
Comment on “Fickian Non-Gaussian Diffusion in
Glass-Forming Liquids”

A recent Letter [1] examined the statistics of individual
particles displacementsΔxðtÞ over time t in two-dimensional
glass formers and concluded that the corresponding proba-
bility distributionGsðΔx; tÞ, called thevan-Hovedistribution,
is non-Gaussian in a time regime where the mean-squared
displacement (MSD) is Fickian, hΔx2ðtÞi ∝ Dst, whereDs is
the self-diffusion constant. If this analysis were correct, glass
formers would be “Fickian non-Gaussian” materials [2,3].
Here, we clarify that the multiple length scales and

timescales reported in [1] have either been characterized
before, or are not well defined. This leads us to dispute the
conclusions that glass formers display Fickian non-
Gaussian behavior and that this analogy fruitfully addresses
the central questions regarding the nature of dynamic
heterogeneity in these systems.
Let us first recall that the main features of self-diffusion

in supercooled liquids are explained by invoking two
characteristic timescales [4–7]. The self-diffusion coeffi-
cient Ds controls the first one, τD ¼ σ2=Ds, where σ is the
particle size. The second one is the structural relaxation
time τα determined from usual time correlations, such as the
self-intermediate scattering function. The adimensional
ratio X ¼ τα=τD plays a special role. It controls both the
amount of decoupling XðTÞ ∼Dsτα (akin to violations of
the Stokes-Einstein relation [8]), and the Fickian length
scale lF ∝

ffiffiffiffi

X
p

[4]. These known results [4–10] paint a
picture that is inconsistent with several conclusions
reported in [1,3] as we now show.
Let us start with the van Hove distribution. It was found

in [9] that GsðΔx; tÞ approaches a Gaussian distribution
only for times much longer than τD, a result rediscovered in
[1] with equivalent tools. However, the non-Gaussian
parameter α2ðtÞ used in [1] to reveal Gaussianity decays
as a power law at large times. Hence, the gradual emer-
gence of Gaussian behavior from α2ðtÞ is a scale-free
process and there is no characteristic timescale after which
self-diffusion is Gaussian, although of course empirically
α2ðtÞ will be small when hΔx2i ≫ l2

F. It was found
numerically [8] and explained theoretically [4] that it is
the length scale lF that controls the crossover in the wave
vector dependence of the self-intermediate scattering func-
tion, a result ignored in [1].
For times t < τα, GsðΔx; tÞ is characterized by a

Gaussian core at small Δx and a nearly exponential tail
Gs ∝ expð−jΔxj=λÞ at large Δx [5]. References [1,3] dis-
cuss the existence and possible universality of a power law
description of the time evolution of the exponential tail,
λðtÞ ∼ tα. As noticed in [5,6,11], the exponential tail is
generically explained by a large deviation argument, but
asymptotic convergence is so slow that the actual value of λ
depends on the fitted range (see [6] for an explicit test and

[11] for analytic results suggesting that α ¼ 0), which may
explain reported discrepancies [1,3]. More fundamentally
λðtÞ is difficult to measure, and α is not a novel character-
istic exponent.
Linear behavior of the MSD is visually detected [1] in

log-log representations after a time τD which grows more
slowly than τα at low temperature, but the approach to
linearity is algebraic [12]. This power law approach to
Fickian behavior is again scale-free and no characteristic
timescale controls the emergence of Fickian behavior in
hΔx2ðtÞi; in particular τD does not play this role.
Even though glass formers may appear empirically close

to Fickian non-Gaussian materials, there are no character-
istic timescales or length scales controlling the approach to
either Fickian and Gaussian dynamics, and the existence of
a Fickian non-Gaussian regime cannot be decided. Instead,
the salient features of self-diffusion, including the algebraic
approach to Fickian and Gaussian behaviors as well as
nearly exponential van Hove distributions, are analytically
captured by (effective) noninteracting continuous time
random walk models [4–7,10] based on the only two
important and well-defined characteristic timescales τD
and τα. The multiple time and length scales determined
empirically in [1,3] are either related to those, or concep-
tually ill-defined.
The complexity of glass formers is that the timescales τD

and τα emerge from many-body interactions (disorder is
self-induced) and have nontrivial temperature dependencies
which are not fully understood, but from which the very
rich statistics of single particle displacement naturally
follows. The behavior of supercooled liquids is very
different from several Fickian non-Gaussian materials,
which are described by interesting, but quite different,
models [13].
We end by noting that the use of two-dimensional

simulations to study the statistics of particle displacements
in glass formers is profoundly influenced at all timescales
by Mermin-Wagner fluctuations [14,15], which presum-
ably adds to the profusion of timescales reported in [1].
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