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Dynamic heterogeneity in glass formers has been related to their static structure using the concept of
dynamic propensity. We reexamine this relationship by analyzing dynamical fluctuations in two atomistic glass
formers and two theoretical models. We introduce quantitative statistical indicators which show that the
dynamics of individual particles cannot be predicted on the basis of the propensity or by any structural
indicator. However, the spatial structure of the propensity field does have predictive power for the spatial
correlations associated with dynamic heterogeneity. Our results suggest that the quest for a connection between
the static and dynamic properties of glass formers at the particle level is in vain, but they demonstrate that such
a connection does exist on larger length scales.
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I. INTRODUCTION

Supercooled liquids near the glass transition have para-
doxical physical properties �1,2�. They exhibit a range of
peculiar dynamical features that have been attributed to spa-
tially heterogeneous dynamical relaxation �2–11�, but their
structure, as measured by two-point correlation functions,
appears homogeneous and unspectacular. Theoretical pic-
tures of the glass transition assume different kinds of con-
nections between static and dynamic properties. For ex-
ample, in a picture based on dynamical facilitation �5,12�,
one postulates the existence of mobile and immobile regions,
with the implicit assumption that these regions have a struc-
tural origin. Frustration-based theories �13� infer dynamical
behavior by assuming the existence of domains with a pre-
ferred local order. Alternatively, one can attempt to connect
static and dynamical properties through the configurational
entropy �14,15�, through two-point density correlations �16�,
through elastic properties �17,18�, or through the idea of a
rough energy landscape �7,19�. The extent to which these
connections can be objectively established in experiments
and computer simulations is an important criterion for evalu-
ating different theoretical pictures.

To address this point, Widmer-Cooper, Harrowell, and
Fynewever introduced the isoconfigurational ensemble �20�,
which isolates the effect of the liquid structure on its dynami-
cal fluctuations. In this statistical ensemble, dynamical ob-
servables known as “propensities” are obtained by averaging
over independent trajectories from the same initial configu-
ration. Fixing the initial particle positions preserves struc-
tural information on all length scales and allows the influ-
ence of structure to be separated from intrinsically dynamical
fluctuations. The difficult task of connecting structure to dy-
namics is then broken into two seemingly simpler ones: first

connect structure to propensity, then propensity to dynamics.
This idea has been exploited in several works �20–27�,

which focused primarily on the first stage of the problem and
aimed at finding correlations between propensity and local or
nonlocal structural quantities. In this paper, we concentrate
instead on the second stage, the connection between propen-
sity and dynamics, which has received relatively little atten-
tion. After all, if propensity and dynamics only had weak
connections, the isoconfigurational ensemble would not be
such a useful tool. The isoconfigurational average preserves
all fluctuations that have any connection to the initial struc-
ture, but fluctuations whose origin is inherently dynamical
are averaged away. Thus, propensities capture the physically
relevant dynamical fluctuations if and only if these fluctua-
tions are structural in origin �20�, in which case dynamics
can be predicted from knowledge of the structure. In concen-
trating on the connection between structure and propensity,
previous works �22–27� have assumed that this is indeed the
case.

Here, we analyze quantitatively the implicit assumption of
predictability. We establish that the dominant single-particle
dynamical fluctuations are intrinsically dynamical, and not
linked with liquid structure. However, we find that the sizes
and shapes of mobile and immobile regions can be predicted
from the propensity, and these collective dynamical fluctua-
tions do indeed have a structural origin. Although the rel-
evance of intrinsically dynamical fluctuations has been dis-
cussed in a qualitative way by Widmer-Cooper and
Harrowell �20,21�, the subtle length scale dependence of the
correlation between structure and dynamics, and therefore of
predictability, was not discussed or anticipated in previous
work.

After defining our models in Sec. II, we discuss single-
particle and collective dynamics in Secs. III and IV, combin-
ing illustrative snapshots with quantitative analysis and com-
paring our results with the behavior in schematic models. We
conclude in Sec. V and identify directions for future study.
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II. MODELS

We present numerical data for two atomistic glass form-
ers: a Lennard-Jones �LJ� binary mixture �28� and a model of
silica due to van Beest, Kramer, and van Santen �BKS� �29�.
We use Monte Carlo dynamics, which have been shown to
yield a dynamical behavior in excellent agreement with
Newtonian dynamics when time is scaled appropriately
�30,31�. We measure time in Monte Carlo sweeps, and other
units are as in Refs. �30,31�. The LJ system has 1000 par-
ticles, and we study temperatures between 1.0, where the
system is a simple liquid, and 0.47, where the relaxation time
has increased by a factor of approximately 1000, and the
system is in the glassy regime. For reference the mode-
coupling temperature for this system is Tc=0.435. The BKS
system has 1008 atoms, and the relaxation time also spans
around three decades, from a liquid state around 6000 K to a
glassy one around 3000 K.

We also study the one-spin facilitated Fredrickson-
Andersen �1-FA� model �12� using Monte Carlo simulations.
It represents a simple model of a dynamically heterogeneous
material, with a few mobile regions that facilitate motion in
immobile regions nearby �5�. Defining spins ni� �0,1� on
the site of a lattice, we identify sites with ni=1 as “mobile”
and those with ni=0 as “immobile.” The dynamics of the
system obeys detailed balance with respect to a trivial energy
function E=�ini. The nontrivial behavior of the model
comes from a dynamical constraint: spins are allowed to flip
only if at least one of their neighboring sites is mobile. At
low temperatures T�1 and low spatial dimension d�2, the
model displays glassy features such as transport decoupling
�32� and an increasing dynamical length scale �6�.

We use Ci�t� to denote a general dynamical object at-
tached to particle i, such as f i�t��cos�k · �ri�t�−ri�0��� or
�i�t��	ri�t�−ri�0�	. For f i�t�, we use 	k	=6.7 for the LJ
model and 	k	=1.8 Å−1 for silica. These wave vectors corre-
spond to the location of the first diffraction peak in the LJ
system and to the prepeak of the structure factor of silica.
The quantity f i�t� is therefore a measure of local relaxation in
these liquids. In lattice models, we consider Pi�t�, the persis-
tence function on site i, which takes the value of unity if spin
i has not flipped in the interval �0, t� and zero otherwise.

We define an isoconfigurational average 
¯�iso in which
the initial positions of all particles are held fixed �20�, but
dynamical trajectories are made independent through the use
of different random numbers in the Monte Carlo trajectories
�25�. The dynamic propensity is then defined by 
Ci�t��iso

�20�. Equilibrium ensemble averages are denoted by E�¯�.
As usual, we define the structural relaxation time �� by
E�f i�����=1/e.

III. SINGLE-PARTICLE DYNAMICS

A. Atomistic systems

We begin with a qualitative analysis of fluctuations within
the isoconfigurational ensemble. Figure 1 shows a scatter
plot for the LJ system, comparing squared particle displace-
ments in a single run, �i

2�t�, with their corresponding pro-

pensities 
�i
2�t��iso. Points near the dashed line represent par-

ticles whose displacements in this single run are close to
their isoconfigurational averages. Given the large scatter seen
in Fig. 1, it is clear that the propensity cannot be used to
predict the actual value of the displacement in a single run.
That is, even when all aspects of the initial structure are held
constant, there are large fluctuations in the single-particle
dynamics, which appear to be more important than particle-
to-particle fluctuations of the propensity. These large dy-
namical fluctuations mean that the propensities have very
little predictive power for the single-particle dynamics.

Figure 1 also shows the distribution of particle �logarith-
mic� displacements P�log10 �� and propensities
P�log10
��iso�. The former, which is directly related to the
Van-Hove function, has a broad, non-Gaussian shape, reflect-
ing the coexistence of mobile and immobile particles in the
liquid �3,11�, as illustrated by fitting the large-� and small-�
parts of the distribution with two distinct Gaussian distribu-
tions. The latter distribution �particle propensities� is much
narrower and structureless. In particular, the distinction be-
tween fast and slow particles is no longer apparent. This
most distinctive feature of dynamic heterogeneity �2� is
therefore not structural in nature, but is intrinsically dynami-
cal.

The details of the distribution of the propensity shown in
Fig. 1 are different from those shown in �20,21�. We attribute
this to differences between our model systems �in particular,
their different dimensionalities and tendencies to crystallize�
and to our use of slightly different observables �we use
simple distances while squared distances were used in
�20,21�, emphasizing particles with large displacement�. For
our purposes, the important feature is that the distribution of
propensities is much narrower than that of bare displace-
ments, which is consistent with earlier results �33�.
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FIG. 1. Data for the LJ system in the glassy regime �T=0.47�.
Inset: scatter plot, comparing squared displacements in a single run,
�i

2����, with their average over runs from the same initial condition,

�i

2�����iso. Note that the lack of correlation between propensity and
dynamics necessitates the use of different scales on the two axes.
The dotted line is �i

2����= 
�i
2�����iso. Main figure: the broad distri-

bution of particle �logarithmic� displacements, P�log10 �� �solid
line� arises from the coexistence of mobile and immobile particles,
illustrated with dashed lines �Gaussian distributions�. This is com-
pared with the much narrower distribution of propensities,
P�log10
��iso�.
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We now support these qualitative statements by quantita-
tive measures. In order to disentangle structural and dynami-
cal sources of fluctuations, we define three variances

�C�t� = E�
Ci�t��iso
2 � − E2�Ci�t�� ,

�C
iso�t� = E�
Ci

2�t��iso − 
Ci�t��iso
2 � ,

�C�t� = E�
Ci
2�t��iso� − E2�Ci�t�� , �1�

so that �C�t�=�C
iso�t�+�C�t�; we use the shorthand notation

E2�¯�= �E�¯��2 and the subscript indicates the dynamic ob-
servable of interest. Thus, �C�t� measures particle-to-particle
fluctuations of the propensity �23� and captures the structural
component of the fluctuations. �C

iso�t� measures the fluctua-
tions of Ci�t� between different runs at fixed initial configu-
ration and captures therefore the dynamical component of
the fluctuations. Their sum �C�t� naturally measures the total
amount of fluctuations.

These quantities are defined in the same spirit as the
ensemble-dependent susceptibilities of Ref. �10�. To assess
the influence of a given variable �the structure� on the fluc-
tuations measured by �C�t�, we use a constrained statistical
ensemble �the isoconfigurational ensemble� where this vari-
able is kept fixed and measure a “restricted” variance �C

iso�t�.
The difference between restricted and unrestricted variances
is �C�t�, which accounts for the fluctuations of the restricted
variable �10�. In our case, the relative sizes of �C�t� and
�C

iso�t� quantify the relative influence of structural and dy-
namical fluctuations. It is natural to introduce the dimension-
less ratio

RC�t� =
�C�t�
�C�t�

, �2�

with 0�RC�t��1. Small values of RC�t� mean that the struc-
ture has little effect on the single-particle dynamics; large
values mean instead that structure is a very good predictor of
the dynamics.

We present results for the ratio Rf���� for LJ and BKS
glass formers in Fig. 2. This ratio vanishes at high T and
grows slowly as �� increases, reaching about 4% in both
systems at the lowest temperature studied �when �� has
grown by about three decades�. The smallness of Rf���� con-
firms the impression gained from Fig. 1: structure at time 0
has little influence on the dynamics of individual particles at
times ��.

B. Comparison with a schematic model

It is instructive to evaluate RC�t� in a simple model of a
dynamically heterogeneous liquid. We suppose that particles
diffuse independently with diffusion constants Di that de-
pend on their initial environments. We also assume that ef-
fects of the initial environment decay on time scales compa-
rable with ��. Then, each particle has 
f i�t��iso=e−Dik

2t and

F�t� � E�f i�t�� = �
0

	

d
 g�
�exp�− 
t� , �3�

where 
i=Dik
2 is a rescaled diffusion constant distributed

according to g�
�. Using the definition of f i�t�, we have
f i�t�2= �1/2�(cos�2k · �ri�t�−ri�0���−1) and we find

� f�t� = F�2t� − F2�t� ,

� f�t� = �1/2��1 + F�4t� − 2F2�t�� . �4�

In a dynamically homogeneous system, all particles have the
same diffusion constant, F�t� decays exponentially, and
� f�t�=0=Rf�t�. On the other hand, consider a heterogeneous
system with equal populations of fast and slow particles,
whose rescaled diffusion constants are 
1 and 
2. Using Eq.
�3�, this leads to a two-step decay: F�t�= �1/2��e−
1t+e−
2t�.
In this case, Rf�t� has a nonmonotonic time dependence, van-
ishing at small and long times, with a maximal value near
50% during the plateau of F�t� �that is, for times such that

1

−1� t�
2
−1�. This indicates that correlations between

structure and dynamics are generically maximal during pla-
teaus of F�t� �23�; our atomistic simulations are also consis-
tent with this indication.

Our analysis of this highly schematic model demonstrates
that large values of Rf�t� are obtained in the presence of
reproducibly fast and slow particles. Comparing this refer-
ence theory with the small values for Rf�t� shown in Fig. 2, it
follows that the correlation between structure and single-
particle dynamics is weak in atomistic systems and does not
seem to dramatically increase when temperature gets smaller.

We conclude that the search for a connection between
static and dynamic properties at the single-particle level is in
vain. Certainly, no such connection has been found �20–27�.

IV. COLLECTIVE DYNAMICS

Having ruled out the structural origin of one important
aspect of dynamic heterogeneity, we now address a different
question: Do spatial fluctuations of the propensity carry
meaningful information on the geometry and spatial extent
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FIG. 2. Ratios Rf���� for the LJ and silica systems and R4,f����
for the LJ system. Temperatures are 0.47�T�1.0 �LJ� and
3000 K�T�6100 K �BKS�. Rf�t� is small and grows slowly with
decreasing T, while R4,f�t� is large and grows steadily. This suggests
that connections between structure and dynamics are only signifi-
cant on large length scales.
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of the dynamic heterogeneities in supercooled liquids? We
will show that while it is not possible to use the structure to
predict whether a given particle will be fast or slow in a
single run, it is possible to tell if it belongs to a fast or slow
region.

A. LJ system

We begin by generalizing the variances in �1� to those of
global dynamic quantities, Cg�t�=N−1�iCi�t�. We define

�4,C�t� = N�E�
Cg�t��iso
2 � − E2�Cg�t��� ,

�4,C
iso �t� = N�E�
Cg

2�t��iso − 
Cg�t��iso
2 �� ,

�4,C�t� = N�E�
Cg
2�t��iso� − E2�Cg�t��� , �5�

with �4,C�t�=�4,C�t�+�4,C
iso �t�. The usual four-point suscepti-

bility �4,C�t� measures the size of collective dynamical fluc-
tuations �8,9�. By analogy with �C�t� and �C

iso�t�, we identify
�4,C�t� as the contribution to �4,C�t� associated with the struc-
ture and �4,C

iso �t� as the intrinsically dynamical contribution.
Then, in analogy with RC�t�,

R4,C�t� =
�4,C�t�
�4,C�t�

�6�

is a dimensionless measure of the effect of the structure on
collective aspects of the dynamics. In Fig. 2, we show that
the contribution of �4,f���� to the dynamic fluctuations is
about 35% at T=0.47 �to be compared to the 4% found for
single-particle heterogeneity�. Moreover, R4,f���� grows
steadily when T decreases. This quantitative measurement
shows that when the system is in the glassy regime, collec-
tive dynamical fluctuations are indeed quite reproducible in
repeated runs from the same initial configuration. We con-
clude that connections between structural and dynamical
properties are significant on these length scales and that the
connection even gets stronger as the relaxation time in-
creases.

To investigate the fluctuations associated with this effect,
we interpolate between the single-particle and collective dy-
namics by averaging over a length scale �:

C̄i�t,�� =
� j

Cj�t�h�	ri − r j	�

� j
h�	ri − r j	�

, h�x� = e−�x/��2
. �7�

By coarse-graining in this way, we can investigate how the
reproducibility of dynamical fluctuations varies with length
scale.

In Fig. 3, we use snapshots of the system to illustrate that
large-scale features of the dynamics are indeed reproducible
from run to run. For a representative initial configuration at a
low temperature, Fig. 3�a� shows the LJ particles with the
largest values of the propensity 
f i�����iso �these are the par-
ticles which are slow on average�. In all panels of Fig. 3, we
show about 1/3 of the particles: this threshold is small
enough to give clear images, but large enough to avoid plac-
ing undue emphasis on rare fluctuations.

Figures 3�b�–3�d� show particles with the largest values of

f̄ i�t ,�=1� in three individual runs. Loosely speaking, the

coarse-graining scale �=1 means that f̄ i measures how much
motion is associated with a particle and its nearest neighbors
on the time scale t �the choice of this length scale is dis-
cussed below�. Thus, Figs. 3�b�–3�d� show particles that are
located in a relatively immobile environment during these
three trajectories. Similar clusters of immobile particles are
apparent in all three trajectories, and these clusters correlate
quite well with the cluster of slow particles that is observed
in the propensity map in Fig. 3�a�. Since the slow behavior of
these clusters is reproducible in independent runs from the
same initial condition, it surely must have a structural origin.
This is consistent with the rather strong coupling of structure
and collective dynamics that was identified in Fig. 2. We also
note in passing that the coarse-grained pictures in Figs.

a b

c d

e f

FIG. 3. �Color online� �a� Image of the 300 particles with the
smallest propensity for motion �largest values of 
f i�����iso� for a
representative initial condition in the LJ system in the glassy regime
�T=0.47�. �b�–�d� Images of the 300 particles with largest values of

the coarse-grained observable f̄ i��� ,�=1� in three representative
runs from the same initial condition. Spatial structure similar to that
of �a� is found in all cases. �e� Same as �c�, without coarse-graining
��=0�. �f� Image of the 300 particles with the smallest values of the
coarse-grained potential energy ēi��=2� for the same configuration.
The resulting structure is correlated with that of �a�.
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3�b�–3�d� are computationally much cheaper than calculating
the propensity field.

As discussed above, the coupling between structure and
dynamics at the single-particle level is weak. This is further
illustrated in Fig. 3�e�, where we have not coarse-grained,
but simply identified slow particles by their values of f i����,
again using the same initial condition. In this case the immo-
bile cluster that is apparent in Figs. 3�a�–3�d� is obscured by
large intrinsically dynamical fluctuations. Comparing Fig.
3�e� with Figs. 3�b�–3�d� shows that the effect of coarse-
graining on the short length scale �=1 is quite effective in
suppressing these fluctuations, allowing the slow cluster to
become apparent. When coarse-graining in this way, we must
also ensure that the length scale � is smaller than the corre-
lation length associated with the dynamically correlated clus-
ters, or else these clusters will themselves be obscured. We
establish below �Fig. 4� that the dynamically correlated clus-
ters have a length scale �prop
2 at this temperature. Thus,
while it would be desirable to have well-separated length
scales � and �prop, we can at least establish that ���prop, as
required for the consistency of our analysis. As expected, we
find that on further increasing the coarse-graining scale �, the
structure of the immobile clusters in Figs. 3�b�–3�d� is still
apparent, but the ability to resolve their shape is lost.

Returning to the spatial correlations of the propensity, we
interpret �4,f�t� as a dynamic susceptibility associated with
spatial fluctuations of the propensity by analogy with the
four-point susceptibility �4,f�t� �8,9�. That is, defining the
fluctuations of the propensity by 
�f i�t��iso= 
f i�t��iso−F�t�,
then the spatial correlation function of the propensity is

G4
prop�r,t� = E�N−1�

ij


�f i�t��iso
�f j�t��iso�„ri�0� − r j�0� − r…� .

�8�

The associated structure factor is the Fourier transform of
this function:

S4
prop�q,t� =� dr eiq·rG4

prop�r,t� , �9�

and the associated dynamical susceptibility is �4,C�t�
=S4

prop�q=0, t�. By analogy with the four-point susceptibility,
we expect �4,C�t� to be proportional to the number of par-
ticles associated with collective fluctuations of the propen-
sity.

Like �4�t�, the susceptibility of the propensity �4,C�t� is a
nonmonotonic function of time that peaks near ��. We find
that the height of this peak grows as T decreases, suggesting
increasing spatial correlations of the propensity. This is illus-
trated by the images in Fig. 4, which show that the particles
with smallest propensities are increasingly spatially clustered
as T decreases. To confirm this visual impression, we present
in Fig. 4 our numerical data for S4

prop�q , t� measured at dif-
ferent temperatures in the LJ system. The structure factor of
the propensity is similar to the structure factor of dynamic
heterogeneity, with the striking appearance of a small-q
peak. Following earlier work, we estimated �34� the correla-
tion length of propensity fluctuations �prop�T�, as shown in

the inset of Fig. 4. It has a clear, but rather slow, growth
when T decreases, compatible with determinations of a typi-
cal length scale of dynamic heterogeneity �5,9,10�.

These measurements confirm that spatial correlations of
the propensity increase when temperature decreases, just as
the length scale of dynamic heterogeneity does. Therefore,
we find the intriguing result that the value of the propensity
of any individual particle is only weakly correlated with its
dynamical behavior, but the spatial correlations of these pro-
pensities do carry information about spatially heterogeneous
dynamics. In short, the spatial structure of the propensity
maps in Ref. �20� is important, but the color assigned to any
specific particle is not.

B. Comparison with the schematic model

We now generalize the simple model of Sec. III B to in-
clude spatial correlations. Following �4�, we assume that par-
ticles diffuse independently, but with diffusion constants that
are correlated over large spatial regions, each containing
nc�1 particles. Since particles diffuse independently in any
given run of the dynamics, it follows that 
f i�t�f j�t��iso

= 
f i�t��iso
f j�t��iso for j� i, and hence

�4,f�t� = nc�F�2t� − F2�t�� ,

�4,f
iso�t� = �1/2��1 + F�4t� − 2F�2t�� . �10�

In this simple model, both �4,f�t� and �4,f�t� scale with nc,
while the isoconfigurational susceptibility �4,f

iso�t� is not sen-
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FIG. 4. �Color online� Top: images of the 300 particles with the
largest values of 
f i�����iso at T=1.0, 0.6, and 0.47 �left to right� in
the LJ system. Increasing clustering of propensity fluctuations is
evident. Bottom: structure factor of propensity fluctuations at sev-
eral T. The inset shows the extracted length scale �prop�T�, which
grows as the temperature decreases.
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sitive to spatial correlations of the mobility and remains
O�1�. Thus, �4,f�t���4,f�t���4,f

iso�t�, and hence R4,f 
1. This
model shows that R4,f�t� becomes large if the length scale for
dynamic heterogeneity is primarily structural in nature. The
results of Fig. 2 therefore indicate that this is the case for the
LJ system.

C. Comparison with a kinetically constrained model

We end with a brief discussion of the 1-FA model, which
gives a useful theoretical insight into the quantities discussed
above. As recalled in Sec. II, the model describes a dynami-
cally heterogeneous material in which a few mobile excita-
tions diffuse through an immobile background. Our simula-
tions indicate that the ratios RP�t� and R4,P�t� have limiting
forms at low T, which depend on dimensionality, d. In one
dimension, the structure is very strongly correlated with the
dynamics both locally and globally: �RP��� ,R4,P����
��0.5,0.7�. However, in three dimensions �3D�, the single-
site ratio vanishes, RP����0, while the global ratio is quite
large, R4,P����0.4. This occurs because the set of sites vis-
ited by a given excitation in 3D varies enormously from run
to run. Using the initial positions of excitations to predict
which sites will relax first in a given run is impossible. How-
ever, collective observables reveal that the rate of relaxation
is reproducibly enhanced in regions with relatively many ex-
citations �see also �25��.

This decoupling between the local and global ratios illus-
trates a situation in which the relation between dynamics and
structure is only statistically significant at large length scales.
Interestingly, this result is somewhat similar to that shown in
Fig. 2 for the LJ system, although the microscopic mecha-
nisms at work are presumably different. Moreover, prelimi-
nary studies indicate that the strong length scale dependence
of predictability found in the 1-FA model is much less pro-
nounced in models where kinetic constraints are stronger. In
these other models, it appears that the dynamics on all length
scales is strongly constrained by the initial structure.

V. OUTLOOK

We have investigated the degree to which structural fluc-
tuations in glass-forming liquids influence their dynamical
fluctuations. We defined R4,f and Rf, which are quantitative
measures of this influence, on long and short length scales,

respectively: they differ by nearly an order of magnitude in
the LJ system at the lowest temperature considered. Thus,
the influence of structure on dynamics is much stronger on
long length scales than on short ones. This unexpected find-
ing constitutes our main result.

Our work does not reveal which structural features are
responsible for dynamic heterogeneity, but they do show that
the search for such an observable should be undertaken at a
coarse-grained level. This is consistent with recent studies
�17,18,24,25�.

As a first step toward identifying a suitable coarse-grained
structural quantity, we exploit the fact �7,10,22� that potential
energy is correlated with dynamical heterogeneities �al-
though correlations of the energy remain short ranged�. We
compare fluctuations of the coarse-grained energy field,
ēi���, with those of the propensity. By coarse-graining on a
length scale �=2, so that �
�prop, we average away local
fluctuations. We obtain a field that varies in space on a simi-
lar length scale to that of the dynamical propensity and
which reflects the average energy of different regions of the
system. Interestingly, we find that regions with small energy
are correlated with regions of low propensity for motion, as
shown in Fig. 3�e�. While a more quantitative analysis is
necessary before drawing firm conclusions, this correlation
between energy and propensity is consistent with the strong
local correlations between energy and dynamics demon-
strated in �7,10�. As an alternative to the energy, another
promising route to a connection between structure and dy-
namics is provided by the presence of extended modes char-
acterizing the vibrational spectrum of amorphous materials
�17,18�, and it would also be interesting to study connection
between propensity and the locally ordered regions discussed
in Ref. �35�.

In any case, identifying the nonlocal structural features
that are associated with mobile or immobile regions of glass
formers remains a central challenge.
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