergo Brownian motion
arising from collisions with molecules in the solvent, and a
stochastic dynamics is more appropriate [2]. Theoretical con-
siderations might also suggest the study of different sorts of
dynamics for a given interaction between particles, for in-
stance, to assess the role of conservation laws [3-5] and
structural information [6,7]. Of course, if a given dynamics
satisfies detailed balance with respect to the Boltzmann dis-
tribution, all structural quantities remain unchanged, but the
resulting dynamical behavior might be very different. In this
paper, we study the relaxation dynamics of a commonly used
theoretical model for silica using Monte Carlo simulations
and compare the results with previous ND studies for both
the averaged dynamical behavior and the spatially heteroge-
neous dynamics of this system.

Several papers have studied in detail the influence of the
chosen microscopic dynamics on the dynamical behavior in
a simple glass former, namely a binary mixture of Lennard-
Jones particles [1,8]. Gleim, Kob, and Binder [9] studied
stochastic dynamics where a friction term and a random
noise are added to Newton’s equations, the amplitude of both

*Permanent address: Laboratoire des Colloides, Verres et Na-
nomatériaux, UMR 5587, Université Montpellier II and CNRS,
34095 Montpellier, France.

1539-3755/2007/76(1)/011507(12)

011507-1

PACS number(s): 64.70.Pf, 02.70.Ns, 05.20.Jj

terms being related by a fluctuation-dissipation theorem.
Szamel and Flenner [10] used Brownian dynamics, in which
there are no momenta, and positions evolve with Langevin
dynamics. Berthier and Kob [11] employed Monte Carlo dy-
namics, where the potential energy between two configura-
tions is used to accept or reject a trial move. The equivalence
between these three stochastic dynamics and the originally
studied ND was established at the level of the averaged dy-
namical behavior, except at very short times where differ-
ences are indeed expected. However, important differences
were found when dynamic fluctuations were considered,
even in the long-time regime comprising the « relaxation
[3,4,11].

Silica, the material studied in the present work, is differ-
ent from the previously considered Lennard-Jones case in
many aspects which all motivate our Monte Carlo study of
the van Beest, Kramer, and van Santen (BKS) model for
silica [12]. First, the BKS model was devised to represent a
real material, making our conclusions more directly appli-
cable to experiments. Second, the temperature evolution of
relaxation times is well described by a simple Arrhenius law
at low temperatures, typical of strong glass formers, which
are commonly believed to belong to a somewhat different
class of materials, so that qualitative differences might be
expected with more fragile, super-Arrhenius relaxing materi-
als. Third, the onset of slow dynamics in fragile materials is
often said to be accurately described by the application of
mode-coupling theory, at least over an intermediate window
of 2 to 3 decades of relaxation times [7]. Mode-coupling
theory (MCT) formulates in particular a series of quantitative
predictions regarding the time, spatial, and temperature de-
pendences of dynamic correlators. In the case of silica melts,
previous analysis reported evidence in favor of a narrower
temperature regime where MCT can be applied, but the test
of several theoretical predictions was either seriously af-
fected, or even made impossible by the presence of strong
short-time thermal vibrations related to the boson peak in
this material [13]. These vibrations affect the time depen-
dence of the correlators much more strongly in silica than in
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Lennard-Jones systems, which constitutes a fourth difference
between the two systems. Using Monte Carlo simulations we
shall therefore be able to revisit the MCT analysis performed
in Ref. [13]. Fifth, while detailed analysis of dynamic het-
erogeneity is available for fragile materials, a comparatively
smaller amount of data is available for strong materials
[3,4,14,15], and we shall therefore investigate issues that
have not been addressed in previous work.

The paper is organized as follows. In Sec. II we give
details about the simulation technique and compare its effi-
ciency to previously studied dynamics. In Sec. III we present
our numerical results about the averaged dynamics of silica
in Monte Carlo simulations, while Sec. IV deals with aspects
related to dynamic heterogeneity. Finally, Sec. V concludes
the paper.

II. SIMULATING SILICA USING MONTE CARLO
DYNAMICS

Our aim is to study a non-Newtonian dynamics of the
glass-former silica, SiO,. Therefore, we must first choose a
reliable model to describe the interactions in this two-
component system made of Si and O atoms, and then design
a specific stochastic dynamics which we require to be effi-
cient and to yield the same static properties as Newtonian
dynamics.

Various simulations have shown that a reliable pair poten-
tial to study silica in computer simulations is the one pro-
posed by BKS [12-18]. The functional form of the BKS
potential is

2
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where «, 8 €[Si,0] and r is the distance between the atoms
of type a and . The values of the constants g, gg, A Bag,
and C,g can be found in Ref. [12]. For the sake of compu-
tational efficiency the short-range part of the potential was
truncated and shifted at 5.5 A. This truncation also has the
benefit of improving the agreement between simulation and
experiment with regard to the density of the amorphous glass
at low temperatures. The system investigated has Ng;=336
and Np=672 atoms in a cubic box with fixed size L
=24.23 A, so that the density is p=2.37 g/cm3, close to the
experimentally measured density at atmospheric pressure of
2.2 g/cm’ [19].

Once the pair interaction is chosen, we must decide what
stochastic dynamics to implement. Previous studies in a
Lennard-Jones system concluded that among Monte Carlo
(MC), stochastic dynamics (SD) and Brownian dynamics
(BD), MC was by far the most efficient algorithm because
relatively larger incremental steps can be used while main-
taining detailed balance, which is impossible for SD and BD
where very small discretized time steps are needed to main-
tain the fluctuation-dissipation relation between noise and
friction terms [11]. Given the generality of this argument, it
should carry over to silica, and we decided to implement MC
dynamics to the BKS model. An additional justification for
our choice stems from results by Horbach and Kob who per-
formed preliminary investigations of the SD of BKS silica
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[20]. Using a friction term similar in magnitude to the one
used in Lennard-Jones simulations was however not enough
to efficiently suppress short-time elastic vibrations. Using an
even larger friction term would probably damp these vibra-
tions, but would also make the simulation impractically slow.

A standard Monte Carlo dynamics [2] for the pair poten-
tial in Eq. (1) should proceed as follows. In an elementary
MC move, a particle, i, located at the position r; is chosen at
random. The energy cost, AE;, to move particle i from posi-
tion r; to a new, trial position r;+ Jr is evaluated, Jr being a
random vector comprised in a cube of linear length &,
centered around the origin. The Metropolis acceptance rate,
p=min(1,ePAE/8) where B=1/T is the inverse tempera-
ture, is then used to decide whether the move is accepted or
rejected. In the following, one Monte Carlo time step repre-
sents N=Ng+Ng attempts to make such an elementary
move, and time scales are reported in this unit. Temperature
will be expressed in Kelvin. Monte Carlo simulations can of
course be made even more efficient by implementing, for
instance, swaps between particles, or using parallel temper-
ing. The dynamical behavior, however, is then strongly af-
fected by such nonphysical moves and only equilibrium ther-
modynamics can be studied. Since we want to conserve a
physically realistic dynamics, we cannot use such improved
schemes.

An additional difficulty with Eq. (1) as compared to
Lennard-Jones systems is the Coulombic interaction in the
first term. Such a long-range interaction means that the
evaluation of the energy difference AE; needed to move par-
ticle i in an elementary MC step requires a sum over every
particle j # i, and over their repeated images due to periodic
boundary conditions. Of course, the sum can be efficiently
evaluated using Ewald summations techniques, as is com-
monly employed in ND simulations [2]. We note, however,
that Ewald techniques are better suited for ND than for MC
since in ND the positions and velocities of all particles are
simultaneously updated so that the Ewald summation is per-
formed once to update all particles. In MC simulations, each
single move requires its own Ewald summation, and this
remains computationally very costly.

For the BKS potential in Eq. (1) it was recently shown
that a simple truncation can be performed which makes the
range of the Coulombic interaction term finite [21]. Detailed
ND simulations have shown that in the range of temperatures
presently accessible to computer experiments, no difference
can be detected between the finite range and the infinite
range versions of the BKS potential for a wide variety of
static and dynamic properties. Therefore we build on this
work and make the replacement [21]

l—>(l—l)+12(r—rc) forr<r,, (2)
r ror, .

while 1/r—0 for r>r.. This amounts to smoothly truncat-
ing the potential at a finite range, r., maintaining both energy
and forces continuous at the cutoff r=r,.. The physical moti-
vation for this form of the truncation was given by Wolf [22],
and discussed in several more recent papers [21,23]. Follow-

ing Ref. [21], we fix r.=10.14 A. Once the potential is trun-
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FIG. 1. Self-intermediate scattering function for silicon, Eq. (3),
at T=4000 K and |q|=1.7 A~' for various values of &,,,. Inset:
The evolution of the relaxation time with J,,,, unambiguously de-
fines an optimal value &,,,~0.65 A for efficient Monte Carlo
simulations.

cated, MC simulations become much more efficient, and
much simpler to implement. Furthermore, this will allow us
to perform detailed comparisons of the dynamics of the BKS
model of silica where the Wolf truncation is used for both
ND and MC in the very same manner, so that any difference
between the two sets of data can be safely assigned to the
change of microscopic dynamics alone, while reference to
earlier work done using Ewald summations is still quantita-
tively meaningful.

The one degree of freedom that remains to be fixed is
Omax» Which determines the average length scale of elemen-
tary moves. On the one hand, chosen too small, energy costs
are very small and most of the moves are accepted, but the
dynamics is very slow because it takes a long time for par-
ticles to diffuse over the long distances needed to relax the
system. On the other hand, too large displacements will on
average be very costly in energy and acceptance rates can
become prohibitively small. We seek a compromise between
these two extremes by monitoring the dynamics at a moder-
ately low temperature, 7=4000 K, for several values of J,,,.
As a most sensitive indicator of the relaxational behavior, we
measure the contribution from the specie @ (@=Si, O) to the
self-intermediate scattering function defined by

N,

1 &S
Fi(g.n) =\ -2 eatomion ), (3)
aj=1

We make use of rotational invariance to spherically average
over wave vectors of comparable magnitude, and present re-
sults for |q|=1.7 A=, which is the location of the prepeak
observed in the static structure factor S(g) of the liquid. This
corresponds to the typical (inverse) size of the SiO, tetrahe-
dra. In Fig. 1 we present our results for J,,, values between
0.3 and 1.0 A. As expected we find that relaxation is slow
both at small and large values of J,,,,, and most efficient for
intermediate values. Interestingly we also note that the over-
all shape of the self-intermediate scattering function does not
sensitively depend on &,,, over this wide range. We can
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FIG. 2. Top: Self-intermediate scattering function, Eq. (2), for
lq|=1.7 A~" and temperatures T=6100, 4700, 4000, 3580, 3200,
3000, and 2750 K (from left to right). Bottom: Mean-squared
displacement, Eq. (5), for the same temperatures in the same order.

therefore safely fix the value of J,,, based on an efficiency
criterium alone.
We define a typical relaxation time, 7,, as

1
Fyq,7,) = = (4)

and show its J,,x dependence in the inset of Fig. 1. A clear
minimum is observed at the optimal value of J,,,=~0.65 A,
which we therefore use throughout the rest of this paper. This
distance corresponds to a squared displacement of
0.4225 A2, which is very close to the plateau observed at
intermediate times in the mean-squared displacements (see
Fig. 2 below). This plateau can be taken as a rough measure-
ment of the “cage” size for the particles, so that MC simu-
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lations are most efficient when the cage is most quickly ex-
plored. This argument and the data in Fig. 2 suggest that the
location of the minimum should only be a weak function of
temperature, but we have not verified this point in detail.
Therefore we keep the value of J,,, constant at all tempera-
tures. An alternative would be to optimize it at each 7 and
then carefully rescale time scales between runs at different
temperatures.

What about the relative efficiency between MC and ND?
If we compare the relaxation measured at 7=4000 K, we
find 7,~13400 Monte Carlo steps, while 7,~4.7 ps for
ND. When using a discretized time step of 1.6 fs, this means
that, when counting in number of integration time steps, MC
dynamics is =5 times slower than ND. This result contrasts
with the results obtained in a Lennard-Jones mixture where
MC dynamics was about 2 times faster than ND [11]. We
attribute this relative loss of efficiency to the existence of
strong bonds between Si and O atoms in silica, which have
no counterparts in Lennard-Jones systems. It is obvious that
strong bonds are very hard to relax when using sequential
Monte Carlo moves, as recently discussed in Ref. [24].

We have performed simulations at temperatures between
T=6100 K and 7T=2750 K, the latter being smaller than the
fitted mode-coupling temperature, 7.=3330 K [13]. For each
temperature we have simulated three independent samples to
improve the statistics. Initial configurations were taken as the
final configurations obtained from previous work performed
with ND [21], so that production runs could be started im-
mediately. For each sample, production runs lasted at least
157, (at T=2750 K), much longer for higher temperatures,
so that statistical errors in our measurements are fairly small.
We have performed a few runs for a larger number of par-
ticles, namely N=8016 particles, to investigate finite size
effects which are known to be relevant in silica [25-27], and
the results will be discussed in Sec. III.

II1. ANALYSIS OF AVERAGED
TWO-TIME CORRELATORS

In this section we report our results about the time behav-
ior of averaged two-time correlators, we compare the Monte
Carlo results to Newtonian dynamics, and we perform a
quantitative mode-coupling analysis of the data.

A. Intermediate scattering function
and mean-squared displacements

The self-intermediate scattering function, Eq. (3), is
shown in Fig. 2 for temperatures decreasing from T
=6100 K down to 7=2750 K for Si and O atoms at |q|
=1.7 A~'. These curves present well-known features. Dy-
namics at high temperature is fast and has an exponential
nature. When temperature is decreased below 7=4500 K, a
two-step decay, the slower being strongly nonexponential,
becomes apparent. Upon decreasing the temperature further,
the slow process dramatically slows down by about 4 de-
cades, while clearly conserving an almost temperature-
independent, nonexponential shape, as already reported for
ND [13].
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We also find that the first process, the decay towards a
plateau, slows down considerably when decreasing tempera-
ture, although less dramatically than the slower process. The
fastest process, called critical decay in the language of mode-
coupling theory [7], is not observed when using ND, because
it is obscured by strong thermal vibrations occurring at high
frequencies (in the THz range). Clearly, no such vibrations
are detected in the present results which demonstrates our
first result: MC simulations very efficiently suppress the
high-frequency oscillations observed with ND.

Although the plateau seen in Fy(g,f) is commonly inter-
preted as vibrations of a particle within a cage, the data in
Fig. 2 discard this view. From direct visualization of the
particles’ individual dynamics it is obvious that vibrations
take place in just a few MC time steps, while the decay
towards the plateau can be as long as 10* time units at the
lowest temperatures studied here. This decay is therefore
necessarily more complex, most probably cooperative in na-
ture. This interpretation is supported by recent theoretical
studies where a plateau is observed in two-time correlators of
lattice models where local vibrations are indeed completely
absent [28]. A detailed atomistic description of this
process has not yet been reported, but would indeed be very
interesting.

Next, we study the mean-squared displacement defined as

NO{
X0 =+ (e ) - 0, (s)

ai=1

and we present its temperature evolution in Fig. 2, for both
Si and O atoms. The evolution of A%r(f) mirrors that of the
self-intermediate scattering function, and the development of
a two-step relaxation process is clear from these figures. Be-
cause we are studying stochastic dynamics, displacements
are diffusive at both short and long time scales. This consti-
tutes an obvious, expected difference between ND and MC
simulations: data clearly cannot match at very small times.
The goal of the present study is therefore to determine
whether the dynamics quantitatively match at times where
the relaxation is not obviously ruled by short-time ballistic
and/or diffusive displacements.

The plateau observed in F(q,f) now translates into a
strongly subdiffusive regime in the mean-squared displace-
ments separating the two diffusive regimes. At the lowest
temperature studied, when ¢ changes by three decades from
2X10% to 2X10°, the mean-squared displacement of Si
changes by a mere factor 2.8 from 0.14 to 0.39. Particles are
therefore nearly arrested for several decades of times, before
eventually entering the diffusing regime where the relaxation
of the structure of the liquid takes place.

B. Comparison to Newtonian dynamics

The preceding subsection has shown that the Monte Carlo
dynamics of silica is qualitatively similar to the one reported
for ND, apart from relatively short times where the effect of
thermal vibrations is efficiently suppressed and the dynamics
is diffusive instead of ballistic. We now compare our results
more quantitatively with the dynamical behavior observed
using ND.

011507-4



REVISITING THE SLOW DYNAMICS OF A SILICA MELT...

108 F T ]
= 7,(S1) .

- 1/25D(Si) i

= 1/50D(0) E
10* F ) :
i e ]
e E = ‘5
107 F &2 =
| | | | ]

1.5 2 2.5 3.5 4

104/T

FIG. 3. Temperature evolution of the a-relaxation time 7,(7) for
silicon (squares) and oxygen (circles), and inverse self-diffusion
constant for silicon (up triangles) and oxygen (down triangles), ver-
tically shifted for clarity. Open symbols are for ND (times rescaled
by 79=0.31 fs) closed symbols for MC. Full lines are Arrhenius fits
below T=3700 K with activation 5.86, 5.60, 5.43, and 4.91 eV
(from top to bottom). An Arrhenius fit for high temperatures is also
presented for D(O) with activation energy 2.76 eV. The dashed line
is a power law fit, 7,~(T-T,)~?, with T,=3330 K and y=2.35.

To this end, we compare first the temperature evolution of
the relaxation times, 7,(7), defined in Eq. (4), in Fig. 3.
Here, we use a standard representation where an Arrhenius
slowing down over a constant energy barrier E, with an at-
tempt frequency 1/,

(i) 6
Ta= TP\ 17 ) (6)
appears as a straight line. To compare both sets of data we
rescale the ND data by a common factor, 7,=0.31 fs, which
takes into account the discretization time step and the effi-
ciency difference discussed in the preceding section; #, will
be kept constant throughout this paper. We find that the tem-
perature evolution of the a-relaxation time measured in MC
simulations is in complete quantitative agreement with the
one obtained from ND, over the complete temperature range.
This proves that Monte Carlo techniques can be applied not
only to study static properties of silica, but also its long-time
dynamic properties.

In Fig. 3 we also show the temperature evolution of the
self-diffusion constant, defined from the long-time limit of
the mean-squared displacement as

2
D= limw. (7)
(—w Ot
The behavior of the (inverse) diffusion constant is qualita-
tively very close to the one of the a-relaxation time, and we
again find that ND and MC dynamics yield results in full
quantitative agreement.

As expected for silica, we find that at low temperatures
below T=3700 K, relaxation time scales and diffusion con-
stant change in an Arrhenius fashion described by Eq. (6).
We find, however, that the observed activation energies dis-
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play small variations between different observables, from
5.86 eV for 7,(Si) to 4.91 eV for 1/D(0). These values com-
pare well with previous analysis [13], and with experimental
findings [29].

From Fig. 3, it is clear that Arrhenius behavior is obeyed
below T=3700 K only, while the data bend up in this rep-
resentation for higher temperatures. This behavior was inter-
preted in terms of a fragile to strong behavior of the relax-
ation time scales in several papers [13,30,31], despite the fact
that fragility is usually defined experimentally by consider-
ing data on a much wider temperature window close to the
experimental glass transition. To rationalize these findings,
Horbach and Kob analyzed the data using mode-coupling
theory predictions [13]. In particular they suggest to fit the
temperature dependence of 7, as

7o~ (T=T)7, (8)

with 7,~3330 K and y=2.35. This power law fit is also
presented in Fig. 3 as a dashed line. Its domain of validity is
of about 1 decade, which is significantly less than for more
fragile materials with super-Arrhenius behavior of relaxation
time scales [8].

It is interesting to note that a simpler interpretation of this
phenomenon could be that this behavior is nothing but a
smooth crossover from a nonglassy, homogeneous, high-
temperature behavior to a glassy, heterogeneous, low tem-
perature behavior, as found in simple models of strong glass-
forming liquids [32]. In Fig. 3, we implement this simpler
scenario by fitting high temperature data with an Arrhenius
law, as is sometimes done in the analysis of experimental
data [33]. Such a fit works nicely for high temperatures, from
T=6100 to 4700 K, but breaks down below 7T=4000 K. A
physical interpretation for this high-temperature Arrhenius
behavior was offered in Ref. [34]. This shows that analyzing
silica dynamics in terms of a simple crossover occurring
around 4000 K between two simple Arrhenius law is indeed
a fair description of the data which does not require invoking
a more complex fragile to strong crossover being rational-
ized by the existence of an avoided mode-coupling singular-
1ty.

The difference found above for the activation energies
describing 7, and 1/D for both species implies that these
quantities, although both are devised to capture the tempera-
ture evolution of single particle displacements, have slightly
different temperature evolutions and are not proportional to
one another. This well-known feature implies the existence
of a “decoupling” between translational diffusion and struc-
tural relaxation in silica, as documented in previous papers
[13]. In Fig. 4 we report the temperature evolution of the
product D(T)7,(q,T) which is a pure constant for a simply
diffusive particle where 7,(gq,T)=1/(g*D). We normalize
this quantity by its value at 7,,=4700 K, so that any devia-
tions from 1 indicates a nonzero decoupling [35,36]. As ex-
pected we find that the product is not a constant, but grows
when temperature decreases. Remarkably, although this
quantity is a much more sensitive probe of the dynamics of
the liquid, its temperature evolution remains quantitatively
similar for both ND and MC dynamics. This shows that
equivalence of the dynamics between the two algorithms
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FIG. 4. Decoupling data for oxygen and silicon. We plot the
product D, taken from the data shown in Fig. 3 and normalize the
product by its value at 7,,=4700 K such that deviations from 1
indicates nonzero decoupling. Open symbols are for ND, closed
symbols for MC. Decoupling is similar for both types of dynamics.

holds at the level of the complete distribution of particle
displacements, even for those tails that are believed to dictate
the observed decoupling.

In Sec. IV, we shall explore in more detail the heteroge-
neous character of the dynamics of silica, closely related to
the decoupling discussed here. It is however interesting to try
and infer the amount of decoupling predicted for silica at
temperatures close to the experimental glass transition, 7,
~ 1450 K. The glass transition temperature of BKS silica
deduced from extrapolation of viscosity measurements is
close to the experimental one, TgBKS% 1350 K [13]. Extrapo-
lating the data in Fig. 4 down to 1400 K predicts a decou-
pling of about 40 for Si dynamics, about 7 for O dynamics.
The difference between Si and O dynamics was recently ex-
plained in Ref. [34], where it was noted that oxygen diffu-
sion is in fact possible with no rearrangement of the tetrahe-
dral structure of silica involved. Moreover, it is interesting to
note that the amount of decoupling found here is smaller
than experimental findings in fragile materials close to their
glass transition [37], but is nonetheless clearly different from
zero. This suggests that even strong materials display dy-
namically heterogeneous dynamics, but its effect seems less
pronounced than in more fragile materials.

Theoretically, an identical temperature evolution of the
a-relaxation time scale for MC and ND is an important pre-
diction of mode-coupling theory [7] because the theory
uniquely predicts the dynamical behavior from static density
fluctuations. Gleim et al. argue that their finding of a quan-
titative agreement between SD and ND in a Lennard-Jones
mixture is a nice confirmation of this nontrivial mode-
coupling prediction [9]. Szamel and Flenner [10] confirmed
this claim using BD, and argued further that even deviations
from mode-coupling predictions are identical, a statement
that was extended to below the mode-coupling temperature
by Berthier and Kob [11]. In the present work we extend
these findings to the case of silica over a large range of
temperatures, which goes far beyond the temperature regime
where MCT can be applied. Therefore, we conclude that
such an independence of the glassy dynamics of supercooled
liquids to their microscopic dynamics, although predicted by
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FIG. 5. Self-intermediate scattering function for fixed 7 and ¢
=1.7 A‘l, obtained in MC and MD simulations for two system
sizes. The time axis in MD data is rescaled by 7,=0.31 fs to obtain
maximum overlap with MC results, and the same factor is used for
the two sizes. Larger systems relax faster and the amplitude of this
finite size effect is the same for both dynamics.

MCT, certainly has a much wider domain of validity than the
theory itself. Finally, we note that the deviations from MCT
predictions observed in Fig. 3 cannot be attributed to cou-
pling to currents which are expressed in terms of particle
velocities. In our MC simulations we have no velocities, so
that avoiding the mode-coupling singularity is not due to the
hydrodynamic effects pointed out in Ref. [5] (see Ref. [38]
for more recent theoretical viewpoints).

The last comparison to ND we want to discuss concerns
the study of finite size effects. It was shown that the long-
time dynamics of silica is fairly sensitive to system size, and
there are detectable differences when the number of particles
is changed from 1000 to 8000 [25,27]. Such a large effect is
not observed in more fragile materials [8]. It was suggested
that short-time thermal vibrations, stronger in silica than in
simpler models, are responsible for this system size depen-
dence [27,39]. Therefore, it could be expected that by effi-
ciently suppressing these vibrations, finite size effects should
be reduced. But this is not what happens. In Fig. 5, we show
self-intermediate scattering functions measured at 7T
=3580 K and |q|=1.7 A~" in both ND and MC for two sys-
tem sizes, N=1008 and N=8016 particles. Such data have
been presented for ND before [27], and our results agree
with these earlier data. The amplitude of the vibrations ob-
served for t/ty=f~ 103 is smaller and the long-time dynam-
ics is faster when N is larger. For MC we find that high-
frequency vibrations and the corresponding finite size effects
are indeed suppressed, but the finite size effect for long-time
relaxation, somewhat surprisingly, survives in our MC simu-
lations, and can therefore not be attributed to high-frequency
thermal vibrations. Recent studies of the vibration spectrum
and elastic properties at 7=0 of amorphous media have sug-
gested the existence of large-scale structures [40]: these ob-
jects are potential candidates to account for the size effect
found at long times. It should then be explained how these
spatial structures affect the long time dynamics, and why a
finite size simulation box at the same time affects the abso-
lute value of the a-relaxation time scale but leaves un-
changed many of its detailed properties [26,41].
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C. Mode-coupling analysis of dynamic correlators

We now turn to a more detailed analysis of the shape and
wave vector dependences of two-time correlation functions,
revisiting in particular the mode-coupling analysis performed
by Horbach and Kob in Ref. [13]. They argue that MCT can
generally be applied to describe their silica data, and at-
tribute most of the deviations that they observe to short-time
thermal vibrations supposedly obscuring the “true” MCT be-
havior. We are therefore in a position to verify if their hy-
pothesis is correct.

When applied to supercooled liquids, MCT formulates a
series of detailed quantitative predictions regarding the time,
wave vector, and temperature dependences of two-time dy-
namical correlators close to the mode-coupling singularity. In
particular, MCT predicts that correlation functions should in-
deed decay in the two-step manner reported in Fig. 2. More-
over, for intermediate times corresponding to the plateau ob-
served in correlation functions, an approximate equation can
be derived which describes the correlator close enough to the
plateau [7]. The following behavior is then predicted,

Fy(q.1) = fq+ hyF (1), )

where F(r) is the so-called B correlator which is independent
of the wave vector, and whose shape depends on a few pa-
rameters: the reduced distance from the mode-coupling tem-
perature, €=|T—T,|/T,, and a parameter describing the MCT
critical exponents, A. Once A is known various exponents
(a,b,y) are known, which describe, in particular, the short-
time behavior of F(r) when F(g,t) approaches the plateau,
F(t) ~1r, and its long-time behavior when leaving the pla-
teau, F(t) ~t*. The exponent y was introduced in Eq. (8) and
describes the temperature evolution of the relaxation time 7.

Several properties follow from Eq. (9). If one works at
fixed temperature and varies the wave vector, the following
quantity,

_ ¢ -¢') _ F)-F()
RO= gy = ae) ~ - Fay’

where ¢(t) stands for a two-time correlation function, should
become independent of ¢g. In Eq. (10), ¢/ and ¢’ are two
arbitrary times taken in the plateau regime. This is called the
“factorization property” in the language of MCT. We follow
Ref. [13] and show in Fig. 6 the function R(¢) in Eq. (10)
using self-intermediate scattering functions for different ¢
and for different species (Si and O) at fixed temperatures,
T=3580 K and 7=3000 K, choosing times comparable to
those reported in Ref. [13], namely =82 and ' =760 for
T=3580 K, and "=1360 and ¢'=66700 for 7=3000 K. Al-
though the factorization property seemed to hold quite well
in the ND data, this is no more the case for our MC data, and
R(7) retains a clear ¢ dependence between ¢’ and 7”: no col-
lapse of R(f) can be seen in the regime ¢’ <t<t” in Fig. 6.
The reason is clear from Fig. 2: due to thermal vibrations, the
intermediate plateau was very flat in ND, but it has much
more structure in our MC data. It was therefore easier to
collapse the ND data in this regime than the present MC data
for which a better agreement might have been expected. In
the case of the factorization property, the presence of thermal

(10)
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FIG. 6. Test of the factorization property, Eq. (10) using F(g,?)

from Si and O dynamics, and wave vectors between 0.8 and 4 A"l,

for 7=3580 K and 3000 K. The data do not show collapse for times
t'<t<t", and factorization does not work very well.

vibrations in fact favors a positive reading of the data, which
become much less convincing when these vibrations are sup-
pressed. Gleim and Kob had reached an opposite conclusion
in the case of a Lennard-Jones system [42]. They found that
suppressing vibrations made the mode-coupling analysis of
the beta-relaxation more convincing, suggesting that MCT
describes the Lennard-Jones system more accurately than
silica.

Next we perform a test of the theory which had not been
possible with ND data. We investigate in detail if the behav-
ior predicted by Eq. (9) is correct for both short and long
times. This test is not possible using ND because the ap-
proach to the plateau is mainly ruled by thermal vibrations
(see, for instance, the ND data presented in Fig. 5). In Fig. 7
we show that a “critical decay” does indeed show up when
thermal vibrations are overdamped and no oscillations can be
seen. To check in more detail if this behavior is indeed in
quantitative agreement with the MCT predictions, we fit the
Fy(q.t) data at T=3580 K, i.e., slightly above 7.=3330 K,
for several wave vectors g using the B correlator obtained
from numerical integration of the mode-coupling equation.
To get the fits shown in Fig. 7 we must fix the distance to the
mode-coupling temperature € and the value A=0.71 both
taken from Ref. [13], and yielding =0.32, b=0.62, and y
=2.35. Additionally we must adjust the microscopic time
scale. Moreover, for each wave vector we must fix hq and fq
which, respectively, correspond to the amplitude of the B
correlator and the height of the plateau in F(g,?). Finally,
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FIG. 7. Self-intermediate scattering function at fixed T
=3580 K and various wave vectors, g=0.8, 1.2, 1.7, 2.4, 3.2, and
4 A~ (from right to left). Dashed lines show fits at intermediate
times using Eq. (9). The inset shows the ¢ dependence of the fitting
parameters i, and f,. Note that the time domains over which the fits
apply shift with g.

there are two additional “hidden” free parameters in each of
these fits: the somewhat arbitrarily chosen boundaries of the
time domain where the fitting function describes the data. We
then get the fits shown with dashed lines in Fig. 7, which are
of a quality comparable to the ones usually found in the
MCT literature [7]. The parameters &, and f, are also shown
in the inset of Fig. 7, and behave qualitatively as in similar
studies. Inspection of Fig. 7 reveals that the use of such
freedom to fit the data allows a qualitatively correct descrip-
tion of the data, although clearly the time domain over which
each wave vector is fit systematically shifts when g changes,
and we could not simultaneously fit the data at both small
and large ¢ by fixing the time interval of the fit. This failure
is consistent with the above finding that the factorization
property is not satisfied.

Therefore we conclude that MCT provides a qualitatively
correct description of our data in the plateau regime, with no
satisfying quantitative agreement, even in the absence of
short-time thermal vibrations. One must therefore argue that
the data are taken too far from the transition for MCT to
quantitatively apply to silica. However, since it is not pos-
sible to get data closer to the transition (recall that the tran-
sition does not exist), the domain of validity of the theory
then would become vanishingly small.

We now turn to longer time scales and show in Fig. 8 a
test of the time-temperature superposition prediction of the
theory which states that correlators at fixed g but different
temperatures should scale as [7]

f%(q,0==.F;<;-%;5),

where F,(x)=f, exp(—x£@) and for times in the a regime.
When high temperatures outside the glassy regime are dis-
carded Eq. (11) works correctly when the scaling variable
t/ 7, is not too small, but fails more strongly in the late
regime. Scaling in the B regime is often one of the most
successful predictions of MCT, see, e.g., Ref. [8]. In the

(11)
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FIG. 8. Top: Test of time-temperature superposition, Eq. (11).
The dashed line is a stretched exponential function with 8=0.87.
Superposition holds at large rescaled times, but fails in the 8 regime
because the plateau height increases when 7 decreases. Bottom:
Extracted plateau height as a function of temperature fitted with a
linear dependence (full line) and with a square root singularity, Eq.
(12) (dashed line). Open symbols are for ND, closed symbols for
MC. No singular behavior of f, is visible in either set of data.

present case, it could be argued to fail because we are col-
lapsing data at temperatures which are both above and below
T,. Indeed, below T, scaling in the B regime is not expected
anymore because the height of the plateau, f, in Eq. (9), now
becomes a temperature dependent quantity, with the follow-
ing predicted singular behavior [7]:

fq(T)=fq(Tc)+a\“"Tc_T’ T= Tc’ (12)

while f,(T=T,)=f,(T,). The nonanalytic behavior of f, at T
is a further characteristic feature of the mode-coupling sin-
gularity. Since we can easily take data for 7<<T, which are
arguably not influenced by thermal vibrations, we can di-
rectly check for the presence of the square-root singularity,
Eq. (12). This is done in the bottom panel of Fig. 8, where
we also show data obtained from ND simulations. That the
latter are strongly influenced by thermal vibrations is clear,
since they systematically lie below the MC data and have a
stronger temperature dependence close to 7.. However, even
the MC data clearly indicate that f,(T) is better described by
a nonsingular function of temperature, compatible with the
simple linear behavior expected to hold at very low tempera-
tures. The temperature dependence of the plateau height
therefore explains why time temperature superposition does
not hold in the late B regime, but the linear temperature
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FIG. 9. (Color online) Snapshots of dynamic heterogeneity at 7=6100, 3580, and 3000 K (from top to bottom). The snapshot presents
particles which, in a particular run at a particular temperature have been slower than the average, and have therefore large, positive values
of 8f;(q,t= 7,) defined in Eq. (15). Light shading is used for Si, dark shading for O. Slow particles tend to cluster in space on increasingly

larger length scales when T decreases.

behavior indicates that there is no clear sign, from our data,
of the existence of a “true” underlying singularity at 7.

IV. DYNAMIC HETEROGENEITY

Having established the ability of MC simulations to effi-
ciently reproduce the averaged slow dynamical behavior ob-
served in ND simulations, we now turn to the study of the
dynamic fluctuations around the average dynamical behavior,
i.e., to dynamic heterogeneity.

Dynamic fluctuations can be studied through a four-point
susceptibility, x.(¢), which quantifies the strength of the
spontaneous fluctuations around the average dynamics by
their variance,

x4() =N [(f5(q.0) - Fi(q.0)], (13)

where

Na
fan =S eosa@ [0 -rO). (4

aj=1
represents the real part of the instantaneous value of the self-
intermediate scattering function, so that F(q,1)=(f,(q,?)).
As shown by Eq. (13), x4(r) will be large if run-to-run fluc-
tuations of the self-intermediate scattering functions aver-
aged in large but finite volume, are large. This is the case
when the local dynamics becomes spatially correlated, as

already discussed in several papers [35,43-48].

What x,(¢) captures is information on the spatial structure
of the spontaneous fluctuations of the dynamics around their
average. We define fi(q,t)=cos(q-[r;(t)-r;(0)]), the contri-
bution of particle i to the instantaneous value of F(q,t), and

5fi(q’t)=ﬁ(q’t)_Fs(q’t)9 (15)

its fluctuating part. Then x4(z) can be rewritten in the sug-
gestive form,

xs() =p f dr<2 8f(a.0)3f (a0 8(x = [r,(0) - r,-(o>])>,

(16)

where subtleties related to the exchange between the thermo-
dynamic limit and the thermal average are discussed below.

Therefore y,(7) is the volume integral of the spatial cor-
relator between local fluctuations of the dynamical behavior
of the particles. It gets larger when the spatial range of these
correlations increases.

To get a view of what these fluctuations look like in real
space, we present snapshots at different temperatures in Fig.
9. To build these snapshots we show, for a given run at a
given temperature, those particles for which the fluctuating
quantity &f,(q,t=r7,), is positive and larger than a given
threshold, which we choose close to 1/2 for graphical con-
venience (this leads to about 1/3 of the particles being
shown, and clearer snapshots). The shown particles are there-
fore slower than the average for this particular run. The evo-
lution of the snapshots between 6100 K and 3000 K clearly
reveals the tendency for slow particles to cluster in space,
revealing the growth of the length scale of kinetic heteroge-
neities. We should note, however, that the clusters shown
here are not macroscopic objects even at the lowest tempera-
ture studied. Moreover, similar snapshots in Lennard-Jones
systems reveal more clearly the tendency we seek to illus-
trate [35]. We interpret this as a further qualitative indication
that dynamic heterogeneity is less pronounced in this strong
material than in more fragile Lennard-Jones systems.

We turn to more quantitative measures of dynamic hetero-
geneity and show the time dependence of the dynamic sus-
ceptibility y,(¢) obtained from our MC simulations for vari-
ous temperatures in Fig. 10. Similar data are obtained for Si
and O, and we only present the former. As predicted theo-
retically in Ref. [47] we find that x,(¢) presents a complex
time evolution, closely related to the time evolution of the
self-intermediate scattering function. Overall, x,(¢) is small
at both small and large times when dynamic fluctuations are
small. There is therefore a clear maximum observed for
times comparable to 7,, where fluctuations are most pro-
nounced. The position of the maximum then shifts to larger
times when temperature is decreased, tracking the
a-relaxation time scale. The most important physical infor-
mation revealed by these curves is the fact that the amplitude
of the peak grows when the temperature decreases. This is
direct evidence, recall Eq. (16), that spatial correlations grow
when the glass transition is approached.

The two-step decay of the self-intermediate scattering
function translates into a two-power law regime for x,(¢)
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FIG. 10. Top: Four-point susceptibility, Eq. (13), for the same
temperatures as in Fig. 2, decreasing from left to right. The low
temperature data at 7=2750 K are fitted with two power laws
shown as dashed lines with exponents 0.3 and 0.92 at short and
large times, respectively. The envelope of the maxima is fit with an
exponent 0.285. Bottom: Temperature evolution of the maxima in
various dynamic susceptibilities.

approaching its maximum. We have fitted these power laws,
Xa(t) ~ 1%, followed by x,(f) ~t* with the exponents a=0.3
and »=0.92 in Fig. 10. We have intentionally used the nota-
tion a and b for these exponents which are predicted, within
mode-coupling theory, to be equal to the standard exponents
also describing the time dependence of intermediate scatter-
ing functions [4,47]. Our findings are in reasonable agree-
ment with values for a and b discussed above, although the b
value is about 50% too large. Moreover, a two-power law
regime is only observed for T<<T,, where MCT does not
apply anymore. We note that the b value is predicted to be
b=2 from the perspective of modeling strong glass formers
using kinetically constrained models with Arrhenius behav-
ior [49]; this prediction is clearly incorrect for BKS silica
[4.47].

We then focus on the amplitude of the dynamic suscepti-
bility at its maximum and follow its temperature evolution in
Fig. 10. As suggested by the snapshots shown in Fig. 9, we
confirm that spatial correlations increase when 7 decreases,
as x4 gets larger at low temperatures. The temperature evo-
lution of the peak was discussed in Ref. [4]. Both MCT and
kinetically constrained models strongly overestimate the
temperature evolution of y, at its peak value, as emphasized
already in Ref. [4]. Finally, we note that the typical values
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observed for the peak of y, at low temperatures are signifi-
cantly smaller than those observed for more fragile Lennard-
Jones systems, suggesting once more that dynamic heteroge-
neity is less pronounced in strong glass-forming materials.

This comparison is also useful to discuss the possibility of
finite size effects on the present y, data. If computed in a
simulation box which is too small, the dynamic susceptibility
takes values that are too small [50]. Our data indicate that no
saturation of the maximum value of y,(7) is reached, and the
values we find are smaller than the ones found in a Lennard-
Jones system with a comparable system size and for which a
detailed search for possible finite size effects was performed
[3]. We believe therefore that our results are not affected by
finite size effects.

We then compare these results to the ones obtained using
Newtonian dynamics in the same system. In that case, care
must be taken of the order at which the thermodynamic limit
and the thermal average are taken in Eq. (16). Indeed when
ND is used, the dynamics strictly conserves the energy dur-
ing the simulation and thermal averages are then performed
in the microcanonical ensemble, and )(f is measured. To
measure XZ in the canonical ensemble for ND, an additional
contribution must be added, which takes into account the
amount of spontaneous fluctuations which are due to energy
fluctuations [51],

2 2 2
X0~ XE() = l(M) =L, an
aT Cy

Cy
where cy, is the constant volume specific heat expressed in kg
units. The results for x; and x4 obtained from ND, and the
difference term in Eq. (17), are all presented in Fig. 10. We
find that the MC results for y, lie closer to the microcanoni-
cal results obtained from ND, while the canonical fluctua-
tions are significantly larger, due to the large contribution of
the right-hand side in Eq. (17). This is at first sight contrary
to the intuition that MC simulations are thermostated and
should be a fair representation of canonical averages in ND.
But this is not what happens. As discussed in Refs. [3,4], a
major role is played by conservation laws for energy and
density when dynamic fluctuations are measured. In the case
of energy conservation the mechanism can be physically un-
derstood as follows. For a rearrangement to take place in the
liquid, the system must locally cross an energy barrier. If
dynamics conserves the energy, particles involved in the re-
arrangement must borrow energy to the neighboring par-
ticles. This cooperativity might be unnecessary if energy can
be locally supplied to the particles by an external heat bath,
as in MC simulations. Conservation laws, therefore, might
induce dynamic correlations between particles and dynamic
fluctuations can be different when changing from Newtonian,
energy conserving dynamics to a stochastic, thermostated dy-
namics. With hindsight, this is not such a surprising result.
The specific heat, after all, also behaves differently in differ-
ent statistical ensembles. The ensemble dependence and de-
pendence upon the microscopic dynamics of dynamic sus-
ceptibilities in supercooled liquids are the main subjects of
two recent papers [3,4]. Our results for silica quantitatively
agree with the theoretical analysis they contain, and with the
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corresponding numerical results obtained in Lennard-Jones
systems.

There is an experimentally extremely relevant conse-
quence of these findings [51,52]. As shown in Fig. 10, the
difference between the microcanonical and canonical values
of the dynamic fluctuations in ND represents in fact the ma-
jor contribution to XZ’ meaning that the term X4E can be safely
neglected in Eq. (17). Since the right-hand side of (17) is
more easily accessible in an experiment than )(Z itself, Eq.
(17) opens the possibility of an experimental estimate of the
four-point susceptibility. This finding, and its experimental
application to supercooled glycerol and hard sphere colloids,
constitute the central result of Ref. [51], while more data are
presented in Ref. [52].

V. CONCLUSION

We have implemented a standard Monte Carlo algorithm
to study the slow dynamics of the well-known BKS model
for silica in the temperature range from 6100 K to 2750 K.
Our results clearly establish that Monte Carlo simulations
can be used to study the dynamics of silica because quanti-
tative agreement is found with results from Newtonian dy-
namics for the same potential, apart at very short times
where thermal vibrations are efficiently suppressed by the
Monte Carlo algorithm. The agreement between the two dy-
namics is by no means trivial and constitutes an important
result of the present study. This suggests that Monte Carlo
simulations constitute a useful and efficient tool to study also
the nonequilibrium aging dynamics of glass-forming liquids,
a line of research initiated in Ref. [53].

Since dynamical correlations are not affected by short-
time vibrations, we have been able to revisit the mode-
coupling analysis initially performed in Ref. [13]. We find
that mode-coupling theory accounts for the qualitative fea-
tures of the data quite well, but the detailed, quantitative
predictions made by the theory were shown to fail: correla-
tion functions close to the plateau do not follow the behavior
predicted for the MCT g correlator, time-temperature super-
position only holds at very large times but fails at smaller
times because the plateau in the correlation function is
strongly temperature dependent, a dependence which does
not follow the singular behavior predicted by MCT. More-
over, the temperature regime where the theory can suppos-
edly be applied is found to be at most 1 decade when only
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the temperature evolution of relaxation time scales is consid-
ered. Furthermore, we have argued that the motivation to
analyze silica data in terms of MCT, a “fragile to strong”
crossover, can in fact be more simply accounted for in terms
of a crossover between two distinct Arrhenius regimes occur-
ring close to T=4000 K. Overall these results suggest a
negative answer to the question: is there any convincing evi-
dence of an avoided mode-coupling singularity in silica?

We have finally analyzed dynamic heterogeneity in silica.
We find that the dynamics is indeed spatially heterogeneous,
and spatial correlation of the local dynamical behavior was
shown to increase when temperature decreases. We also
found that all indicators of dynamically heterogeneous dy-
namics such as decoupling and four-point dynamic suscepti-
bilities, suggest that the effects are less pronounced in silica
than in more fragile glass-forming materials, but do not seem
qualitatively different.

The most natural interpretation is that strong and fragile
materials in fact belong to the same class of materials, where
the effects of dynamic heterogeneity could become less pro-
nounced, but definitely nonzero, for materials with lower fra-
gility. This suggests that it could be incorrect to assume that
strong materials belong to a different universality class from
fragile ones, as studies of kinetically constrained models
with different fragilities would suggest [49,54], and they
should rather appear at the end of the spectrum of fragile
systems. It seems however similarly incorrect to consider
that strong materials are “trivial” because an Arrhenius be-
havior can be explained from simple thermal activation over
a fixed energy barrier corresponding to a local, noncoopera-
tive event. Our results show that this is not a correct repre-
sentation of the physics of strong glass formers either. Con-
vincingly incorporating fragility into current theories of the
glass transition while simultaneously giving it a microscopic
interpretation remains therefore an important challenge.
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