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A novel form of amorphous matter characterized by marginal stability was recently discovered in the
mean-field theory of structural glasses. Using this approach, we provide complete phase diagrams delimiting
the location of the marginally stable glass phase for a large variety of pair interactions and physical conditions,
extensively exploring physical regimes relevant to granular matter, foams, emulsions, hard and soft colloids,
and molecular glasses. We find that all types of glasses may become marginally stable, but the extent of the
marginally stable phase highly depends on the preparation protocol. Our results suggest that marginal phases
should be observable for colloidal and non-Brownian particles near jamming and for poorly annealed glasses.
For well-annealed glasses, two distinct marginal phases are predicted. Our study unifies previous results on
marginal stability in mean-field models and will be useful to guide numerical simulations and experiments aimed
at detecting marginal stability in finite-dimensional amorphous materials.
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I. INTRODUCTION

Twenty years ago, a unified phase diagram for amorphous
matter [ 1] motivated the search for similarities and differences
between the properties of a broad range of materials, from
granular materials to molecular glasses [2]. It is now well
established that in the presence of thermal fluctuations, dense
assemblies of atoms, molecules, polymers, and colloidal par-
ticles undergo a glass transition [3,4] as the temperature is
decreased or the density increased. In the absence of thermal
fluctuations, solidity instead emerges by compressing parti-
cles across the jamming transition [5,6], relevant for foams,
non-Brownian emulsions, and granular materials. These two
transitions have qualitatively distinct features.

Models of soft repulsive spheres faithfully capture this
diversity [7,8], as shown in Fig. 1. The relevant adimensional
control parameters are the packing fraction ¢ and the ratio
of thermal agitation kg T to the interaction strength between
particles €. A dense assembly of soft particles transforms
into a glass when thermal fluctuations decrease. Glasses can
also be obtained by compression at constant temperature, and
in particular the limit € — oo at constant 7 corresponds to
compression of colloidal hard spheres. At high density and
temperature, the particles constantly overlap and the system
behaves identically to glass-forming liquids. Intermediate
densities and temperatures describe the glass transition of soft
colloids. Jamming transitions are observed in the athermal
regime kpT /€ — 0O relevant for granular materials, foams,
and non-Brownian emulsions. Because this occurs deep inside
the glassy phase at 7 = 0, jamming transitions are protocol
dependent and occur over a continuous range of packing
fractions ¢, [9-12].

The phase diagram in Fig. 1 organizes the physics of
a broad variety of materials by describing how fluids lose
their ability to flow, but incorrectly suggests that the solid

2470-0045/2019/99(1)/012107(11)

012107-1

phase has similar properties across a broad range of physical
conditions. In fact, while ordinary glasses formed by cooling
dense liquids behave roughly as crystalline solids with a high
density of defects [13,14], glasses formed by compressing
granular materials or non-Brownian emulsions across their
jamming transition display unique properties distinct from
ordinary solids [5,6]. For example, they may respond to weak
stresses with very large deformations and their low-frequency
excitations are very different from phonons [15-17]. These
properties were theoretically explained by invoking marginal
stability [18,19]: Because these glasses are formed by zero-
temperature compression across a rigidity transition, they
have barely enough contacts to be mechanically stable. From
this observation, several anomalous properties of athermal
glasses in the vicinity of jamming can be understood [20].
Theoretical calculations in the framework of the mean-
field theory of the glass transition [11,21-24] have confirmed
these ideas and suggested in addition the existence of two
distinct types of amorphous solids separated by a sharp phase
transition [25,26]. One phase is the normal glass, which
corresponds to a free-energy basin that responds essentially
elastically to perturbations, as any regular solid. The second
is a Gardner glass [27,28]. The Gardner glass is marginally
stable due to full replica symmetry breaking, as in mean-
field spin glasses [29]. Physically, marginal stability implies
the existence of long-range correlations in the vibrational
dynamics [30,31], an excess of low-frequency modes [32,33],
unusual rheological properties [34-36], and system-spanning
responses to weak, localized perturbations, manifested, for
instance, by diverging mechanical susceptibilities [34,37,38].
The Gardner phase may thus provide an elegant route to
understand the nature of a multitude of experimental ob-
servations of glassy excitations [25,26]. Explicit mean-field
calculations for the location of marginally stable glasses were
carried out for hard [25,26] and soft [34,39,40] potentials,
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FIG. 1. Schematic (temperature and packing fraction) phase di-
agram for soft repulsive spheres and its experimental relevance.
The dynamic glass transition is represented by the red line. Jam-
ming transitions are observed in the athermal limit over a protocol-
dependent range of packing fractions (gray line). Different regions of
the phase diagram are relevant for a variety of amorphous materials,
indicated in boxes. In this work, we explore in which conditions these
amorphous materials become marginally stable.

providing some insight into mean-field phase diagrams. Fur-
thermore, a way to take into account fluctuations around the
mean-field limit, within the nucleation theory associated with
the random first-order transition approach, has been proposed
in [41].

Numerical simulations and experiments in finite-
dimensional systems were performed to explore these
theoretical ideas, yielding contrasting results. Numerical stud-
ies of three-dimensional hard-sphere glasses [30,36,42,43]
and numerical and experimental study of two-dimensional
hard disks [30,44,45] have revealed a rich vibrational dy-
namics, with diverging length scales, suggestive of a Gardner
phase. On the other hand, numerically cooling soft glass
formers has only revealed sparse, localized defects [40,46],
whereas experimental studies remain inconclusive [47]. It has
also been suggested that in low dimensions localized defects
could induce an apparent Gardner-like phenomenology,
without an underlying sharp phase transition [40,48]. Overall,
this recent flurry of results suggests that distinct glassy
materials may have distinct properties, depending on both
their preparation and location in the phase diagram of Fig. 1,
thus calling for a systematic microscopic investigation of
marginally stable glassy phases. This is the central goal of the
present work.

We use a microscopic mean-field theory to study thermal
soft repulsive spheres in the limit of infinite spatial dimen-
sions to systematically investigate the physical properties and
marginal stability of glasses prepared in a wide range of
physical conditions, covering all regimes illustrated in Fig. 1.
For a glass prepared at any given location in Fig. 1, we in-
vestigate how its properties evolve under further compression
and cooling, thus providing complete phase diagrams locating
simple and marginally stable glasses. We find that all glasses
may become marginally stable, but Gardner phases are more
easily accessible for systems close to jamming (such as grains,
foams, and hard and soft colloids) and for poorly annealed
glasses obtained by a fast quench. The extent of the marginally
stable phase depends, in all cases, on the preparation protocol.
For well-annealed glasses at intermediate packing fractions,

two distinct Gardner phases are predicted. Our study extends
and unifies previous analytical studies [26,39,40] and will
serve as a useful theoretical guide for systematic investiga-
tions of marginal stability in finite-dimensional glasses, via
numerical simulations or experiments. In particular, we are
conducting a three-dimensional numerical study that parallels
the calculations presented here [49].

The article is organized as follows. In Sec. II we introduce
the models studied in this work. In Sec. III we present the
theoretical methods we use. In Sec. IV we present the results
for the phase diagrams obtained for a variety of physical
conditions. In Sec. V we discuss our results and provide some
perspectives.

II. MODELS FOR GLASSY MATERIALS

While we are ultimately interested in the phase diagram
of dense particle systems for which the spatial dimension
isd =2 or d = 3, we focus on assemblies of particles em-
bedded in an abstract, but analytically tractable, space of
d — oo dimensions. In this limit, an exact solution for the
thermodynamic properties of the liquid and glass phases can
be obtained [21,26].

We study several conventional interaction potentials for
glass-forming materials that allow us to interpolate between
the various physically relevant limits shown in Fig. 1. In
particular, it is useful to consider the harmonic sphere model

2
Vharm (1) = 5(1 - 1) 0o —1), (1)
2 o
where r is the interparticle distance, o the diameter of parti-
cles, € the repulsion strength, and 6 () the Heaviside function.
The harmonic sphere model was first introduced to study the
jamming transition [50] and later studied extensively at finite
temperature [7]. Harmonic spheres become equivalent to hard

spheres when € — oo.

To study the high-density limit relevant for dense liquids,
harmonic spheres are not useful, as their extreme softness
gives rise to exotic phenomena that we do not wish to dis-
cuss here. Instead, it is more relevant to analyze the Weeks-
Chandler-Andersen (WCA) potential

o\ o\ 2
vwea(r) =€ 1+<7> —2<7) 0(c—r) (2

because it resembles the harmonic potential around the cutoff
r ~ o, but behaves as a Lennard-Jones potential at smaller in-
terparticle distance. Our analysis shows that the WCA model
yields results qualitatively similar to the harmonic model at
moderate densities and behaves as the inverse power law (IPL)
potential

vipL (r) = €(a/r)* 3)

in the high-density limit. Therefore, we decided to concentrate
on the two models in Egs. (1) and (3) to report our results.
Technically, the harmonic potential is easier to handle, as one
can go one step further analytically than for the WCA model,
which simplifies the numerical resolution of the equations
presented below. The WCA model, on the other hand, is
numerically very convenient for finite-dimensional studies,
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which justifies our effort to study it as well. While the expres-
sion of the harmonic potential is the same regardless of spatial
dimension, we have extended the standard definitions of the
WCA and IPL models in d = 3 to arbitrary dimension d. This
is done because thermodynamic stability and the existence of
the thermodynamic limit, a prerequisite for performing the
theoretical development described below, require the potential
to decay faster than r~4 in dimension d [51].

We consider the thermodynamic limit for N particles in a
volume V, both going to infinity at fixed number density p =
N/V.Whend = oo, we can consider monodisperse particles,
as crystallization is no longer the worrying issue it is in fi-
nite dimensions [52,53]. Our adimensional control parameters
are the packing fraction ¢ = NV,;(c/2)?/V, defined as the
fraction of volume covered by particles of diameter o (V; is
the volume of a d-dimensional unit sphere), and the scaled
temperature 7' /¢ (in the following, we will set kg = 1). To
obtain a nontrivial phase diagram in the limit d — oo, the
packing fraction has to be rescaled as ¢ = 2%¢/d. Note that in
the case of the IPL model, the form of the interaction potential
leads to a unique control parameter I' = ¢/T /4. We also
define rescaled gaps between particles h = d(r/o — 1) and
rescaled potentials v(/) such that limy_, oo v(r) = v(h):

ﬁhaIm(h):ghze(—h), DL (h) = e, )

We will be particularly interested in mean-square displace-
ment (MSD) between configurations. In finite dimensions,
they are usually defined as D(X,Y)= % Doilxi— v 1%
where X and Y represent two configurations. Finite values
for the MSD in infinite dimensions are obtained by defining
A(X,Y)=d’D(X,Y)/o>.

In the following section we summarize the formalism that
allows us to compute the thermodynamic properties and the
phase diagram for the above models.

III. THEORETICAL METHODS

The general strategy of our work is devised to mimic the
following experimental protocol. During the gradual cooling
or compression of a glass-forming liquid, the equilibrium
relaxation time t,, of the system increases very sharply. For
a given protocol, there comes a moment where the system
falls out of equilibrium; this represents the experimental glass
transition, at state point (T, @,). After this moment, the
system follows a “restricted” equilibrium, where the amor-
phous structure frozen at the glass transition is adiabatically
followed at different temperature and density, (7, ¢). Our
analytical strategy follows this protocol closely. We draw an
equilibrium but dynamically arrested configuration at (T, @)
and follow its thermodynamics when brought adiabatically to
another state point (7', ¢) within the same glass basin.

A. Glass free energy

The state-following protocol described above is possible
if the relaxation time of the initial state is extremely long
[26,54-57]. In infinite dimensions, the equilibrium relax-
ation time diverges at the dynamic glass transition 7,(¢@),
which is of the mode-coupling type [26,58,59]. Our construc-
tion, which is briefly summarized in the following, is thus

devised to follow glasses created below the dynamical tran-
sition [34,57].

Let us consider an equilibrium configuration Y, extracted
from the Boltzmann distribution at (7}, ¢,), which falls into
the dynamically arrested region T, < T;(@,). To construct the
thermodynamics restricted to the glass state Y, we consider
a subregion of phase space probed by configurations X con-
strained to remain close to Y. The configuration X can be at
a different state point (7, ¢), but its mean-square distance to
Y is set to a finite value A(X, Y) = A,. The free energy fy
of the glass state selected by Y and brought to (7', ¢) can be
expressed in terms of a restricted configuration integral [57]

ZIT,9lY, Al = / dX e PVIs(A, — A(X, Y)),
r )
fY(T7 ¢|Y5 Ar) = _Nan[Tv @'Yv Ar]’

where V(X)) is the total potential energy of the glass X. The
glass free energy fy in Eq. (5) depends explicitly on the initial
glass Y. In the thermodynamic limit, its typical value f, is
given by averaging over all equilibrium states Y,

T dy
T, 9| Ty, Gos A) = — — | =——e PVl
Jo(T, @|T,. @g. Ar) NfZ[T’(ﬁg]

x In Z[T, §|Y, A1, (6)

where Z[Tg, ¢,] is the standard configurational integral at
(Tg, @g). The free energy has to be computed for the parameter
A, verifying 05, f, = 0 [57]. Note that the density depen-
dence of the free energy is encoded by the interaction length
scale o of the potential, which can be changed to induce a
change in packing fraction.

Performing the disorder average in Eq. (6) is challenging.
Translational invariance, necessary to use saddle-point and
perturbative methods, is broken by the presence of disorder.
To compute the glass free energy in Eq. (6) we use the replica
method and introduce s + 1 identical replicas of the original
atomic system to undertake the computation [26,54,57]. The
master replica represents the initial glass at (7, ¢¢), while
the s other slave replicas represent the glass at (7, ¢). The
glass free energy can then be expressed in terms of the MSD
between the different replicas. The MSD between any slave
replica and the master replica are parametrized by A,. We
make the simplest assumption, called replica symmetric, and
consider that all slave replicas are equivalent [57] at a distance
A from each other. At the end of the computation, we take the
analytic continuation s — 0 and obtain the replica symmetric
glass free energy

o0

2 24, b
—Eﬂfg = T+ln(ﬂA/d )~I—<0gf dh P(h)f(h), (7)

defining for simplicity n = In(¢/@, ),

o0 ) ef(yfth/Z)z/ZA
q(A, B:h) = [ Oodye*ﬂ“”ﬁ (8)
and
P(h) =" q2A, — A, B3 h),
f(h) =Ing(A, B;h —n). 9)
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Compressing and decompressing a glass corresponds to
n > 0 and n < 0, respectively. The glass free energy should
be computed with the thermodynamic values for A and A,,
determined by setting to zero the derivatives of f, with respect
to these parameters, which provides two implicit equations for
A and A,:

ML=A+@M/ dh= 1P F(),
2— 0 Oodh h 0 P(h 10

B. Dynamic glass transition

Our method focuses on glasses prepared at (g, @), below
the dynamical transition. Our first task is thus to compute the
dynamical transition line 7; = T;(¢) for the models presented
in Sec. II. To do so, let us consider the special case (T, @) =
(T, ¢) in the above construction. In that case, A = A, = A,
is a solution of f, in Eq. (10) if the glass MSD A, verifies

dq(Ag, Bih)
A,

= Fp(Ay). (11)

o0
:-Ag/ dhe"Ing(A,, B;h)
—00

S| =

For the models considered here, the function Fg(A) is pos-
itive, vanishes for both A — 0 and A — oo, and has an
absolute maximum in between. This means that Eq. (11) has
a solution at temperature 1/8 only if 1/¢ is smaller than
or equal to the maximum of Fg with respect to A. Glassy
states at T' thus exist only at packing fractions higher than ¢,
defined by

1/@a = max Fp(A). (12)

We numerically solve Eq. (12) for all temperatures and find
the dynamical transition line ¢4(T), or equivalently T;(¢@).
The result is represented for the harmonic potential in Fig. 2.
The line separates liquids that flow from dynamically arrested
ones. The qualitative behavior of T;(¢) in the WCA model
is similar to that of harmonic spheres presented in Fig. 2.
In both cases, the dynamical transition temperature is an
increasing function of ¢ and is defined for § > 4.8067, which
corresponds to the dynamical transition for hard spheres [11].
In the high-density limit, the WCA model behaves as the
inverse power law potential and the dynamical transition
scales as Ty ~ ¢*. The coefficient of proportionality is 1/T'4,
where Iy = 4.304 is given by the dynamical transition of IPL
glasses.

C. Adiabatically following the glass properties

We focus on glasses prepared at (7, ¢g) in the dynami-
cally arrested phase. We study their thermodynamic properties
when adiabatically brought to temperature and packing frac-
tion (T, @). In particular, we compute the average potential
energy per particle &,, given by the derivative of f, in Eq. (7)
with respect to the inverse temperature

. _L0Bf) ¢ [ Kl
€ =~ B -2 /;oodh P(h)aﬁf(h)' (13)

10!
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FIG. 2. Equilibrium mean-field phase diagram for harmonic
spheres. The dynamical transition 7, (red line) separates liquids
that flow (above) from dynamically arrested ones (below). We select
equilibrium glasses in the dynamically arrested region, for example,
g1, ..., 84, and follow each glass adiabatically in temperature and
packing fraction. The corresponding state-following phase diagrams
are presented Figs. 5(a)-5(d). Glasses equilibrated above the line 7,
(dashed line) are jammed once minimized to 7 = 0, while glasses
selected below the line are unjammed at 7 = 0. The state-following
phase diagrams of glasses prepared at ¢, = 13 (vertical dashed line)
are presented in Figs. 3 and 4.

The energy is to be computed using the thermodynamic values
for A and A,, which solve Eqs. (10).

We employ the following strategy to numerically solve the
equations, find the values of A and A, at each state point,
and consequently compute the glass potential energy. First, we
compute the MSD A, of the glass at (T, ¢,) by numerically
solving Eq. (11). Starting at (T, ¢,) with the initial condition
A = A, = A,, we gradually change the temperature and/or
packing fraction by small steps towards (7', ¢). At the begin-
ning of each step, we use the values A and A, of the previous
step as initial guesses. We then solve iteratively Egs. (10) by
computing the right-hand side of the equations to obtain new
estimates of A and A, until convergence is reached. We repeat
this procedure until the final state (7', ¢) is reached.

D. Gardner transition

The glass free energy f, defined in Eq. (7) is derived
assuming that the symmetry under permutations of replicas
remains unbroken. At each state point, we must check the
validity of this assumption. In practice, we check that the
replica symmetric solution is a stable local minimum of
the free energy. The replica symmetric solution becomes
locally unstable against replica symmetry breaking when one
of the eigenvalues of the stability operator of the free energy
changes sign [29]. This so-called replicon eigenvalue can be
expressed in terms of A and A, as [60]

I3 oo
p=1- &AZ/ dh P(h)f" (h)?. (14)
2 —o0
At each state point, the converged values for A and A,
are used to compute the replicon eigenvalue. In the replica
symmetric, or simple glass phase, the replicon is positive. The
replicon might become negative upon cooling or compressing
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a glass, signaling its transformation to a replica symmetry-
broken glass. We show that in most cases, the simple glass
transforms into a marginally stable glass, characterized by
full replica symmetry breaking (FRSB). This is a Gardner
transition, in analogy to a similar phase transition found at
low temperature in some spin glasses [27,28].

In the marginally stable phase a complex, full replica
symmetry-breaking solution should be used to derive accu-
rately the thermodynamics of the glass [60]. Such a solution
is parametrized by a function A(x), for x € [0, 1], associ-
ated with the distribution of mean-square distances between
states. While computing the full function A(x) requires a
rather heavy numerical procedure [60], one can estimate its
shape close to the transition where Ag = 0, by a perturbative
calculation [61,62]. One gets

AL) — €AV, X<A—¢€
AX)~{ AN +AQN KX —A), A—e<x<i+e (15
A(A)—i—eA(A), x> A+e.

Here A is called the breaking point or mode-coupling-theory
parameter. It is related to the mean-field dynamical critical
exponents of the transition [25,63-65] and, presumably, to the
universality class of the transition beyond mean-field theory
[66]. At the transition point, € — 0 and the constant replica
symmetric solution A(x) = A(L) = A is recovered. Because
A(x) must be monotonically decreasing for x € [0, 1], a
consistent FRSB solution requires A € [0, 1] and A(A) < 0.
The perturbative calculation gives [61,62]

@[S dh P [ (h)

T E 29, [Z dh P(h) [ (R

A+ 2% dh P(h)f"(h)?
B2 % dh P(WA(h)

AV =

with
A(h) = f"(h)* = 12xf"(h) f"(h)* + 622 f"(h)*,  (17)

which should be evaluated at the transition point. We sys-
tematically compute the value of the breaking point A and
slope A(X) at the point where Az = 0 in order to characterize
the type of symmetry-breaking transition. If A € [0, 1] and
A(k) < 0 it is a Gardner transition. If instead A € [0, 1] but
A(X) > 0, the transition is likely to be continuous towards a
nonmarginal one-step RSB (1RSB) phase [62].

In the following, we will show results for the boundary
between simple and replica symmetry-broken phases (IRSB
and FRSB), without further solving the thermodynamics of
the glass inside the replica symmetry-broken phase. Note that
here we are mostly interested in the location of the marginally
stable FRSB glass phase.

E. Spinodal transition

A glass prepared at (T, ¢,) can also be followed upon
heating (T > Ty), or in decompression (§ < @, equivalently
n < 0). In that case, the glass energy becomes lower than
the one of the liquid, until a spinodal transition is reached at
(Tsp, @sp)- In practice, the spinodal transition is found when
the solution for A and A, disappears through a bifurcation.

This spinodal transition physically corresponds to the melting
of the glass into the liquid. At the spinodal transition ther-
modynamic quantities display a square-root singularity, for
instance, &, ~ /T, — T.

Note that the replica symmetric solution also displays
an unphysical spinodal transition in the region where it is
unstable against FRSB [40,57]. This spinodal is unphysical
because, for example, one finds that a glass might become un-
stable and melt upon cooling, which is physically inconsistent.
The correct computation of the stability limit in the region
where the replica symmetric solution is unstable should be
done by solving the FRSB equations, which goes beyond the
scope of this work. In the phase diagrams we will show in the
following, we will not draw the replica symmetric spinodal in
the region where the replica solution is unstable.

F. Jamming transition

The harmonic and WCA potentials (1) and (2) define a
physical size for the particles. Dense assemblies of particles
interacting via these two potentials will therefore have a
jamming transition at 7 = 0 and some packing fraction. For
each studied glass, we find the location of its corresponding
jamming transition point at the replica-symmetric level. To do
so, we monitor the potential energy &, of the glass [Eq. (13)]
down to T = 0. Depending on its value at T = 0, we either
compress [if &,(T = 0) = 0] or decompress [if &,(T=0) > 0]
the zero-temperature packing until we reach the packing
fraction ¢, at which the energy changes from a finite value
to zero. The jamming transition of the initial glass occurs at
(T =0, @y), or equivalently at (T =0, n;).

We stress that the location of the jamming transition de-
pends on the specific choice of the state point (T, §,) at
which the glass was prepared in the phase diagram of Fig. 2.
It is useful to define an additional line 7, (@, ) in the phase di-
agram to rationalize the results in Sec. IV. This line separates
glasses into two classes: If T, > T;(®,), the state is jammed
at T =0 and é,(T = 0) > 0, while if 7, < T;(®,), the state
is unjammed at 7 =0 and é,(T =0) =0. We compute
this line by taking analytically the zero-temperature limit of
Egs. (10)—(13) and solving them numerically for all initial
equilibrium glasses.

The resulting line 7;(®,) for harmonic glasses is repre-
sented in Fig. 2. This line is qualitatively similar for WCA
glasses. In both models, 7, is a decreasing function of @:
Starting from better annealed glasses (lower T,) shifts the
jamming transition of the glass to higher packing fractions.
This feature is also observed in the phase diagram of infinite-
dimensional hard-sphere glasses. The line 7; should in prin-
ciple extend to lower packing fractions and reach 7. This
is not the case in Fig. 2, as glasses prepared in this region
present an extended marginal phase at finite temperature (see,
for example, Fig. 3) and the replica symmetric solution is lost
before reaching T = 0. Using a FRSB solution, we would find
that this line extends smoothly at lower densities until hitting
the dynamical transition line.

IV. STATE-FOLLOWING PHASE DIAGRAMS

We now present how glasses prepared in a wide range
of conditions evolve when subject to cooling or heating and
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FIG. 3. Energy per particle é of the equilibrium liquid and sev-
eral glasses selected at ¢, = 13 (vertical dashed line in Fig. 2), as
a function of temperature T for constant ¢ = @,. The energy of the
liquid is given by the thin black line, on which lies the dynamical
transition at 7; = 0.562 (black square). The energy of simple glasses
created at T, < T; (T, = 0.5, 0.4, 0.3, 0.2, and 0.1, from top to
bottom) are represented by green lines. Upon cooling, these glasses
may undergo a Gardner transition (circles) to a marginally stable
glassy phase, in which the equation of state must be computed
solving the FRSB equations (not shown). When heated, the glasses
remain stable up to a temperature T, (triangles) at which the glass
melts into the liquid.

compression or decompression, or a combination of both.
We are particularly interested in finding the boundaries of
the marginally stable phase. In Secs. IV A-IV C we present
results for the harmonic sphere model. Equilibrium glasses at
(T,, @) are chosen in the region delimited by the dynamical
transition in Fig. 2. For each initial glass, we construct a
two-dimensional state-following phase diagram, presented in
terms of T and 5. Results for the inverse power law are
presented in Sec. IV D: In this case, the representation is easier
because there is a single control parameter I' = ¢/T /4. As
stated above, the WCA potential would yield results similar to
harmonic spheres for densities close to jamming, but similar
to the inverse power law potential at high densities. We will
present selected state-following results that highlight the main
features of these phase diagrams and propose a representation
which summarizes the most important findings (see Fig. 6).

A. Cooling and heating glasses

We first focus on heating and cooling glasses prepared
at an intermediate packing fraction, ¢, = 13, and several
temperatures 7,. These equilibrium initial states are selected
along the vertical dashed line displayed in the phase diagram
in Fig. 2.

We present the results in terms of potential energy per
particle é as a function of temperature in Fig. 3, with the
density being kept constant at its original value, ¢ = @,.
The energy of the equilibrium liquid is computed, along
with the dynamical transition at temperature 7, = 0.562. We
select glasses within a large range of glass stabilities, prepared
at T, =0.5,0.4,0.3,0.2, and 0.1. We then follow their energy
as a function of temperature and report the corresponding
glass equations of state in Fig. 3 (colored lines). Note that

all the glasses presented in Fig. 3 have a strictly positive
potential energy at zero temperature. Indeed, they have all
been prepared at temperatures T, higher than 7, (¢, = 13) =
0.013.

Upon cooling, the simple glass may destabilize when
the replicon vanishes. The slope A(1) is formally positive
for T, > T; ~ 0.524, indicating that glasses prepared near

the dynamical transition TgT < Ty < T, undergo a continuous
1RSB transition towards a nonmarginal phase. We find instead

that for glasses prepared at 7, < TT, such as those presented
in Fig. 3, the slope A()) is negative at the transition. The
simple glass thus transforms into a marginally stable glass at a
Gardner transition, reported with circles in Fig. 3. The break-
ing point A computed with Eq. (16) at the Gardner transition
equals A = 0.315, 0.159, 0.068, and 0.01 for 7, = 0.5, 0.4,
0.3, and 0.2, respectively. Note that A — 0 when the Gardner
transitior} temperature 7 — 0, while A(A) — —oco when
T, — T, from below. We observe that the glass is marginally
stable over a large temperature range when prepared at higher
T,. The extent of the marginally stable region diminishes for
better annealed glasses (decreasing 7,). The Gardner transi-
tion temperature 7 of a given glass decreases with decreasing
T,, so better annealed glasses remain stable down to lower
temperatures. For the most stable glass reported in Fig. 3,
prepared at T, = 0.1, the glass remains stable down to zero
temperature and no marginally stable phase is observed when
cooling. When glasses are instead heated, their energy follows
the glass equation of state and remains smaller than the energy
of the liquid up to the spinodal transition 7, at which the
glass melts into the liquid. The temperature range over which
the glass remains stable increases when the glass transition
temperature 7, decreases, which is the experimental hallmark
of increasing glass stability [67—69].

Overall, increasing the degree of annealing of the glass ex-
tends the region of stability of the simple glass phase, pushing
the marginal phase to lower (possibly vanishing) temperatures
and the spinodal transition to higher temperatures.

B. Temperature-density glass phase diagram

The results of thermal quenches shown in Fig. 3 give only
a partial view of the state-following phase diagrams, because
density is not varied. We now study how the marginally
stable phase extends in both temperature and packing fraction.
Specifically, we present how glass stability modifies the extent
and nature of the marginally stable phase. We compute state-
following phase diagrams for glasses prepared at ¢, = 13 and
different annealing, T, = 0.55, 0.52, 0.47, 0.4. For each glass,
we compute the Gardner transition line 7 (n) at which the
glass becomes marginally stable and we report it as a blue
line in Fig. 4. As in Fig. 3, less annealed glasses first transform
to a IRSB glass, which we indicate with a blue dashed line.
We expect the 1RSB glass to transform to a marginally stable
FRSB glass at lower temperature. For each T, we can also
compute the replica symmetric spinodal where the glass melts
into the liquid, also reported in Fig. 4 as a gray dashed line.
For a given T, the region delimited by the solid and dashed
lines defines the simple (replica symmetric) glass region. At
temperatures below the blue line, the marginal (FRSB) glass
phase exists. This phase is delimited by the blue line and
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FIG. 4. Glasses prepared at ¢, = 13 and T, = 0.55, 0.52, 0.47,
and 0.4 (top to bottom) are followed in temperature 7' and packing
fraction @, expressed as n =1n(¢/@,). The dynamical transition
is indicated with a square. For each glass, we show the limits of
stability of the simple glass. The simple glass loses it stability and
melts at the glass spinodal (dashed gray line). The simple glass
also destabilizes at the Gardner transition (solid blue line) or at
a continuous transition towards a 1RSB phase (dashed blue line).
Below the Gardner transition line, the glass is marginally stable.

by FRSB spinodal lines that continue the gray line at lower
temperatures; unfortunately, these lines can only be computed
by solving the FRSB equations, which goes beyond the scope
of this work. We thus interrupt the spinodal gray line when it
crosses the Gardner line, but the reader should keep in mind
that this line should be continued at lower temperature to
properly delimit the marginal glass phase. Glasses prepared
exactly at the dynamical transition 7, = T, are unstable to-
wards RSB everywhere in the glassy phase. We see in Fig. 4
that the unstable phase of glasses prepared slightly below
Ty (top curve corresponding to T, = 0.55) still extends over
a large region of the state-following phase diagram. As the
glass preparation temperature decreases, the unstable phase
becomes everywhere marginally stable and its extension di-
minishes. This observation is consistent with the results of the
preceding section, but Fig. 4 reveals a different, more subtle,
phenomenon. The shape of the Gardner transition line evolves
qualitatively as T, decreases. While the Gardner transition
line T (n) of the less stable glasses (top curves in Fig. 4)
increases monotonically with 7, it becomes nonmonotonic for
lower T,. For very well annealed glasses, such as T, = 0.4,
the line even forms two disconnected regions. The marginal
phase then comprises a “dome” around the jamming transition
occurring at n; = In(¢,/@,) and a second region located at
high compression 7, as also observed in [39]. The Gardner
transition line which defines the latter region is qualitatively
similar to the one found for the less stable glasses, but it is
shifted to much higher packing fractions.

We argue that these two distinct marginally stable phases
have a different character. The Gardner phase surrounding the
jamming transition is similar to the one found by compressing
hard-sphere glasses. The presence of a Gardner phase is
crucial for an accurate mean-field description of jamming.
The marginally stable phase at high compression appears as

a remanent of the marginality which exists near the dynam-
ical transition. It is always present, and increasing the glass
stability only shifts that phase to higher density. Finally, these
two distinct phases would also be present for the WCA pair
potential over a range of intermediate densities, because WCA
particles and harmonic spheres have the same behavior in
this regime. However, WCA particles behave qualitatively
differently at high densities, as described below in Sec. IV D,
where the inverse power law potential is analyzed.

C. Interplay between jamming and Gardner phase

We have studied the state-following phase diagrams of
many initial glasses prepared in a variety of conditions
(Tg, @4). We find that the phenomenon described in the pre-
ceding section is generically observed for glasses prepared
in all regions of the glass phase. For well-annealed glasses,
the marginally stable phase always splits into two distinct re-
gions. We focus on four representative well-annealed glasses
g1, --., 8, prepared at state points marked by black squares
in Fig. 2. These glasses are stable enough that the Gardner
phase is separated into two distinct regions.

We present in Figs. 5(a)-5(d) the state-following phase
diagram for each initial glass gi,..., g4. We first deter-
mine the location of the jamming transition (T = 0, ;) for
each initial glass. The value n; = In(¢;/9,) is indicated in
Figs. 5(a)-5(d). We then focus on the limit of stability of the
simple glass phase. For all four glasses, we draw the corre-
sponding Gardner transition lines separating the two types of
glasses, which separates into a dome around jamming and a
marginal phase at high compression. We have checked that the
simple glass always destabilizes to a marginally stable (FRSB)
glass, as the slope A(X) is always negative. The parameter
A is finite at the left end of the dome (corresponding to the
hard-sphere Gardner transition [60]) and decreases along the
dome to reach A = O at its right end, corresponding to a zero-
temperature soft-sphere Gardner transition. It then increases
again from A =0 at zero temperature, along the higher-
density Gardner transition line. The difference between the
four diagrams is the relative location of all these elements.

The glasses g; and g, are prepared below the line 7.
Their jamming transition is therefore found by compressing
the glass (7, > 0) at T = 0. In addition, |n%| < [n%'| because
g» is prepared closer to the line 7; in Fig. 2. Glasses g3
and g4 are prepared above 7; and their jamming transition
takes place when decompressing them (n; < 0) at T = 0.
Moreover, |n%'| > |n%’| because g3 is prepared closer to T
in Fig. 2.

For the glass g;, the dome surrounding jamming only
appears for > 0 and this glass does not undergo a Gardner
transition as it is cooled down to zero temperature at constant
density. By contrast, the denser glass g, is located above the
dome of marginality and that glass can undergo a Gardner
transition simply by cooling. A similar qualitative difference
is observed for the glasses g3 and g4, both prepared above
the T;. The glass g3 will become marginal if cooled at con-
stant packing fraction, while the glass g4 will remain stable
down to its ground state. Despite these differences, all these
glasses can nevertheless become marginal by a combination
of cooling and compression and decompression over a broad
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FIG. 5. Mean-field state-following phase diagrams for four different starting harmonic glasses (a) g1, (b) g2, (¢) g3, and (d) g4, whose
location in the equilibrium phase diagram is shown Fig. 1. The region of stability of the simple glass phase is delimited by the spinodal (dashed
gray line) and Gardner transition line (solid blue line). Above the spinodal, the glass melts into the liquid. Below the Gardner transition line,
the glass is marginally stable (shaded blue region). The jamming transition of the glasses takes place at T = 0 and 7, indicated by an arrow.

range of state points. Finally, all these glasses also become
marginal when compressed to large packing fractions far
above jamming.

The phase diagrams found in Fig. 5 suggest the existence
of two types of behaviors. Some glasses undergo a Gardner
transition as they are cooled, while some glasses do not. This
distinction depends both on the initial temperature 7, of the
glass and on its initial density @, . To distinguish between these
two types of glasses, we define a line Tx(@,) which delimits
in the (7,, ¢,) phase diagram. Our results for Ty are reported
in Fig. 6. Glasses prepared in the shaded part of this phase
diagram, like g, and g3, undergo a Gardner transition to a
marginally stable phase upon cooling at constant density. The
other glasses, like g; and g4, do not and remain stable glasses
down to T = 0. The corresponding phase diagram presented
in Fig. 6 is rather complex, exhibiting nonmonotonic reentrant
lines Ty. The mean-field phase diagram of soft repulsive
spheres is therefore not a trivial extension of the one of hard
spheres. Figure 6 shows that a Gardner phase is relevant for
hard-sphere glasses, for soft particles prepared not too far
from either the dynamical transition 7, and the temperature
T;, which suggests two distinct possible physical origins for
the Gardner phase.

D. Dense liquid regime

We now focus on the dense liquid regime modeled by
the IPL potential. This also corresponds to the high-density

limit of the WCA model, where only the repulsive part of the
Lennard-Jones interaction is physically relevant. We follow
the strategy and representation adopted in Sec. IV B for the
harmonic spheres.

The thermodynamic state of IPL glasses only depends on
the combination I' = ¢/ T /4. The complete phase diagram
for the IPL model can therefore be completely understood

10t ¢
100 |
1071 |

1072 |

1073

4 10 13 50

FIG. 6. Equilibrium mean-field phase diagram of harmonic
spheres, as in Fig. 2. We add the transition lines Tx (thin lines)
which delimit the glasses that become unstable upon cooling (shaded
region), such as g, and g3, or not, as for g; and g4.
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FIG. 7. Dense liquid regime analyzed using the IPL potential.
Glasses prepared at ¢, = 4.304 (T; = 1) for various T, = 0.9, 0.8,
0.7, and 0.6 are followed in the (7, n) plane. For each glass, we
represent the state-following Gardner transition line 75 (n) (solid
lines) and the spinodal (dashed lines). All lines obey T ~ e*'. The
marginal phase shifts to high density and lower temperatures as T,
decreases, and disappears altogether for 7, < 0.567.

by fixing, for instance, the packing fraction and changing the
temperature of the glass. For convenience, we choose ¢, =
4.304, for which the dynamical transition takes place at T, =
1. We consider glasses with different stabilities, prepared at
T, < Ty. Despite the one-dimensional nature of the phase
diagram, we show results for IPL glasses using the same
representation as for harmonic spheres, using both 7" and n,
to allow for a more direct comparison of the two types of
models. By definition, all lines in this diagram exactly obey
the relation T o< e*".

We find that glasses prepared at 7, < TgT =~ 0.92 transform
into a marginally stable glass when cooled. Instead, glasses

prepared in the range Tng < T, < Ty first transform into a
IRSB glass. As for harmonic spheres, the slope A(A) is
negative for T, < T, ;, diverges upon approaching TgT from
below, and is formally positive above it. The Gardner tran-
sition lines for glasses prepared at T, = 0.9, 0.8, 0.7, and
0.6 are presented in Fig. 7. They have the form Ts(n) =
T(n = 0)e*, where Tg(n = 0) is the Gardner transition
temperature obtained for a simple cooling of the glass. The
breaking point A at the Gardner transition is equal to A =
0.407, 0.283, 0.168, and 0.042 for T, = 0.9, 0.8, 0.7, and
0.6, respectively. As for harmonic spheres, A — 0 when T
vanishes. The marginally stable phase is pushed to higher
densities and lower temperatures (in fact, to larger I') as the
glass stability increases. In this model, however, particles do
not possess a physical size (the potential has no cutoff at a
finite distance) and hence the jamming transition cannot be
observed. As a consequence, the domes of marginal stability
found around the jamming transition in Figs. 4 and 5 for
harmonic spheres are absent for the IPL. model. The behavior
of the Gardner transition lines at high n with decreasing T,
is similar in the IPL and WCA models. The WCA potential
instead behaves as harmonic spheres near jamming and is thus
characterized by domes around jamming.

In this dense liquid regime, glasses prepared at 7, < 0.567
remain stable down to their ground state at 7 = 0, as reported
before [40]. The most stable glass for which we report the
Gardner transition line in Fig. 7 is T, = 0.6. Below this
value, glasses remain stable in the entire phase diagram and
never undergo a transition to a marginally stable phase, even
at arbitrarily high compressions. This is consistent with the
high-density high-temperature limit found in the harmonic
phase diagram Fig. 6, where only glasses prepared in the
vicinity of the dynamical transition become marginally stable
upon cooling (shaded region). However, harmonic spheres
are qualitatively distinct from both the WCA model and
IPL potential regarding compression of very stable glasses:
Whereas harmonic spheres always reach marginal states upon
compression at constant temperature, very stable WCA and
IPL glasses do not. Note also that for harmonic spheres, the
Gardner and spinodal lines meet at high density, so the glass
always melts upon high enough compression, which is not the
case of the WCA and IPL models.

V. DISCUSSION AND PERSPECTIVES

In this work we have obtained the complete mean-field
phase diagrams of several glass-forming models. In particular,
we provided detailed information regarding the location of the
marginally stable glass phases for a variety of pair interac-
tions and physical conditions, extensively exploring physical
regimes relevant to granular materials, foams, emulsions, hard
and soft colloids, and molecular glasses. We find that all
types of glasses may become marginally stable upon cooling
or compression, but the extent of marginal phases strongly
depends on the preparation protocol and the chosen model. We
find that increasing the glass stability systematically reduces
the extent of marginality. For well-annealed glasses, we find
that marginality emerges in two distinct regions, either around
the jamming transition or at high compression. Our results
suggest that marginal phases should be easily observable for
colloidal and non-Brownian particles near jamming or for
poorly annealed glasses.

Our study unifies previous results on marginal stability
in mean-field models [25,26,39,40]. Already in mean-field
theory, marginal stability emerges under distinct physical
conditions in different microscopic models. This provides
a way to reconcile apparently contradictory numerical and
experimental studies aimed at detecting Gardner phases in
finite-dimensional glasses, where its existence is still debated
[70,71]. In particular, the evidence for marginally stable
phases reported for two- and three-dimensional hard-sphere
glasses under compression contrasts with its absence in two-
and three-dimensional numerical models of dense liquids
upon cooling. Our analysis shows that already at the mean-
field level these two types of systems behave differently. In
addition, while the critical properties around the jamming
transition remain unchanged from d = oo down to d =2
[72,73], the nature of the mean-field dynamical transition
is highly altered by finite-dimensional fluctuations [74]. For
instance, our results predict that highly compressed dense
liquids should be marginally stable (see also [41]), a protocol
that was never tested in finite-dimensional studies.
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Our results will be useful to guide future numerical simu-
lations and experiments aimed at detecting marginally stable
phases in finite-dimensional glasses. We find that mean-field
Gardner phases are not restricted to exist in the immediate
vicinity of jamming and could be more broadly relevant to a
wide class of materials. We are currently numerically investi-
gating, along the lines of this theoretical work, the evolution
of the Gardner transition while continuously interpolating
between regimes relevant to dense hard-sphere glasses and
dense liquids, using a WCA potential [49].

Our results open a number of additional perspectives for fu-
ture work. One finding is that soft-sphere glasses can undergo
a zero-temperature Gardner transition, as reported in Fig. 5. A
convenient protocol to observe this transition is suggested in
Fig. 5(d) for the glass g4. It can be quenched at T = 0, where it
is jammed and in the simple glass phase. It is therefore a stable
harmonic energy minimum. Under decompression at 7 = 0,
this state undergoes a Gardner transition before unjamming.
The signature of this zero-temperature Gardner transition, if
it exists in two or three dimensions, would be particularly
dramatic: The Hessian would develop delocalized soft modes
[32] and the system would start responding by intermittent
avalanches [35] to an applied strain. A divergent correlation

length would also develop in the contact network [75]. The
absence of thermal fluctuations should make the study of this
transition much easier than in the thermal case.

While the nature of the mean-field Gardner transition is
certainly affected in finite dimensions [70], the existence
of extended marginally stable phases should give rise to
interesting new physics in structural glasses. As happens in
spin glasses, even if the Gardner phase transition is avoided
in physical dimensions [48], it may still be the case that
interesting physical phenomena, such as aging and nonlinear
dynamics, remain relevant to describe the behavior of struc-
tural glasses.
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