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The yield stress is a defining feature of amorphous materials which is difficult to analyze theoretically, because
it stems from the strongly nonlinear response of an arrested solid to an applied deformation. Mode-coupling
theory predicts the flow curves of materials undergoing a glass transition and thus offers predictions for the yield
stress of amorphous solids. We use this approach to analyze several classes of disordered solids, using simple
models of hard-sphere glasses, soft glasses, and metallic glasses for which the mode-coupling predictions can
be directly compared to the outcome of numerical measurements. The theory correctly describes the emergence
of a yield stress of entropic nature in hard-sphere glasses, and its rapid growth as density approaches random
close packing at qualitative level. By contrast, the emergence of solid behavior in soft and metallic glasses, which
originates from direct particle interactions is not well described by the theory. We show that similar shortcomings
arise in the description of the caging dynamics of the glass phase at rest. We discuss the range of applicability of
mode-coupling theory to understand the yield stress and nonlinear rheology of amorphous materials.
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I. INTRODUCTION

The yield stress is a defining characteristics of amorphous
solids which represents a robust mechanical signature of the
emergence of solid behavior in many atomic, molecular and
soft condensed materials undergoing a transition between fluid
and solid states [1,2]. From a physical viewpoint, the existence
of a yield stress implies that the material does not flow spon-
taneously unless a driving force of finite amplitude is applied,
which represents a very intuitive definition of “solidity.” While
properly defining and measuring a yield stress remains a
debated experimental issue [3,4], we will study simple model
systems where the yield stress can be unambiguously identified
as the shear stress σ measured in steady-state shear flow, in
the limit where the deformation rate γ̇ goes to zero,

σY = lim
γ̇→0

σ (γ̇ ). (1)

As such, the yield stress measures a strongly nonlinear
transition point between flowing states for σ > σY and
arrested states when σ < σY . In this work, we wish to analyze
the dependence of σY on external control parameters, such as
temperature T and the packing fraction, ϕ, in a wide range of
disordered materials. Therefore, our work differs from most
rheological studies of glassy materials which usually describe
a set of flow curves, σ = σ (γ̇ ), for a specific material.

Dense amorphous particle packings represent a broad class
of solids possessing a yield stress, which typically emerges
when either temperature is lowered across the glass transition
temperature Tg in atomic and molecular glasses (such as
metallic glasses) or when the packing fraction is increased
in colloidal hard spheres and soft glassy materials (such as
emulsions and soft colloidal suspensions) [5,6]. Of course,
the range of materials displaying a measurable yield stress
is much broader [1], but we restrict ourselves to dense
particle systems with a disordered, homogeneous structure,
leaving aside systems like colloidal gels or crystalline and
polycrystalline structures.

While our emphasis is mostly on atomic and colloidal
systems, we also include in our discussion materials such

as foams and noncolloidal soft suspensions, where solidity
emerges on compression at the jamming transition but for
which thermal fluctuations play a negligible role [7]. While
the yield stress in jammed solids results from the emergence
of a mechanically stable contact network between particles
rather than a glass transition [8], it was recently demonstrated
that the interplay between glass and jamming transitions can
be experimentally relevant for the rheology of soft colloidal
systems as well [9]. In particular, we have shown that the
yield stress of soft repulsive particles displays a very rich
behavior as both T and ϕ are varied [9], and we suggested
that this is relevant to describe materials such as concentrated
emulsions [10] (see also Ref. [11]).

From the modeling point of view, the complex rheology
of amorphous yield stress materials is often described using
simplified or coarse-grained descriptions that assume from the
start the existence of a yield stress and study the response
of the solid to the imposed flow [12–16]. Fewer theoretical
approaches can describe both the emergence of a yield stress
together with the rheological consequences [17–19], as they
must then also in principle provide a faithful description of
the glass or jamming transitions, which represent theoretical
challenges on their own [6]. Therefore it should be clear
that predicting the temperature and density evolution of the
yield stress across a broad range of materials is much more
demanding than studying the qualitative evolution of a set of
flow curves. Thus, we hope our study will motivate further
theoretical developments to reach this goal.

The mode-coupling theory (MCT) of the glass transition
was first developed in the context of the statistical mechanics
of the liquid state to account for the dynamical slowing down
observed in simple fluids approaching the glass transition [20],
but it has also deep connections to the random first-order
transition theory of the same problem, that are well understood
[6]. While initially thought as a theory for the glass transition,
it is now recognized that MCT can make relevant predictions
for time correlation functions for the initial 2–3 decades of
viscous slowing down. Interestingly, this time window is very
relevant for experiments performed in colloidal systems and
in computer simulation studies. This explains why the theory
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continues to be developed as of today and in particular why its
extensions to account for the driven dynamics of glasses have
experimental relevance [21–26]. Many specific aspects of the
theory have received numerical and experimental attention in
recent years [22,27], but a systematic exploration of the yield
stress behavior has, to our knowledge, not been performed.

To explore different types of materials while keeping the
possibility of a direct comparison to theorical predictions,
we concentrate on simple model systems which can be both
efficiently studied in computer simulations to obtain direct
measurements of the yield stress and can also be studied within
a mode-coupling approach. Because the static structure of
the fluid is the only input needed for the theory, measuring
the structure from computer simulations [28,29] allows us
to directly analyze the validity of the theoretical predictions
and identify precisely the strengths, weaknesses, and range
of applicability of the theory to analyze the yield stress of
amorphous solids.

In agreement with previous findings, we observe that for
all systems, the theory correctly predicts the emergence of a
finite yield stress as the glass transition is crossed, although
it is difficult to assess quantitatively the detailed predictions
made by the theory near the “critical” point (because the
singularity is replaced by a crossover in real systems). For
hard-sphere glasses, the theory accounts qualitatively well
for both the entropic nature of the solidity (i.e., σY ∝ kBT )
and the divergence of the yield stress as the random close
packing density is approached [30]. By contrast, we find that
the theory fares poorly for systems where solidity emerges
due to direct interparticle interactions (i.e., σY ∝ ε, where
ε characterizes the scale of pair interactions) such as soft
repulsive and Lennard-Jones particles at low temperatures,
as theory incorrectly predicts that σY ∼ kBT . Our results
also show that these shortcomings can be traced back to
the description of the glass dynamics at rest (i.e., without
an imposed shear flow) rather than to an incorrect treatment
of the mechanical driving. Therefore, we also offer a detailed
analysis of the caging dynamics in all these models, which is
currently the focus of considerable attention, in particular in
colloidal materials [31–33].

The paper is organized as follows. In Sec. II we introduce
our models for hard spheres and soft and metallic glasses
and the mode-coupling approach we follow to study the
glass dynamics at rest and under flow. In Sec. III we study
the short-time glass dynamics of hard-sphere and soft-sphere
glasses at rest. In Sec. IV we study the glassy rheology of
hard-sphere and soft-sphere models. In Sec. V we repeat
the analysis of vibrational and rheological properties for
Lennard-Jones particles. In Sec. VI we discuss our results
and offer perspectives for future research.

II. MODELS, METHODS, AND
MODE-COUPLING THEORY

In this section we introduce the models used to describe the
physics of hard spheres and soft and metallic glasses. Then we
describe the simulation methods employed to extract caging
dynamics and the yield stress. Finally, we present the mode-
coupling theory to analyze both the glass dynamics at rest and
its extension to treat steady-state shear flows.

A. Model glasses

In this work, we consider two different model systems. To
address the physics of hard spheres and soft glasses, we study
a system of repulsive harmonic spheres, defined by the simple
following pairwise potential,

vHS(rij ) = ε

2
(1 − rij /a)2�(a − rij ), (2)

where �(x) is the Heaviside function and a is the particle
diameter.

It is well established that harmonic spheres display two
different regimes when the packing fraction, ϕ, and tempera-
ture, T , are varied [34]. Because of the repulsive interaction,
harmonic spheres at low temperatures have very few overlaps
and thus effectively behave, in the limit of ε/T → ∞, as
a hard-sphere fluid. In this regime, the physics of harmonic
spheres is controlled by entropic forces. However, this regime
can be achieved only if the density is low enough that
configurations with no particle overlap can easily be found.
On compression, another regime is entered where particles
have significant overlaps with their neighbors, and the system
then behaves as a soft repulsive glass. In this regime, the
physics is controlled by the energy scale ε of the repulsive
forces rather than by entropic forces. At very low temperatures,
the transition between these two distinct glasses occurs at the
jamming transition [35]. In this paper, our primary goal is not
to study the jamming transition in detail but rather to use its
existence to study both the “entropic” physics of hard spheres
and the “energetic” physics of soft glasses within a single
model.

Finally, we use Lennard-Jones particles as a simple model
for an atomic glass-forming liquid, where the pairwise poten-
tial is

vLJ (rij ) = 4ε((a/rij )12 − (a/rij )6). (3)

As we mainly deal with the properties of the glass, we use a
monodisperse Lennard-Jones model. To study also the viscous
liquid properties, we would need to study a system with
some size polydispersity (such as a binary mixture) to prevent
crystallization. Such mixtures are indeed taken as simple
models for metallic glasses. In this case again, the energy
scale ε in the Lennard-Jones potential plays a crucial role, as
we shall demonstrate.

B. Computer simulations

To assess the quality of the mode-coupling theory pre-
dictions we have studied the above models using computer
simulations, both by producing new data for the present work
and by collecting previously published data. The simulation
methods are described in our previous publications [9,33,36],
and so we only give a brief account of these methods.

To study the vibrational dynamics of the various glass
structures, we performed Newtonian dynamics simulations.
We studied the vibrational property of a single amorphous
packing configuration at the desired density and temperature,
using a very large system size [33]. To generate the glass
configurations, we prepare a fully random configuration and
then perform an instantaneous quench to very low temperature.
We then let the system relax until aging effects become
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negligible and purely vibrational dynamics is observed. To
study glasses at different state points, we heat or cool and
we compress or decompress the initially prepared glass
configuration, followed by a new thermalization. After the
glass structures are obtained, we perform production runs.
Since we mainly focus on the very low temperatures (compared
to the glass transition temperature), the system lies well inside
a metastable state, and particles simply perform vibrational
motions around their equilibrium positions.

As usual for studies of the jamming transition, the precise
location ϕJ of the singularity depends on the way the packing
of repulsive spheres has been prepared [37]. However, it is
well known that physical properties do not depend on this
preparation, as long as the data are presented as a function of
the distance to the critical density, |ϕ − ϕJ | [35,37].

For numerical simulations of the yield stress of the
harmonic sphere system, we performed Langevin dynamics
simulations with simple shear flow [9]. The equation of motion
is

ξ

(
∂�ri

∂t
− γ̇ yi �ex

)
= −

N∑
j=1

∂v(|�ri − �rj |)
∂�ri

+ �Ri. (4)

Here �ri represents the position of particle i, yi its y

component, and �ex the unit vector along the x axis. The
damping coefficient, ξ , and the random force, �Ri(t), obey the
fluctuation-dissipation relation as follows: 〈 �Ri,α(s) �Rj,β(s ′)〉 =
2kBT ξδij δαβδ(s − s ′). We apply Lees-Edwards periodic
boundary conditions. We performed sufficiently long simula-
tions at the desired temperature, density, and shear rate and ana-
lyzed their steady-state stress measured via the standard Irving-
Kirkwood formula. The yield stress is typically extracted from
fitting the steady-state flow curves at a given state point using a
phenomenological Herschel-Bulkley law, σ (γ̇ ) = σY + aγ̇ n,
where a and n are additional fitted parameters.

Because the yield stress of the Lennard-Jones model has
been measured in a number of studies for the case of a
well-known binary mixture [38,39], we gather these literature
data as a proxy for the yield stress of the monocomponent
system. Since our discussion of these data is mainly qualitative,
the differences between both systems have no impact for the
present work.

For both harmonic and Lennard-Jones spheres, we use a and
ε/kB as the units of the length and temperature. For the time
unit, a(m/ε)1/2 and a2ξ/kBT are used in the inertial dynamics
(for vibration) and overdamped dynamics (for rheology),
respectively, where m is the particle mass. We will carefully
discuss the appropriate stress scales when needed.

C. Mode-coupling theory of the glass transition

We present the basic mode-coupling equations allowing us
to describe the dynamics of glassy liquids and glasses at rest.
The mode-coupling theory (MCT) [20] of the glass transition
can be expressed as a closed set of equations for the in-
termediate scattering functions F (�k,t) = N−1〈ρ(�k,0)∗ρ(�k,t)〉.
Here, ρ(�k,t) = ∑

i e
i�k· �Ri (t) is the instantaneous density field

and �Ri(t) is the i-th particle position at time t . The central

equation of the MCT is


−2(k)F̈ (k,t) + F (k,t) +
∫ t

0
ds M(k,t − s)Ḟ (k,s) = 0, (5)

where 
(k) =
√

kBT k2/mS(k) is the frequency term associ-
ated with acoustic waves and S(k) = F (k,t = 0) is the static
structure factor. The memory kernel M(k,t) is given by

M(k,t) = ρS(k)

2k2

∫
d �q

(2π )3
V (�k,�q,�k − �q)F (q,t)F (|�k − �q|,t),

(6)

with the vertex term

V (�k,�q, �p) = {�k · �qc(q) + �k · �pc(p)}2/k2. (7)

Here, c(k) = {1 − 1/S(k)}/ρ is the direct correlation function
[40].

From the intermediate scattering function, we can also ob-
tain various incoherent correlation functions in the framework
of the MCT. Consider a tagged particle located at �R(t) and
the associated density field ρs(�k,t) = ei�k· �R(t). The MCT equa-
tions for the self-intermediate scattering function Fs(k,t) =
〈ρs(�k,0)∗ρs(�k,t)〉 have the same structure as Eq. (5) but with
the frequency term now given by 
s(k) =

√
kBT k2/m instead

of 
(k) and with the self-memory kernel

Ms(k,t) = ρ

k2

∫
d �q

(2π )3

{�k · �q
k

c(q)

}2

Fs(q,t)F (|�k − �q|,t) (8)

instead of M(k,t). The MCT equation for the mean-squared
displacement, �2(t) = 〈| �R(t) − �R(0)|2〉, also can be obtained,

m

kBT
�̈2(t) − 6 +

∫ t

0
ds Md (t − s)�̇2(s) = 0, (9)

where

Md (t)= ρ

6π2

∫
dk k4c(k)2F (k,t)Fs(k,t). (10)

The set of MCT equations describes the time evolution
of the correlation functions F (k,t), Fs(k,t), and �2(t). The
MCT equations have been applied to various model systems,
including the two models studied in this work, harmonic
spheres, and Lennard-Jones particles [28,29,41,42]. In both
cases, the theory predicts an ideal glass transition line in the
(T ,ϕ) phase diagram. At high temperature and low densities,
F (k,t) and Fs(k,t) relax to zero and �2(t) becomes diffusive,
�2(t) ∝ t , at long time. However, when the temperature is
decreased and the density is increased, the system may enter
the nonergodic glass phase, where the long-time limits of
F (k,t) and Fs(k,t) are positive and the limit of �2(t) is finite.

To characterize short-time dynamics in the glass phase,
we focus on the mean-squared displacement �2(t). We
compare �2(t) obtained from MCT with the direct numerical
measurements. Since the MCT equation of the mean-squared
displacement Eqs. (9) and (10) depend on the collective and
self-intermediate scattering functions, we first need to solve the
full MCT equations [Eq. (5)] for these correlation functions.
This requires the static structure factor S(k) as a sole input.
We use the “exact” S(k) directly obtained from the simulations
at each state point. The structures we analyze are essentially
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frozen apart from the rattling motion of particles, so S(k)
is free from aging effects. For the numerical integration of
Eqs. (6), (8), and (10), we employed equally spaced grids Nk

with a grid spacing �k. We use large-enough Nk�k and small-
enough �k to be independent from the choice of these parame-
ters and convergence of all results have been carefully assessed.

Integrating the MCT equations for very low T very close
to the jamming transition for harmonic spheres required an
unsually large number of wave vectors Nk as the static structure
develops a k−1 tail in large k region. Specifically, the cutoff
wave vector varies from 500 to 105, with NK > 103, depending
on the distance from jamming. While the MCT equations
cannot be used when the tail extends up to k → ∞, i.e.,
precisely at the jamming point ϕ = ϕJ and T = 0, we only
study state points where the structure remains nonsingular so
MCT equations can still be used. By doubling the grid used
for the numerical solution, we make sure that all our results
are well converged and depend only weakly on the numerical
integration. We discuss again this issue in Sec. III C1.

D. Mode-coupling theory under shear flow

In the past decade, the mode-coupling theory of the glass
transition has been extended to study systems under shear
flow [21–24]. In this work, we follow the approach developed
in Refs. [23,24]. The theory describes a system that is subjected
to shear flow at t = 0 and predicts how the system reaches a
steady state. As before, it only requires the static structure
factor at rest as an input and gives properties of the steady
state under shear flow as output, from which we can deduce
the value of the yield stress.

The theory again takes the form of a closed set of
equations for the transient intermediate scattering function,
Ft (�k,t) ≡ 〈ρ(�k,0)∗ρ(�k(t),t)〉. This function is the extension of
F (k,t) to describe the transient dynamics of the system, where
the shear flow is applied at t = 0. The so-called advected
wave vector �k(t) is given by �k(t) = �k − γ̇ kx �eyt , which takes
into account the affine advection of density fluctuations by
the shear flow. The central equation of the theory is very
similar to the usual MCT equation, Eq. (5), except that the
transient correlation function becomes the unknown function.
In practice, however, the equations become very difficult to
solve because the correlation functions are anisotropic, due to
the external flow, and we cannot perform the circular integral
before solving the equations.

To avoid this problem, we employ the approximation
called “isotropically sheared model” [23], where an isotropic
approximation is applied to all correlation functions and
advected wave vectors. In this approximation, the central
equation is

�−1(k)Ḟt (k,t) + Ft (k,t) +
∫ t

0
ds Mt (k,t − s)Ḟt (k,s) = 0,

(11)

where �(k) = kBT k2/ξS(k) is the damping term and Mt (k,t)
is the memory kernel given by

Mt (k,t) = ρS(k)

2k2

∫
d �q

(2π )3
Vt (�k,�q,�k − �q,t)

×Ft (q,t)Ft (|�k − �q|,t), (12)

with the vertex term

Vt (�k,�q, �p,t) = {�k · �qc(q) + �k · �pc(p)}
× {�k · �qc(q(t)) + �k · �pc(p(t))}/k2. (13)

Here k(t) = k(1 + (γ̇ t)2/3)1/2 is the length of the advected
wave vector.

The MCT equations in Eq. (11) become closed when the
density, temperature, and shear rate are specified and the
structure factor S(k) for the system at rest are given. Once
the equation is solved, the time evolution of the transient
intermediate scattering function Ft (k,t) is obtained. Using this
correlation function, the shear stress at the desired state point
can be calculated through

σ = γ̇ kBTρ2

60π2

∫ ∞

0
dt

∫ ∞

0
dk

k5c′(k)c′(k(t))
k(t)

Ft (k(t),t)2, (14)

where c′(k) is the derivatives of c(k). To solve the equation,
we use the same technique as before and again take S(k) as
obtained from the simulations.

III. DYNAMICS OF HARD SPHERES AND
SOFT GLASSES AT REST

We study the short-time dynamics of hard spheres and soft
glasses using the harmonic sphere model in two different
density regimes, through the analysis of the mean-squared
displacement (MSD). The MSD analysis on numerical sim-
ulations of the vibrational dynamics of this model in a wide
temperature and density range were reported before [33], and
we simply summarize the main results, in order to recall the
critical properties of vibrational dynamics near jamming. We
then present the MCT predictions from Eqs. (5) and (9).

A. Mean-squared displacement

We first review the simulation results for the MSD. The
top panel of Fig. 1 shows the time evolution of the MSD
�2(t) at the temperature T = 10−8 and several densities across
the jamming density. For all densities, �2(t) shows ballistic
behavior 3T t2 at very short time, while it approaches a plateau
in the long-time limit. As density increases, this plateau value
decreases, which shows that compressing particles reduces
drastically the spatial extent of their thermal vibrations, which
is physically expected.

A closer look at the time dependence of the MSD reveals
a very interesting behavior in the vicinity of the jamming
transition. To this end, it is useful to introduce the microscopic
time scale, τ0, which coincides with the moment where the
MSD starts to deviate from its short-time ballistic behavior.
This time scale τ0 is indicated by open squares in Fig. 1.
Physically, it means that particles do not feel their environment
for t < τ0. A second relevant time scale, t�, characterizes the
time dependence of the MSD. It corresponds roughly to the
time scale at which the MSD reaches its plateau value. This
corresponds to the time it takes to the particles to fully explore
their “cage.” This second time scale is indicated by the filled
squares in Fig. 1. The precise definitions of these time scales
can be found in our previous work [33].

Clearly, while both τ0 and t� decrease when the system
is compressed, their ratio evolves in a striking nonmonotonic

052305-4



YIELD STRESS IN AMORPHOUS SOLIDS: A MODE- . . . PHYSICAL REVIEW E 88, 052305 (2013)

0.630

0.644

0.647

0.653

0.700

ballistic
    T t2

ballistic
    T t2

ϕ

0.630

0.644

0.647

0.653

0.700

Simulation

MCT

=

ϕ=

FIG. 1. (Color online) Top: Time dependence of the mean-
squared displacements (MSD) obtained from simulation of harmonic
spheres at constant temperature, T = 10−8, for volume fractions
ranging from above to below the jamming density ϕJ ≈ 0.647.
Open squares indicate the microscopic time scale τ0 where dynamics
deviates from ballistic behavior. Filled squares indicate the time scale
t �, which marks convergence of the MSD to its long-time plateau
value. Both time scales decrease with ϕ, but their ratio is maximum
near ϕJ . Bottom: Time dependence of the MSD predicted by the
MCT at the same state points. There is no decoupling between τ0

and t � near ϕJ , and the plateau value has a nonmonotonic density
dependence.

manner with density, with a maximum occurring very close to
ϕ ≈ ϕJ . This observation means that, when measured in units
of the microscopic time scale τ0, vibrations occur over a time
scale t� that is very large near ϕJ but decreases as the packing
fraction moves away from ϕJ on both sides of the jamming
transition. This is closely related to the emergence of dynamic
criticality [33] or soft modes [7] as the jamming transition is
approached, |ϕ − ϕJ | → 0 and T → 0, with clear signatures
in the vibrational dynamics at finite temperatures.

We now compare these results to the MCT predictions de-
duced after feeding the MCT equations with the “exact” static
structure factor S(k) measured in the computer simulations at
the state points represented in Fig. 1. First, we find that the
solution of the MCT equations corresponds to glassy states, for
which the long-time limit of all correlation functions is finite.

The bottom panel of Fig. 1 shows the MCT results for the MSD
�2(t) at the same state points as in the top panel. These results
show similarities and differences with the simulation results.

The basic time dependence of �2(t) is similar to the
simulation results. The MSD shows an initial ballistic regime
at very short time, and they all reach a plateau at long time.
A first difference with the simulations is that the density
dependence of this plateau height decreases with compression
in the hard-sphere regime but increases with density above
the jamming density, which is at odds with the numerical
results. Regarding the details of the time dependence, the
MCT solution predicts that the time scales τ0 and t� evolve
together with a ratio t�/τ0 that is roughly independent of
density. There is therefore no separation between microscopic
and long time scales in these results, and the dynamic criticality
of the jamming transition is not reproduced by the theory.

This failure is perhaps not too surprising as the initial theory
was not devised to treat the jamming problem. However, we
notice that soft modes are directly related to clear signatures
in the pair correlation function g(r) at short separation r ≈ a,
which we introduced in the dynamic equations to produce the
results in Fig. 1. These results indicate, however, that this is
not enough to reproduce the dynamics observed numerically.

B. Evolution of the Debye-Waller factor

From the time depencence of the MSD, we can extract the
long-time limit,

�2(∞) = lim
t→∞ �2(t), (15)

which is called the Debye-Waller (DW) factor. Physically,
�2(∞)/

√
6 is the localization length of caged particles. We

perform a quantitative analysis of its evolution over a wide
range of temperatures and densities.

We show in Fig. 2 the density dependence of the DW factors
at various temperatures, from T = 10−8 up to T = 10−5.
In this density regime, the computer glass transition occurs
near T ≈ 5 × 10−4. A first qualitative observation is the
confirmation that for all temperatures, the DW factor decreases
on compression, indicating that particles have less space to
perform vibrations at large density.

Second, this figure makes very clear the distinction between
the two types of solids obtained on both sides of the jamming
density. For ϕ < ϕJ , which we called “hard-sphere glass,” the
DW factor becomes independent of the temperature at low T

and is uniquely controlled by ϕ. In this regime, particles are
separated by a finite gap at very low temperatures, and they can
explore this free volume regardless of the temperature value.
On the other hand, when ϕ > ϕJ , the DW factor is proportional
to the temperature at low T . This corresponds to the situation
where particles are vibrating in an energy minimum created
by their neighbors. This temperature dependence simply
corresponds to the low-temperature harmonic limit where
equipartition of the energy yields �2(∞) ∝ kBT . This is the
regime we called “soft glass.”

The final observation is that upon lowering the temperature,
the density dependence of the DW factor becomes singular on
both sides of the transition, reflecting the emergence of the jam-
ming singularity in the T → 0 limit. Approaching the jamming
transition from the hard-sphere side, the DW factor shows a
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FIG. 2. (Color online) Volume fraction dependence of the long-
time limit of the MSD from simulation (top) and from the MCT
solution (bottom). Different curves correspond to different tempera-
tures from T = 10−5 to 10−8 (from top to bottom). In simulations,
the DW factor decreases with ϕ, with a singular drop near ϕJ . By
contrast, the predicted DW factor is nonmonotonic with a sharp cusp
near ϕJ . The dashed lines indicate power laws for the hard-sphere
regime, ϕ < ϕJ .

sharp drop, which is well-described by �2(∞) ∼ (ϕJ − ϕ)1.5.
On the other hand, approaching jamming from the soft-glass
side, the DW factor diverges as �2(∞) ∼ (ϕ − ϕJ )−0.5.

These two critical divergences are in fact directly related to
the slowing down of the vibration discussed above [33,43,44].
To see this, it is useful to define a microscopic length scale
�0 associated to the microscopic time scale τ0 discussed
above through �0 = √

T τ0. Notably, this length scale is
vanishing as jamming is approached from the hard-sphere
side, �0 ∝ (ϕJ − ϕ), simply reflecting the vanishing of the
interparticle gap. On the soft-sphere side, �0 is not singular.
Note that the amplitude of the vibrations quantified by the
DW factor vanishes less rapidly than �2

0 as ϕ → ϕJ , reflecting
the emergence of “soft modes,” i.e., collective vibrational
motion that allow large amplitude vibrations, �2(∞) � �2

0.
By renormalizing the DW factor by the microscopic length
scale, we obtain the density dependence of the adimensional
amplitude of the cage size, with

�2(∞)

�2
0

∝ |ϕJ − ϕ|−0.5 (16)

for both hard-sphere and soft-glass regimes. This analysis
shows that the amplitude of (adimensional) vibrations diverges
as T → 0 and |ϕ − ϕJ | → 0.

In Fig. 2 we present the MCT predictions for the DW factor
for the same state points as in simulation. In the hard-sphere
regime, �2(∞) becomes independent of temperature as T →
0, in agreement with the simulations. However, the DW factor
also becomes independent of T in the soft-glass regime, in
contradiction to the numerical findings. It means that MCT
cannot account for the fact that dynamics in the soft glass is
controlled by the amplitude of interparticle interactions rather
than by entropic effects. This finding has consequences for the
rheology of soft glasses, as discussed below.

Regarding the density dependence, MCT correctly predicts
that the DW factor vanishes as ϕ → ϕJ on the hard-sphere
side. Therefore, MCT is able to capture some of the singular
features of the jamming transition. Mathematically, this is
because the structure factor used as an input to the MCT
dynamical equations becomes itself singular in this limit,
which is responsible for the vanishing of the DW factor. We
shall explore this limit in more detail below, but the numerical
solution of the MCT equations in Fig. 2 shows that the
resulting DW factor vanishes as �2(∞) ∼ (ϕJ − ϕ)4, i.e., with
a power law that goes to zero much faster than the numerical
observations. Intriguingly, the exponent 4 in this expression is
even larger than the naive estimate �2(∞) ∼ �2

0 ∼ (ϕJ − ϕ)2.
This implies that MCT predicts that particles are localized over
a length scale which is much smaller than the interparticle gap,
which is not very physical. The second unphysical finding is
the overall density dependence which is roughly symmetric
on both sides of the jamming density, with the development
of a sharp cusp near ϕJ as T → 0 resulting from an incorrect
treatment of the soft-glass dynamics.

C. MCT predictions near the jamming transition

We now reveal that the singularity of the MCT solution is
directly related to the singularity of the structure functions near
jamming. Then we clarify analytically the nature of the MCT
predictions near jamming, namely that �2(∞) vanishes on
both sides of ϕJ with a power law with the same exponent. We
first analyze the characteristic features of the static structure
factor, and we then discuss the structure of the MCT equations
near jamming.

1. Static structure factor near jamming

Since the sole input of the MCT equation is the static
structure factor S(k), the predicted singularity of the DW factor
must come from changes in the structure. The pair structure
of hard-sphere packing near jamming has several relevant
features [45–48]. We find that the MCT equations are most
sensitive to the simplest of these features, which corresponds,
in real space, to the appearance of a diverging peak at r = a in
the pair correlation function. Physically, this peak corresponds
to the fact that at ϕ = ϕJ and T = 0, particles have exactly
z = 2d contacts, i.e., neighbors located at the distance r = a.
Close to jamming, |ϕ − ϕJ | � ϕJ , this peak has a finite height,

gmax ∼ 1

|ϕ − ϕJ | , (17)
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and a finite width |ϕ − ϕJ |, such that the peak turns into a δ

function in the limit ϕ → ϕJ . Note that this scaling behavior
appears both for ϕ < ϕJ and ϕ > ϕJ .

At first glance, the structure factor S(k) near jamming
appears to not differ very much from normal fluids [46,48]. It
consists of a first diffraction peak near k = 2π/a, followed
by subsequent peaks at larger wave vectors. However, the
diverging contact peak implies that the peaks at large k have an
amplitude which decreases more slowly than in simple liquids
[48]. We find that near the jamming density the envelope of
the peaks of S(k) − 1 first decreases as k−1, followed by a
crossover to a k−2 behavior. When ϕ gets closer to ϕJ , the
crossover wave vector k� between these two power laws occurs
at larger k, and it scales as k� ∼ gmax. In summary, we find the
following behavior:

peak heights of [S(k) − 1] ≈ 1

k
, 1 � k � gmax,

≈ gmax

k2
, gmax � k. (18)

As in the case of Eq. (17), this scaling behavior also appears
both below and above jamming. Interestingly, a similar
crossover in the structure factor is observed in hard spheres
with a short-range square-well attractive tail, which is used
to analyze the physics of attractive colloids. In that case, the
crossover between the two regimes simply stems from the
imposed width of the attractive well of the potential [49,50].

To make analytic progress, we introduce a simplified model
for the pair correlation g(r) near jamming,

g(r) = gmax, for 1 � r � 1 + g−1
max, (19)

and g(r) = 0 otherwise. This model g(r) is illustrated in the
inset of Fig. 3. The Fourier transform of this rectangular
function can be easily performed and provides the scaling

FIG. 3. (Color online) Evolution of the Debye-Waller factor
approaching the jamming transition from the hard-sphere side,
parametrized the maximum gmax ∼ 1/|ϕJ − ϕ| of the first peak of
the pair correlation function. The DW factor predicted by the full
MCT equation Eq. (9) (filled symbols) converges for a large enough
cutoff to the result obtained from the Gaussian approximated MCT
equation Eq. (21) (open symbols) using the simplified pair correlation
function shown in the inset. All solutions agree with �2(∞) ≈ g−4

max

and with the full MCT solution in Fig. 2.

behavior of S(k),

S(k) − 1 ≈ sin(k)

k
, 1 � k � gmax,

≈ gmax cos(k)

k2
, gmax � k, (20)

which is essentially the same as Eq. (18). In the limit of the
jamming density, S(k) becomes S(k) − 1 ∼ sin(k)/k, which
is exactly the Fourier transform of the δ function in three
dimensions. This means that the model Eq. (19) captures the
large k behavior of the real S(k) correctly.

We have solved the MCT equations with the Fourier trans-
form of Eq. (19) as an input for the structure factor. In Fig. 3 we
show the evolution of the DW factor parameterized by the value
of gmax, which diverges as ϕ → ϕJ . We present the results of
the numerical solution obtained for different values for the
wave-vector cutoff, Nk�k, showing that when the numerical
solution has converged, a perfect agreement is obtained for the
evolution of the DW factor from the numerically determined
structure factor and from the simplified model Eq. (19). Both
MCT solutions, when properly converged, result in the scaling
behavior �2(∞) ≈ g−4

max ∼ (ϕJ − ϕ)4. This agreement shows
that the MCT solution is dominated by the large k behavior
of the S(k), Eq. (18), and therefore is well captured by our
simplified model in Eq. (19).

2. Analysis of the MCT equation: Gaussian approximation

To finally analyze the origin of the power law �2(∞) ≈
g−4

max, we introduce a simplified version of the MCT equation,
called Gaussian approximated MCT. Assuming that F (k,t)
and Fs(k,t) have a Gaussian wave-vector dependence and
that F (k,t) ≈ S(k)Fs(k,t), which is the so-called Vineyard
approximation (both conditions accurately hold in the full
MCT solution), the MCT equation can be analytically simpli-
fied [51]. The long-time limit of this simplified MCT equations
becomes

1

�2(∞)
= ρ

6π2

∫
dk k4c(k)2S(k)e−2�2(∞)k2

. (21)

This equation takes S(k) as a sole input [the direct correlation
c(k) follows directly from S(k)] as in the case of the full MCT
equations. We again solve this equation numerically, and show
the results in Fig. 3 as open squares. The solution perfectly
agrees with the solution of the full MCT equation with the full
S(k).

The advantage of the formulation in Eq. (21) is that the
asymptotic behavior of the DW factor can now be understood
analytically. Using the behavior of S(k) in Eq. (20), the
integrant in Eq. (21) becomes k2e−2�2(∞)k2

for k � gmax

and g2
maxe

−2�2(∞)k2
when k � gmax. Here we omitted the

square of trigonometric functions since they only give constant
contributions. When �2(∞) � g−2

max, the integral is dominated
by the contribution from k � gmax. This integral can be
performed as a Gaussian integral, and this gives �2(∞) ≈
g−4

max, which also agrees with the assumption �2(∞) � g−2
max,

and with the observation from the full MCT equation. Note
that a similar analysis was carried out in Ref. [48].

In summary, by simplifying the full MCT treatment with
the exact S(k) using both a simplified model for g(r) and
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a Gaussian approximation of the MCT equations, we can
establish analytically the MCT result �2(∞) ∼ (ϕJ − ϕ)4,
which is mainly controlled by the large k behavior of S(k),
produced by the divergence of the contact peak in g(r).

D. Discussion of the MCT near jamming

We have unveiled two distinct features of the MCT
predictions for the DW of harmonic spheres near the jamming
transition.

First, we discussed the behavior in the hard-sphere regime,
where a power-law vanishing of the DW factor with a
large exponent is found. We revealed that this power law
is dominated by the behavior of the static structure factor
at large wave vector k� � gmax. Since 1/k� represents the
typical gap between particles, this finding implies that the
MCT equations are actually controlled by length scales which
are smaller than the typical gap. This is in clear disagreement
with the numerical finding that the DW factor corresponds to
an amplitude for the vibrations that is actually much larger the
interparticle gap.

The second problem is more general and thus more severe.
In the soft-glass regime, ϕ > ϕJ , the predicted DW factor not
only has the incorrect asymptotic behavior, but it also has
incorrect temperature and density dependencies. This results
from the fact that the solution of the MCT is controlled by
gmax, while in the soft-glass regime the system simply vibrates
harmonically near the energy minimum. This physics is not
captured by the MCT equations which instead again describe
this harmonic solid as an “entropic” system. This results in
the prediction of a DW factor that remains finite as T → 0
at large density, instead of the linear temperature dependence
expected in this limit. We note that this problem is not specific
to harmonic spheres and is actually very general for systems
with continuous pair potentials, as will be shown in Sec. V
where Lennard-Jones particles are considered.

IV. HARD SPHERES AND SOFT GLASSES UNDER FLOW

In this section, we study the shear rheology of hard spheres
and soft glasses extending the results in Sec. III to include
shear flow. We start with the analysis on the flow curves and
then provide a more detailed discussion of the yield stress
behavior.

A. Flow curves

We start with a brief review of the simulation results for the
flow curves of harmonic spheres [9]. In the top panel of Fig. 4,
we present several flow curves, σ = σ (γ̇ ), at low temperature
kBT /ε = 10−6 and various densities crossing the jamming
density ϕJ . We use adimensional units for both the stress scale
(using kBT /a3 as thermal stress unit) and for the shear rate
[using the Peclet number Pe = γ̇ a2ξ/(kBT )].

First, we focus on the slow shear rate regime, Pe < 1. All the
flow curves show that the stress approaches a constant value,
the yield stress σY = limγ̇→0 σ (γ̇ ). The yield stress increases
rapidly with increasing the density. At lower density in the
hard-sphere regime ϕ < ϕJ , the stress is σY a3/kBT = O(1),
indicating the entropic nature of the stress, and it increases

FIG. 4. (Color online) Top: Flow curves obtained from simulation
of harmonic spheres at T = 10−6 and various volume fractions. A
finite yield stress exists for all ϕ, which increases monotonically with
the density. The athermal rheology of soft repulsive particles near
jamming appears at large Peclet number, Pe > 1. Bottom: The MCT
flow curves for the same state points as the top panel produce a finite
yield stress at all ϕ which is maximum near ϕJ ≈ 0.647 but decreases
with ϕ above jamming.

rapidly when the jamming transition is crossed, suggesting
that it is not controlled by entropic forces alone in this regime.

Next, we focus on the fast shear rate regime, Pe > 1. In
this regime, the flow curve shows complex and interesting
behavior [9]. At low density, the flow curve exhibits a crossover
between strong shear thinning when Pe < 1 to Newtonian
behavior when Pe > 1. This shows that a system that looks
solid at low Pe in fact appears as a fluid when Pe becomes
large, characterized by an “athermal” Newtonian viscosity.
This viscosity increases rapidly with the density, and this
Newtonian regime disappears above the jamming density,
where it is replaced by the emergence of a finite yield stress.

We solved the MCT equation, Eq. (11), at the desired
shear rate and with the static structure factor obtained from
simulation at the desired density and temperature, following
the same procedure as for the mean-squared displacement in
the previous section. The bottom panel of Fig. 4 shows the flow
curves obtained within MCT. As for the numerical results, the
MCT flow curves at these state points are all approaching
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a finite yield stress at low shear rate, implying that MCT
correctly predicts that these glass states offer a finite resistance
to shear flow.

In the hard-sphere regime, the yield stress increases rapidly
with density, which qualitatively agrees with the numerical
observations. However, the yield stress is found to decrease
with density in the soft-glass regime, in disagreement with the
simulation results. This incorrect behavior is very similar to
the one reported for the cage dynamics in the previous section,
and we will argue below that it has the same origin.

Finally, we focus on the MCT predictions for Pe > 1.
The MCT flow curves in this regime do not exhibit the
interesting behavior observed in the numerical simulations.
This is not very surprising as the MCT under shear flow is
specifically designed to treat systems controlled by thermal
fluctuations, which become inefficient when Pe > 1. This
result nevertheless clearly reveals that a naive extension of
the MCT will not be sufficient to treat the interesting zero-
temperature shear rheology of soft particle systems, which is
currently the focus of a large interest [9,10,52–54].

B. Temperature and density evolution of the yield stress

We finally come to the analysis of the yield stress in hard
spheres and soft glasses.

We show in Fig. 5 the density dependence of the yield
stress σY measured in the numerical simulation of harmonic
spheres at various temperatures. These data confirm that the
yield stress increases monotonically on compression, as was
observed in the flow curves. As in the case of the Debye-Waller
factor, the temperature dependence of the yield stress differs
on both sides of the jamming. For ϕ < ϕJ , the entropic nature
of the yield stress is obvious since it becomes proportional to
temperature. In the adimensional represention of Fig. 5, this
means that σa3/(kBT ) becomes uniquely controlled by ϕ in
the hard-sphere regime.

On the other hand, when ϕ > ϕJ , the nature of the yield
stress changes from being entropic to being controlled by the
energy scale governing the particle repulsion, i.e., σY ∼ ε/a3.
In the adimensional representation of Fig. 5, the data become
proportional to ε/(kBT ). In this regime, the stress does not
originate from thermal collisions between hard particles but
stems from direct interactions between particles interacting
with a soft potential characterized by the energy scale ε.

Having clarified the temperature dependence in the two
regimes, we turn to the density dependence which becomes
singular around the jamming density when temperature be-
comes small, mirrorring again the behavior of the DW factor.
In the hard-sphere regime, the yield stress increases rapidly as
ϕJ approaches, with

σY ∼ kBT

a3

1

(ϕJ − ϕ)
. (22)

In the soft-glass regime at low T , the yield stress vanishes
when the jamming transition is approached, with

σY ∼ ε

a3
(ϕ − ϕJ ). (23)

These two asymptotic behaviors are clearly observed in Fig. 5.
The bottom panel of Fig. 5 presents the MCT predictions for

the yield stress for the same state points. The theory predicts

FIG. 5. (Color online) Top: Volume fraction dependence of the
yield stress from the simulation from T = 10−5 to 10−7 (bottom to
top). The yield stress increases monotonically with the emergence
of sharp singularities near ϕJ as T → 0. Bottom: MCT predictions
for the same state points with T = 10−8 added. The yield stress is
nonmonotonic with a sharp cusp near ϕJ . The dashed lines indicate
power laws for the hard-sphere regimes, ϕ < ϕJ .

that the yield stress results from entropic forces on both sides
of the transition, failing to recognize the change to the soft-
glass regime dominated by interparticle forces. As a result,
the theory incorrectly predicts the emergence of a cusp as
T → 0, with a symmetric divergence of the yield stress on
both sides of ϕJ , which is only observed on the hard-sphere
side in the simulations. At the quantitative level, the MCT
predicts a power-law divergence on the hard-sphere side, σY ∼
kBT

a3 (ϕJ − ϕ)−3, but the exponent 3 differs from the numerical
result although the (entropic) prefactor has the right scaling.

Overall, the degree of consistency between theory and
simulation for the yield stress is very similar to the one deduced
from the analysis of the DW factor in the previous section. In
the following section, we rationalize this similarity.

C. MCT predictions near the jamming transition

We now provide an explanation for the MCT prediction of
the yield stress divergence σY ∝ (ϕJ − ϕ)−3 in the hard-sphere
regime, and of the qualitatively incorrect scaling found in the
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FIG. 6. (Color online) Time dependence of the stress autocor-
relation function G(t) obtained from the numerical solution of
the MCT equations under shear flow in the hard-sphere regime
approaching jamming for T = 10−6 for Pe = 10−3. The horizontal
and perpendicular dashed lines respectively scale as g4

max and g−1
max, in

agreement with Eqs. (27) and (28).

soft-glass regime. To do so, we analyze the structure of the
MCT equations under shear flow.

In the MCT framework, the stress is expressed as an integral
over time and wave vector, see Eq. (14). For the present
analysis, it is useful to rewrite the integral as

σ = γ̇

∫ ∞

0
dt G(t), (24)

where

G(t) = kBTρ2

60π2

∫ ∞

0
dk

k5c′(k)c′(k(t))
k(t)

Ft (k(t),t)2, (25)

is the MCT expression of the transient stress autocorrelation
function. Using this expression, we can analyze the shear stress
in terms of the relaxation behavior of G(t).

In Fig. 6, we show G(t) for T = 10−6 and several densities
in the hard-sphere regime below jamming. The shear rate is
fixed at Pe = 10−3, where the stress is nearly equal to the yield
stress. As discussed in the previous section, the yield stress
increases rapidly with approaching jamming. The data in Fig. 6
show that the stress increase results from the combination of
two different contributions. A first factor is the sharp increase
of the plateau height of G(t) with density. The second factor
is the decrease of the relaxation time of G(t) with increasing
the density. We now analyze these two factors separately.

When t is small as t γ̇ � 1, the advected wave vector k(t)
is essentially equal to the wave vector at rest, k(tmicro � t �
γ̇ −1) ≈ k, where tmicro is the microscopic time to reach the
plateau. In this case, the sheared MCT equations Eq. (11)
is nothing but the usual MCT equation, Eq. (5). Thus,
the transient intermediate scattering function Ft (k,t) in this
regime can be accurately approximated by the usual interme-
diate scattering function F (k,t), with no influence from the
wave-vector advection. In this regime, the plateau height of

G(t) can be rewritten as

Gp ≈ kBTρ2

60π2

∫ ∞

0
dk k4c′(k)2F (k,t)2. (26)

This expression is exactly the one provided by MCT for
the shear modulus of the glass at rest [55]. Furthermore,
the behavior of c′(k) at large k is the same as c(k), since
c(k) is asymptotically a product of a fast oscillating function
and a slowly decreasing function of k as in Eq. (20), and
thus the amplitudes of c(k) and c′(k) are asymptotically the
same. Therefore, Eq. (26) is also essentially equivalent to
the right-hand side of Eq. (21), which enters the expression
of the DW factor. This means the plateau height behaves as

Gp ∼ kBT g4
max, (27)

showing that the shear modulus scales with density as the
inverse of the DW factor, with a temperature prefactor
revealing its entropic nature. In Fig. 6, we represented dashed
lines at levels scaling with g4

max, which confirm that Gp indeed
follows Eq. (27).

The second factor contributing to the scaling of the shear
stress is the relaxation time of G(t). In the sheared MCT, the
memory function becomes explicitly time dependent because
of the advection of the wave vectors. A decoupling between
k and the advected k(t) occurs at long time, which results
in a dephasing of the oscillations of c(k) and c(k(t)). We
have shown in the previous section that the MCT integral are
dominated by a Gaussian contribution ∼exp ( − 2�2(∞)k2),
showing that we need to consider the decoupling of wave
vectors for k ∼ 1/�(∞). This occurs after a time tY such that
k(tY ) − k = O(1). This produces an estimate for the relaxation
time of the stress autocorrelation function,

tY γ̇ ∼ k−1/2 ∼ g−1
max. (28)

We plot this estimate in Fig. 6 with vertical lines scaling with
g−1

max. Clearly, these lines agree very well with the relaxation
time of G(t) obtained from the numerical resolution of the
MCT equations. Since we focus on the relaxation dynamics of
the system subjected to the shear flow starting at time t = 0,
tY measures the time it takes the glass to yield. We therefore
can identify γY = tY γ̇ with the yield strain.

By combining the MCT prediction for the divergence of
the shear modulus near jamming as Gp ≈ kBT (ϕJ − ϕ)−4,
and for the vanishing of the yield strain as γY ≈ (ϕJ − ϕ)1,
we obtain the divergence of the yield stress as σY ≈ GpγY ≈
kBT (ϕJ − ϕ)−3. This scaling law agrees very well with the
numerical solution of the MCT equations shown in Fig. 5, as
announced.

D. Discussion of the MCT under flow near jamming

The above analysis clarifies that the MCT under shear
flow makes predictions for the yield stress which are direct
consequences of the behavior obtained from the MCT dealing
with the glass dynamics at rest. Within MCT, the yield stress
can be expressed as the product of the shear modulus and the
yield strain, σY = GpγY , and the shear modulus in the MCT
framework, Eq. (26), is closely related to the DW factor. Thus,
the discussions of the MCT predictions near jamming for the
DW factor and the yield stress are essentially the same. In
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the hard-sphere regime, MCT correctly describes the entropic
nature of the yield stress and its divergence as ϕJ is approached,
but the critical exponent for the divergence is too strong. In the
soft-glass regime, the theory incorrectly predicts a scaling of
the yield stress with kBT , failing to detect the direct influence
of the particle interactions.

However, we wish to note that MCT provides a new
prediction for the yield strain γY in the hard-sphere regime,
γY ≈ (ϕJ − ϕ). This is an interesting novel critical behav-
ior, although the predicted value for the associated critical
exponent is not correct. Indeed, in the simulations one has
σY ∼ (ϕJ − ϕ)−1 [9], while the shear modulus scales with
a different exponent, Gp ∼ (ϕJ − ϕ)−1.5 [56]. This indicates
that the yield strain actually vanishes as γY ≈ (ϕJ − ϕ)0.5.
Note that recent experiments in dense emulsions also show
that the yield strain decreases when the jamming transition is
approached [11].

A simple argument can rationalize the critical scaling of the
yield strain. The yielding predicted by the MCT occurs due
to the decoupling between the wave vector and the advected
one at the “relevant” length scale. Using the correct value
of the interparticle gap for this length scale, one directly
predicts that yielding occurs when the typical gap between
neighboring particles δ ∼ |ϕ − ϕJ | is blurred by the shear
deformation. (A similar argument was used in Ref. [33] to
discuss thermal effects.) The shear flow causes a transverse
displacement of particles over a length γ a, and this causes a
change in the interparticle distance γ 2a. Yielding then occurs
when γ 2

Y a ≈ δ, which gives γY ≈ (ϕJ − ϕ)0.5, as observed
numerically. Note that the argument can be repeated above
the jamming transition in the soft-glass regime. Also in this
regime, there is a mismatch between the scalings of yield
stress [9,52] and shear modulus [35], indicating that the yield
strain vanishes as γY ≈ (ϕ − ϕJ )0.5. This is again consistent
with the idea that the particle overlap δ ∼ |ϕ − ϕJ | is the
relevant length scale to interpret yielding.

V. LENNARD-JONES GLASS DYNAMICS

In this section, we focus on Lennard-Jones particles, for
two reasons. First, this allows us to treat a very different
type of material, as Lennard-Jones fluids are often taken as
simple models to study metallic glasses [5]. A second goal
is to investigate further the generality of the findings of
the previous sections concerning the difficulty encountered
by MCT in describing amorphous materials when solidity
emerges from direct, continuous interparticle forces. We first
analyze the structure of the Lennard-Jones glass and then its
cage dynamics, and we finally study the yield stress measured
under shear flow.

A. Glass structure factor

To solve the MCT equations under shear flow, we need the
glass structure factor as an input. We use the structure factor
measured in low-temperature numerical simulations of the
monodisperse Lennard-Jones system. However, since we use
a monodisperse system, crystallization takes place if we use
a temperature which becomes too close to the glass transition

and diffusive motion becomes possible. To avoid this problem,
we need to restrain ourselves on relatively low temperatures.

To extend our analysis to higher temperatures, we im-
plement a second strategy. We use statistical mechanics to
predict the structure factor of the Lennard-Jones fluid and glass
states combining the hypernetted chain approximation for the
fluid [40] to the replica approach of Ref. [57] for the glass.
While we do not expect this approach to be very accurate,
it still provides structure factors that are qualitatively correct
down to very low temperatures, encompassing both fluid and
glass states. Using this approach, we find that MCT predicts
a kinetic arrest occurring at Tmct ≈ 1.2, while the replica
approach yields a Kauzmann transition at lower temperature,
near TK ≈ 0.9. Above TK , S(k) is identical to the prediction
of the hypernetted chain approximation, while below TK the
glass structure differs from the liquid state approximation [57].

The key point of both approaches is that when T becomes
smaller than the computer glass transition, S(k) rapidly
converges towards its T → 0 limit and has actually a very
weak temperature dependence in the glass phase. By contrast
with the jamming point, however, S(k) does not develop any
kind of singularity even as T → 0. This directly implies that
DW factor and yield stress should behave smoothly in the glass
phase of the Lennard-Jones system.

The reason for this becomes clearer if one focuses on the
pair correlation function. In the frozen glass state, the distance
between any two particles fluctuates around its average value
with a variance proportional to kBT . However, since the struc-
ture is fully amorphous, the spatially averaged pair correlation
function remains nonsingular as T → 0 because the successive
correlation peaks are broadened by the quenched disorder
imposed by the amorphous structure.

Therefore, when lowering T , there exists a temperature
crossover, Tq , below which the thermal broadening of the peaks
in the pair structure becomes smaller than the broadening due
to the quenched disorder. When T < Tq , S(k) and g(r) do not
depend on T anymore, and the solution to the MCT dynamic
equations remain the same as T is decreased further. We shall
see that MCT yields physically incorrect solutions below Tq .

B. Temperature evolution of the Debye-Waller factor

We start our analysis of the MCT predictions for the
Lennard-Jones glass with the characterization of the DW
factor. We focus on the temperature dependence of the DW
factor for a fixed number density, ρ = 1.2.

The temperature dependence of the DW factor �2(∞)
obtained from direct numerical simulations is plotted in
Fig. 7 together with the results from the MCT solution. The
simulation results (filled square) show that the DW factor is
proportional to temperature when temperature becomes small,
which is the same behavior as observed for the soft glass in
Sec. III. This corresponds again to the limit of the Einstein
harmonic solid where the amplitude of the vibrations around
the average position is proportional to kBT , as a direct result
of equipartition of the energy. The data in Fig. 7 indicate that
this linear behavior is obeyed to a good approximation nearly
up to the glass transition temperature.

The MCT analysis performed using the static structure
factor obtained from simulation is shown with filled circles,
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FIG. 7. (Color online) Temperature dependence of the DW factor
obtained from direct numerical simulation (filled squares) and from
MCT using either the numerically measured structure factor (filled
circles) or a statistical mechanics approach (replica theory, open
circles). While the simulation results indicate a linear dependence
on T , the MCT solution suggests a singular T dependence near Tmct

(square-root behavior shown with dashed line) followed by a rapid
saturation to an unphysical T -independent value.

which indicate that the DW factor is nearly independent of
temperature in this regime. This result follows from the above
discussion of the static structure which is also temperature
independent but clearly contradicts the numerical simulations.
This discrepancy is in fact equivalent to the findings obtained
in the soft-glass regime of harmonic spheres.

Finally, using the analytic structure factor, we can follow
the DW factor to higher temperatures and describe the
emergence of a finite DW factor, �2

c , at the predicted mode-
coupling transition, Tmct = 1.2. The theory then predicts an
abrupt temperature dependence characterizing by a square-
root singularity [20], �2(∞) ∼ �2

c − a
√

Tmct − T , where a

is a numerical prefactor. However, the temperature evolution
of the DW factor again rapidly saturates to a T -independent
value.

C. Temperature evolution of the yield stress

We now analyze the temperature dependence of the yield
stress of the Lennard-Jones model.

In Fig. 8, the yield stress obtained from earlier simulations
[38,39] and from the MCT equations are plotted as a function
of the temperature. From the discussion in Sec. IV for the soft
glass, we expect the yield stress of the Lennard-Jones system to
be controlled by the interaction energy between particles, and
we choose therefore to plot the stress in adimensional units,
σ → σ/(ε/a3), where ε represents now the attractive depth
of the Lennard-Jones potential. Using this representation, we
find that the numerical results for the yield stress are in fact
weakly dependent on the temperature, rapidly saturating to the
T → 0 limit, σY (T = 0)/(ε/a3) ∼ O(1), as expected.

Performing the MCT analysis using the low-temperature
structure factor, we find that the predicted yield stress decreases
linearly with the temperature. This is because in this regime
S(k) is nearly constant and the MCT equations produce an

Tmct

TK

FIG. 8. (Color online) Upper panel: Temperature dependence of
the yield stress obtained from direct numerical simulation (filled
squares) and from MCT using either the numerically measured
structure factor (filled circles) or a statistical mechanics approach
(replica theory, open circles). While the simulation results indicate
a nearly temperature-independent yield stress, σY ∼ ε/a3, the MCT
solution produces instead an “entropic” yield stress vanishing linearly
with T at low T . Lower panel: The data in the upper panel are shown
as a function of the rescaled variable T/Tmct − 1.

incorrect “entropic” yield stress, i.e., σY ∼ kBT . Finally, using
the analytic structure factor, we again find a yield stress which
vanishes linearly with T at low T , with a singular emergence
near the mode-coupling singularity, mirroring the behavior
obtained for the DW factor in Fig. 7.

In the bottom panel of Fig. 8 we present the same data
as a function of a rescaled temperature scale, T/Tmct − 1 so
by construction the MCT singularity takes place at the same
rescaled temperatures for both simulations and theoretical
predictions. This shows that near Tmct the emergence of the
yield stress is qualitatively well described by the theory.

Again, the discrepancy between simulations and MCT
predictions regarding the physical origin of the yield stress
is the same as the one uncovered in the above study of
the soft-glass regime of harmonic spheres. This shows that
this result was neither an artifact of the peculiar harmonic
sphere system nor related to singularities encountered near the
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jamming transition in this system. For Lennard-Jones particles,
there is no jamming singularity in the density regime studied
in the present section, but similar results are found for this
well-known glass-forming model system.

VI. DISCUSSION

We have shown that mode-coupling theory provides “first-
principles” predictions for the emergence of the yield stress
in amorphous solids, together with detailed predictions for the
temperature and density dependencies of the yield stress in
various glassy materials, from hard-sphere glasses to soft and
metallic glasses.

For hard-sphere glasses, the theory correctly predicts the
emergence of solid behavior with entropic origin, with a yield
stress and shear modulus proportional to kBT . The theory
also predicts a divergence of the yield stress as the random
close packing density is approached, but the predicted critical
exponent is too large. We have shown that this is because MCT
also considerably overestimates the degree of localization of
the particles in the glass at rest near the jamming transition.

The theory fares more poorly for both soft glasses and
metallic glasses, as it again predicts a yield stress proportional
to kBT while solidity is in fact the result of direct interparticle
forces, and scales instead as ε/a3, where ε is the typical energy
scale governing particle interactions.

This means that while the flow curves predicted by MCT for
a given material across the glass transition may have functional
forms that are in good agreement with the observations, it is
not clear whether the nonlinear flow curves produced in the
glass phase are physically meaningful for particles that cannot
be represented as effective hard spheres.

The fact that the mode-coupling theory provides limited
insight into solid phases is perhaps not surprising, as the theory
was initially developed as an extension of liquid state theories
[20]. However, since the theory describes the transformation
into the arrested glass phase, the MCT predictions for the
glass dynamics at rest and for the glass dynamics under shear
flow have been worked out in detail and are often discussed
in connection with experimentally relevant questions, such as
the Boson peak in amorphous systems [58] and the nonlinear
flow of glasses [27].

Our study suggests that one should perhaps not try to apply
MCT “too deep” into the glass, but it must be noted that
the theory itself can be applied arbitrarily far into the glass
phase with no internal criterion suggesting that the procedure
becomes inconsistent, as long as reliable estimates of the static
structure factor are available.

For Lennard-Jones particles and the soft-glass regime of
harmonic spheres, we have discussed such a criterion. We
suggested the existence of a temperature scale Tq below
which MCT predictions certainly become unreliable. This
temperature is such that, below Tq , the averaged static structure
becomes dominated by the quenched disorder instead of
thermal fluctuations [33]. This implies that MCT predictions
for glassy phases should be more reliable in the regime
Tq < T < Tg . We note, however, that MCT only makes crisp
predictions near the mode-coupling “singularity” Tmct (such as
square-root dependence of the DW factor and yield stress) but
these are not easy to test since the real system is actually in a
fluid state at Tmct > Tg and no singularity is observed.

More generally, we believe our work emphasizes the need
for more detailed theoretical analysis of the nonlinear response
of amorphous solids to external shear flow to produce better
theoretical understanding of the yield stress in disordered
materials. Recent progress in the statistical mechanics of the
glassy state using replica calculations [47,57,59–61] provide
detailed predictions for the thermodynamics, microstructure,
and shear modulus of glassy phases that are, contrary to the
MCT result exposed in this work, at least consistent with a
low-temperature harmonic description of amorphous solids.
One can hope that these calculations can be extended to treat
also the yield stress.
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