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We develop a generic strategy and simple numerical models for multicomponent metallic glasses for
which the swap Monte Carlo algorithm can produce highly stable equilibrium configurations equivalent to
experimental systems cooled more than 107 times slower than in conventional simulations. This paves the
way for a deeper understanding of the thermodynamic, dynamic, and mechanical properties of metallic
glasses. As first applications, we considerably extend configurational entropy measurements down to the
experimental glass temperature, and demonstrate a qualitative change of the mechanical response of
metallic glasses of increasing stability toward brittleness.
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Glasses are obtained by cooling liquids into amorphous
solids [1]. This process involves a rapidly growing
relaxation time, making it difficult to investigate the nature
of the glass transition in equilibrium [2,3]. Many types of
materials can form glassy states, such as molecular, oxide,
and colloidal glasses having various practical applications
[4]. Among them, metallic glasses are a promising class
known for higher strength and toughness [5], which is vital
for applications. Computer simulations represent a valuable
tool to investigate glass properties with atomistic resolution
[3]. Model metallic glasses are widely used because they
are simpler than molecular liquids to understand the basic
mechanisms of the glass transition and accompany practical
applications. However, typical cooling rates in silico are
faster than in the laboratory by 6 to 8 orders of magnitude.
Therefore, computer studies of metallic glasses may
produce materials that behave differently from experi-
mental systems. Our goal is to fill this wide gap for
metallic glasses in order to access the thermodynamic,
dynamic, and mechanical properties that can be directly
compared to experiments.
Recently, the swap Monte Carlo algorithm has enabled

the production of highly stable configurations for models of
continuously polydisperse soft and hard spheres [6,7]. This
was achieved by optimizing the size distribution and pair
interactions to produce good glass-formers (preventing
crystallization) with a massive thermalization speedup
[7]. It was found, however, that previous popular models
for metallic glasses, such as the Kob-Andersen [8] and
Wahnström mixtures [9], are either not well suited for the
swap algorithm [10] or crystallize too easily [7,11–14].
Further developments are clearly needed.
Here, we show how to develop multicomponent metallic

glass-formers to benefit from the dramatic speedup offered

by swap Monte Carlo and thus bridge the gap between
metallic glass simulations and experiments [15–18]. Our
strategy differs from earlier work [7] since it is inspired by
the microalloying technique used in metallic glass experi-
ments [19,20]. We introduce additional species to the
original binary Kob-Andersen mixture to simultaneously
improve its glass-forming ability [21,22] and swap effi-
ciency [7]. This echoes the doping technique widely used in
molecular liquids [23–25] to prevent crystallization
[19,20,23,24]. The speedup provided by the swap
Monte Carlo algorithm depends on the concentration of
the doped species. For some models, we can produce for
the first time equilibrium configurations of metallic glasses
at the experimental glass transition temperature in silico.
Our results pave the way for the next generation of
thermodynamic and mechanical studies of metallic glasses
using computer simulations.
Models.—The original Kob-Andersen (KA) model [8] is

an 80∶20 binary mixture of NA Lennard-Jones particles of
type A and NB particles of type B, mimicking the mixture
Ni-P. We add a new family of particles of type C, which can
be a single type (ternary mixture) or several types (multi-
component). The pair interaction is

vαiβjðrÞ ¼ 4ϵαiβj

��
σαiβj
r

�
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−
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where ϵ and σ are the energy scale and interaction
range, respectively. We specify the particles index by
Roman indices and the family type by Greek indices.
The potential is truncated and shifted at the cutoff distance
rcut;ij ¼ 2.5σαiβj . For particles A and B, we use the
interaction parameters of the original KA model:
ϵAB=ϵAA ¼ 1.5, ϵBB=ϵAA ¼ 0.5, and σAB=σAA ¼ 0.8,
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σBB=σAA ¼ 0.88. Energy and length are in units of ϵAA and
σAA, respectively. Given the large size and energy dis-
parities, performing particles swaps between A and B
particles is prohibited [10], which leaves the standard
KA model out of the recent swap developments.
We introduce NC particles of type C. Each C particle is

characterized by a continuous variable ωi ∈ ½0; 1� so that its
interactions with A and B particles are given by

XAC ¼ ωiXAA þ ð1 − ωiÞXAB;

XBC ¼ ωiXAB þ ð1 − ωiÞXBB; ð2Þ

where X stands for both ϵ and σ so that C particles are
identical to A (B) particles when ωi ¼ 1 (0) and smoothly
interpolate between both species for 0 < ωi < 1. Two C
particles i and j interact between each other additively:

XCiCj
¼ ωijXAA þ ð1 − ωijÞXBB; ð3Þ

where ωij ¼ ðωi þ ωjÞ=2.
This generic framework offers multiple choices for the

distribution of C particles, depending on the parameters NC
and on the chosen distribution PðωÞ of the variable ω. We
have explored two simple families, illustrated in Figs. 1(a)
and 1(b). The first family, KA1, is obtained using a flat
distribution PðωÞ on the interval [0, 1] [see Fig. 1(a)]. This
corresponds to a multicomponent system where C particles

continuously interpolate between A and B components.
The second family, KA2, is obtained by taking the opposite
extreme where PðωÞ ¼ δðω − 1=2Þ [see Fig. 1(b)]. In that
case, we simulate a discrete ternary mixture. In both cases,
we define δ ¼ NC=ðNA þ NBÞ and consider a range of δ
values from δ ¼ 0% (original KA mixture) up to δ ¼ 20%.
Contrary to previous work [7], the size dispersity quantified
by the variance of the diameter distribution is nearly
constant across the KA, KA1, and KA2 models. We
perform simulations in a periodic cubic cell of volume
V in three dimensions. All models are simulated at the
number density ρ ¼ 1.2, denoting the number of particles
in unit volume σ3AA.
Swap Monte Carlo algorithm.—To achieve equilibration

at very low temperatures, we perform Monte Carlo (MC)
simulations possessing both translational displacements
and particle swaps [26,27]. For the normal MC moves,
a particle is randomly chosen and displaced by a
vector randomly drawn within a cube of linear size
δrmax ¼ 0.15. The move is accepted according to the
Metropolis acceptance rule, enforcing detailed balance.
Such MC simulations show quantitative agreement with
molecular dynamics simulations in terms of glassy slow
dynamics [28].
When using swap MC, we also perform particle swaps.

We randomly choose a C particle, say particle i,
characterized by ωi. We then randomly choose a value
Δω in the interval Δω ¼ �0.8 and choose a second particle
within this interval, say particle j. We estimate the energy
cost to exchange the type of the two particles,ωi ↔ ωj, and
accept the swap according to the Metropolis rule. In the
swap MC scheme, we perform swap moves with
probability p ¼ 0.2 and translational moves with pro-
bability 1 − p ¼ 0.8. All parameters, ðδrmax; p;ΔωÞ have
been carefully optimized to maximize the swap efficiency
[see Supplemental Material [29] (SM)]. In particular, swaps
with larger Δω are essentially all rejected, confirming that
direct A ↔ B swaps are impossible. In essence, the C
particles thus allow two-step exchanges such as
A ↔ C ↔ B. Although we only apply this strategy to
the KA model, we expect that it should generically apply to
high-entropy alloys that have more than five components
[39]. In both normal and swap MC schemes, one
Monte Carlo time step represents N attempts to make an
elementary move. Timescales are reported in this unit.
Glass-forming ability.—Thanks to modern computer

resources, the original KA model is now found to be prone
to crystallization [13,14,40]. We have repeated the detailed
common neighbor analysis of Ref. [14]. We detected no
sign of crystalline environments in our extended models,
KA1 and KA2, across the wide temperature regime where
thermalization can be achieved using the swap MC
algorithm (see SM). Thus, the extended KA models
developed here are much better glass-formers than the
original KA model. Similarly to experiments, the doping C

(b) KA
2

(a) KA
1

1 2 3
1/T*

10
-1

10
0

10
1

10
2

10
3

10
4

(N
,S

)

= 0
= 1%
= 5%
= 10%
= 20%

1 2 3
1/T*

(c) KA
1 

T*
g

T*
mct

T*
g

(d) KA
2

T*
mct

δ
δ
δ
δ
δ

FIG. 1. (a),(b) Two families of Lennard-Jones models,
composed of A and B particles interacting as in the KA model,
and C particles intermediate between A and B types depending on
the variable ω. The C particles improve the glass-forming ability
and the efficiency of the swap Monte Carlo algorithm. Relaxation

times for the (c) KA1 and (d) KA2 models using full [τðNÞ
α ] and

empty [τðSÞα ] symbols. The blue box indicates the extrapolated
location of the experimental glass transition temperature T�

g, and
T�
mct is the mode-coupling crossover.
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particles considerably frustrate the system against crystal-
lization [19,20,23,24].
Equilibration speedup.—The relaxation time τα of

the system is quantified from the time decay of the
self-intermediate scattering function for all particles,
Fsðq; t ¼ ταÞ ¼ 1=e. We use q ¼ 7.34, close to the
first diffraction peak of the static structure factor. We
respectively denote τðNÞ

α and τðSÞα the relaxation times for
the normal (N) and swap (S) dynamics. We finally rescale
the relaxation times using its value τo ¼ τðNÞ

α ðT ¼ ToÞ at
the onset temperature To at which the relaxation time starts
to deviate from the Arrhenius law.
We first concentrate on the physical dynamics using

normal MC simulations for both models, KA1 and KA2,
and various values of δ. We find that the temperature
dependence of τðNÞ

α for all models is very similar and is only
weakly affected by the C particles (see SM). The presence
of the C particles changes the energy or temperature scale
from the original model. To account for this perturbation
and ease the comparison between models, we introduce a
rescaled temperature, T� ¼ Tð1þ εðδÞÞ, such that the data

τðNÞ
α vs 1=T� for all models coincide [see Figs. 1(c)

and 1(d); see also the τðNÞ
α vs 1=T plots in SM]. The

measured ε values reported in Table I are small and
compatible with a linear growth, εðδÞ ≃ δ, suggesting that
C particles simply act as a linear thermodynamic perturba-
tion (see SM for KA2). We confirm in SM that the pair
structure is also weakly affected. From now on, we use the
temperature scale T� and thus, by definition, all models
studied in this paper display the same physical (normalMC)
dynamics as a function of T�. They have the same reference
temperatures as the original KA model: their onset temper-
ature is T�

o ≃ 0.7, and the mode-coupling crossover is at
T�
mct ≃ 0.435. These conventional MC simulations can

access τðNÞ
α =τo ∼ 104 for N ¼ 103 particles, corresponding

to the lowest simulated temperature T�
low ¼ 0.415 and about

ten days of CPU time. Following earlier work [7], we locate
the experimental glass transition temperature T�

g by extrapo-

lating the measured dynamical data toward τðNÞ
α =τ0 ¼ 1012

using various functional forms that provide a finite range for
its location. We find T�

g ∈ ½0.3 − 0.345� (see Fig. 1) and
suggest T�

g ≈ 0.3 as our favored estimate obtained using the
parabolic law [41].

Our first important achievement follows from the
temperature evolution of the relaxation times when using
swap MC in Fig. 1. Whereas the original KA model with
δ ¼ 0 can be thermalized down to T�

low ≈ 0.415, we find
that thermalization is achieved at much lower temperatures
as soon as δ > 0, with a speedup that increases continu-
ously and exponentially fast with δ. For an equivalent
numerical effort, we find for δ ¼ 1% − 20%, T�

low ¼
0.306–0.358 (for KA1) and T�

low ¼ 0.326–0.371 (for
KA2). The lowest temperature corresponds to
T�
low ≈ 0.7T�

mct ≈ T�
g. Converting these temperatures into

timescales, we estimate that the numerical speedup varies
from a factor 102 for δ ¼ 1% up to more than 107 for
δ ¼ 20%. Thus, even a small amount of doping has a
massive impact on the swap efficiency. The proposed
metallic glass models considerably widen the accessible
temperature regime available to computer simulations
without suffering from crystallizations.
Configurational entropy.—We now characterize the

configurational entropy, scðT�Þ, of the very low temper-
ature states produced with swap MC. We determine the
configurational entropy from its conventional definition,
scðT�Þ ¼ stotðT�Þ − svibðT�Þ [42–45]. The equilibrium
entropy, stot, is straightforwardly measured by thermo-
dynamic integration from the ideal gas to the studied state
point [44]. The vibrational entropy, svib, is obtained by a
constrained Frenkel-Ladd [46] thermodynamic integration,
generalized to properly quantify the mixing entropy
contribution to the vibrational entropy [47]. This is a
crucial point for the present models where polydispersity
changes continuously with δ and alternate approaches—for
instance, using inherent structures—would be inadequate
[48]. Figure 2 shows the temperature evolution of the
configurational entropy of KA1 models. We use T�

mct as a
useful temperature scale to normalize both temperatures,
T�=T�

mct, and entropies, scðT�Þ=scðT�
mctÞ, in the spirit of

Kauzmann [42]. Our data for the KA model are consistent
with previous work [49] and stop at T�

low=T
�
mct ≈ 0.954,

where scðT�
lowÞ=scðT�

mctÞ ≈ 0.93, corresponding to the
deepest states accessible with a conventional MC
algorithm. Figure 2 shows that the thermalization speedup
obtained by increasing δ is accompanied by a strong
reduction of the configurational entropy. Hence, the deeply
supercooled states obtained using swap MC correspond to

TABLE I. Characteristics of the KA1 models. Scaling factor for the temperature ε, the lowest simulated temperature T�
low relative to the

mode-coupling crossover T�
mct, thermalization speedup, thermodynamic fragility KT, and extrapolated Kauzmann temperatures T�

K .

KA1 δ ¼ 0% 1% 5% 10% 20%

ε 0 0.01 0.08 0.13 0.25
T�
low=T

�
mct 0.954 0.824 0.787 0.753 0.704

Speedup 1 102 6 × 103 8 × 104 2 × 107

KT 0.335 0.334 0.312 0.293 0.274
T�
K 0.252 0.246 0.236 0.224 0.210
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state points where much fewer amorphous packings are
available to the system, which should translate into a larger
point-to-set correlation length [50–52]. In earlier studies of
the KA model, the putative Kauzmann transition was
determined by fitting the decrease of sc with the empirical
form sc ¼ Að1 − T�

K=T
�Þ, which also allows the deter-

mination of the thermodynamic fragility KT ≡ AT�
K [53].

We extend this analysis to KA1 models and report TK and
KT in Table I. Both quantities show a modest but systematic
decrease with δ. Remarkably, after increasing the
studied time window from 4 to 11 orders of magnitude
(from δ ¼ 0% to 20%), the steep temperature dependence
of sc remains consistent with an entropy crisis taking place
at TK ≈ 0.5T�

mct > 0. In particular, we detect no sign of a
new mechanism to “avoid” it [54]. These data also
contradict the arguments that models where swap MC
works well are qualitatively distinct from those where it
does not [55–57]. This finding constitutes our second
important result.
Brittle yielding.—Turning to rheology, we demonstrate

that accessing highly stable glassy configurations qualita-
tively affects how simulated metallic glasses yield. It was
recently suggested that glass stability induces a ductile-to-
brittle transition, confirmed numerically in a model for soft
glasses [58–60]. Here, we establish that a similar transition
exists in metallic glasses. To this end, we consider a larger
system size, N ¼ 5 × 104, and apply the following pre-
paration protocol for the original KA model and the
δ ¼ 1% KA1 and KA2 models. First, we thermalize the
system at high temperature, T� ¼ 2.0. Second, we instan-
taneously quench to the temperature T� ¼ 0.373 and 0.319
for KA and KA1;2, respectively, where τðSÞα ≃ 1010 MC
steps, and let them age during 106 swap MC steps. We
expect to produce an ordinary computer glass of modest

stability for the KA model but very stable configurations
for KA1 and KA2 models. These aged glasses are quenched
to T ¼ 0 and sheared using a strain-controlled athermal
quasistatic protocol [61]. We apply a uniform shear along
the xy plane with strain increments Δγ ¼ 10−4. We
measure the xy component of the shear stress, σxy, to
obtain the stress-strain curves shown in Fig. 3(a).
We visualize nonaffine particle displacements [62] in
Figs. 3(b)–3(d).
For the KA model, the stress shows an initial quasilinear

increase with small plastic events, a stress overshoot
punctuated by many larger plastic events, and a gradual
approach to steady state. Near yielding, plasticity is
spatially heterogeneous but spreads over the entire system
[see Fig. 3(b)] in agreement with previous findings
[63–65]. For stable initial configurations, the stress over-
shoot transforms into a unique, sharp, macroscopic stress
discontinuity [see Fig. 3(a)]. This brittle behavior is
accompanied by a clear system-spanning shear band [see
Figs. 3(c) and 3(d)]. The tendency to shear localization
upon increasing stability is well-documented [66,67], but a
genuine nonequilibrium discontinuous yielding transition
only occurs for highly stable glassy systems [58] (see also
Refs. [68–70]). These results extend to an experimentally
relevant class of materials the observation that brittle
yielding and macroscopic shear-band formation can be
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FIG. 3. (a) Stress-strain curves for three models—KA, KA1,
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studied in atomistic simulations. They also suggest the
universality of the random critical point controlling the
brittle-to-ductile transition [58]. This constitutes our third
important result.
Perspectives.—The multicomponent models for metallic

glasses developed here can be efficiently thermalized via
swap Monte Carlo simulations down to temperatures that
are not currently accessible to conventional simulation
techniques and are comparable to the experimental glass
transition. These models fill the gap between experimental
and numerical works. Considering the extensive use made
of the KA model [8], the improved glass-forming ability
and thermalization efficiency will stimulate many future
studies. Immediate applications concern further analysis of
the thermodynamic, dynamical, and mechanical properties
of the stable configurations obtained here to address
questions regarding the Kauzmann temperature, the
validity of the Adam-Gibbs relation (see SM for an initial
attempt), and a microscopic description of shear-band
formation and failure in metallic glasses. More broadly,
the strategy proposed here is simple and versatile and can
certainly be improved further. For example, increasing the
number of components and their concentration allows the
system to reach below Tg very efficiently (see SM for a
four-component model). It could also be used to model
some specific multicomponent materials (for instance, of
the Ni-Pd-P type) and high-entropy alloys to deepen our
theoretical understanding of metallic glasses and help the
design of novel materials with specific properties.
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