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Sampling the Boltzmann distribution using forces that violate detailed balance can be faster than with the
equilibrium evolution, but the acceleration depends on the nature of the nonequilibrium drive and the
physical situation. Here, we study the efficiency of forces transverse to energy gradients in dense liquids
through a combination of techniques: Brownian dynamics simulations, exact infinite-dimensional
calculation, and a mode-coupling approximation. We find that the sampling speedup varies nonmonotoni-
cally with temperature, and decreases as the system becomes more glassy. We characterize the interplay
between the distance to equilibrium and the efficiency of transverse forces by means of odd transport
coefficients.
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To sample a given target distribution, the paradigm is
to construct Markov processes endowed with detailed
balance. When the physics slows the dynamics down, as
for instance in the vicinity of a critical point, or in
disordered and dense systems, algorithms that can increase
the sampling efficiency are much needed [1,2]. Sampling
by violating detailed balance using nonequilibrium dynam-
ics is a possible route, explored in an applied mathematics
literature dating back to the midnineties [3–6]. Potential
applications are not limited to physical systems, since, for
instance, slow dynamics caused by a complex nonconvex
energy landscape are also encountered in machine learning
and neural networks [7–10]. Bounds and inequalities on the
convergence or mixing rates have been obtained [11–18],
and studies encompass the mean-field Ising model [19] and
systems evolving via diffusive hydrodynamics [20–22].
This is a very active field of applied mathematics [23,24]
and of computer science [25–28]. Numerical studies also
exist for a variety of systems [29–37], but no quantitative
results exist for systems with self-induced disorder, such as
glassy liquids. In the latter case, nonequilibrium forces can
either shift [38] or destroy [39] the glass transition, while
the addition of unphysical degrees of freedom was recently
shown [40] to drastically change the relaxation dynamics.
We explore how nonequilibriummethods that sample the

Boltzmann distribution fare when applied to a strongly
interacting classical many-body system, such as a high-
density or low-temperature fluid exhibiting glassy dynam-
ics, and determine the dependence of the acceleration on
the state point. The specific dynamics we study is the
overdamped Langevin dynamics driven out of equilibrium
by a force field transverse to the local energy gradient. Our
results are established using a combination of techniques,

ranging from the numerical integration of Langevin
equations for a Kob-Andersen mixture, through a mean-
field infinite dimensional calculation to finite-dimension
mode-coupling approximation. Our presentation goes
along these three axes, each of which sheds its own light
on the questions we ask.
We demonstrate the existence of an optimal temperature

for the acceleration. While a gain remains, the efficiency
decreases as the glass transition is approached. Transverse
forces also lead to the appearance of odd transport
coefficients, that were earlier found in active matter systems
composed of chiral particles or driven by nonreciprocal
forces [41–43] (see also [44,45] for a dilute equilibrium
fluid). Surprisingly, odd diffusivity is insensitive to the
emergence of glassy behavior.
Our approach is illustrated with the example of a single

particle with position r in an external potential VðrÞ at
temperature T ¼ β−1,

dr
dt

¼ −μð1þ γAÞ∂rV þ
ffiffiffiffiffiffiffiffi
2μT

p
η; ð1Þ

where μ is the mobility. The components of the Gaussian
white noise η are independent, hηiðtÞηjðt0Þi ¼ δijδðt − t0Þ.
When the matrix A is skew symmetric, the nonequilibrium
force of strength γ is transverse to the energy gradient.
The stationary distribution thus retains its Boltzmann
form, ρBðrÞ ¼ e−βVðrÞ=Z even when γ > 0, but the entropy
production rate is finite, τ−1Σ ¼ βγ2hðA∂rVÞ2iB. Another
relevant timescale governing microscopic dynamics is
given by the reciprocal of the average escape rate [46–48].
Its equilibrium expression is τ−10 ∼ hβð∂rVÞ2iB but with a
nonzero γ this becomes ½τ0=ð1þ γ2kAk2F=dÞ� (see the
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Supplemental Material [49]). This elementary reasoning
would suggest that transverse forces simply result in a
global rescaling of timescales. We show below that many-
body interactions lead to a very different picture.
To widen the scope of our statements, we highlight a

correspondence between transverse forces, as defined in
Eq. (1), and the lifting procedure [4–6,23,24], which is an
alternative approach to accelerate the dynamics. In a
nutshell, lifting amounts to augmenting the degrees of
freedom of a system with equilibrium dynamics by a set of
auxiliary (and unphysical) variables that produce non-
equilibrium flows while preserving the original equilibrium
distribution. One way to see the connection with transverse
forces is to consider, following [33], two equilibrium
systems with potentials V1ðr1Þ and V2ðr2Þ evolving
through the coupled dynamics

dr1
dt

¼ μð−∂r1V1 þ γ∂r2V2Þ þ
ffiffiffiffiffiffiffiffi
2Tμ

p
η1;

dr2
dt

¼ μð−∂r2V2 − γ∂r1V1Þ þ
ffiffiffiffiffiffiffiffi
2Tμ

p
η2: ð2Þ

In this case, the nonequilibrium forces are transverse in the
extended ðr1; r2Þ space, and the stationary distribution
decouples into ρBðr1; r2Þ ∝ e−βV1ðr1Þe−βV2ðr2Þ. If we choose
for system 2 a quadratic potential, the equation of motion
for 1 resembles that of an active Ornstein-Uhlenbeck
particle [50] where the role of the self-propulsion velocity
is played by r2 [49]. The equation of motion for 2 is
however different from the Ornstein-Uhlenbeck equation to
ensure that 1 samples the Boltzmann distribution: the
dynamics of system 1 is lifted by that of system 2. A
cartoon of the connection between transverse forces and
lifting is shown in Fig. 1. While our derivations start from
transverse forces, our conclusions may therefore extend to
some locally lifted systems.
The general many-body problem considered is a

system with i ¼ 1;…; N particles in d dimensions evolving
under the influence of interparticle forces Fi ¼ −ð1þ γAÞP

j≠i ∂riVðri − rjÞ, where A is a skew-symmetric matrix,
and VðrÞ is a pair potential, evolving as in Eq. (1)
with thermal noise. The strength of the nonequilibrium
forces is controlled by γ which means we keep the matrix
elements ofA or order 1 (and independent of γ). The steady
state distribution is again the Boltzmann distribution

ρB ∝ e−β
P

i<j
Vðri−rjÞ. We first report the results of numeri-

cal simulations of a three-dimensional binary Kob-
Andersen mixture [51–53] of NA ¼ 800 particles of type
A and NB ¼ 200 of type B interacting as

VαβðrÞ ¼ 4εαβ

��
σαβ
r

�
12

−
�
σαβ
r

�
6
�
; r ≤ 2.5σαβ ð3Þ

with α; β∈ fA; Bg and where εAA ¼ 1, εAB ¼ 1.5,
εBB ¼ 0.5, σAA ¼ 1, σAB ¼ 0.8, σBB ¼ 0.88. The linear

size of the system is 9.4σAA, and periodic boundary
conditions were used. We choose A in a block diagonal
form with �1 elements in the xy plane, without loss of
generality. We integrate the equations of motion using a
Euler-Heun algorithm with a discretization step calibrated
to optimize efficiency while still properly sampling equi-
librium properties [54]. We first show in Fig. 2(a) that
the static structure is unaffected by the introduction of
transverse forces, demonstrating equilibrium sampling
with nonequilibrium dynamics, over a temperature range
encompassing a high-temperature almost structureless fluid
down to a mildly supercoooled liquid. To estimate the
speedup of the sampling, we use the mean-squared dis-
placement Δr2ðtÞ for particles A. Its temperature evolution
is shown in Fig. 2(b) at equilibrium, which displays the
development of a two-step glassy dynamics below the onset
temperature near T ≈ 1.0.
In Fig. 2(c), we demonstrate that the introduction of

transverse forces accelerates the dynamics of the system.
To quantify this acceleration, we extract the diffusion
constant, Dðγ; TÞ, from the long-time limit of the mean-
squared displacements; see Fig. 3(a). At fixed γ, there exists
a temperature near T� ≈ 100 that maximizes the increase of
the diffusion constant.
At high temperatures, interactions (including chiral ones)

are smeared out by thermal noise which degrades the
efficiency. The initial increase of the acceleration is then
well captured by a weak fluctuation expansion [55]. The
drop of acceleration as the temperature is lowered can be
rationalized by the fact that the energy landscape remains
unaffected by the transverse forces. When the supercooled
regime is entered more deeply, particles spin along circular
trajectories within their local cages; see Figs. 1(c) and 1(d).

(a) (b)

(c) (d)

FIG. 1. (a) The addition of transverse forces (red) to the
potential ones (blue) acts similarly to (b) a dynamics lifted by
additional degrees of freedom (green), by creating an effective
chirality. (c) Rendering of a short trajectory for a few particles
without any transverse force at T ¼ 0.8. (d) Same with transverse
forces which induce circular trajectories.
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This local motion has a modest influence on the long-time
dynamics. We thus expect that the glass transition occurs at
the same temperature as in equilibrium. These two opposite
trends account for the existence of an acceleration
maximum.
To confirm the picture of a swirling motion inside a local

cagewemeasure the odd diffusivity of the particlesA,which
can be calculated from a Green-Kubo expression [41],

D⊥ ¼ 1

2NA

XNA

i¼1

Z þ∞

0

dthẏiðtÞẋið0Þ − ẋiðtÞẏið0Þi: ð4Þ

By symmetry, D⊥ vanishes for an equilibrium dynamics,
and its value usefully quantifies the circularmotion shown in
Fig. 1(d). For example, in the limiting case of a particle
trapped in a harmonic well, we show in the Supplemental
Material [49] that D⊥ ¼ −μγT, with μ the mobility of the
particle.

The temperature dependence of D⊥ for our simulated
system is shown in Fig. 3(a) for different values of γ. Its
absolute value increases with γ. At fixed γ, the odd
diffusion starts from 0 at high T: as thermal fluctuations
wash out interactions, they also suppress particles’ chiral
motion, which is induced by transverse forces. The
modulus of D⊥ then rises steeply as a function of T−1

from 0 to a finite value near T�. As the system enters its
slow dynamical regime, D⊥ settles to a finite value as
shown in the inset of Fig. 3(b). Interestingly, the observed
behavior in the arrested glass phase, where it is presumably
dominated by the in-cage circular motion created by the
transverse forces, agrees with the predictions for the
harmonic well. This contrasts with the translational dif-
fusion coefficient which changes by orders of magnitude in
the supercooled liquid, and vanishes in the glass.
Overall the simulations reveal a nonmonotonic temper-

ature dependence of the sampling efficiency of transverse
forces, which decreases when temperature is lowered,
accompanied by odd diffusivity which appears insensitive
to this evolution. To understand these nontrivial findings,

(b)

(a)

(c)

FIG. 2. (a) Static structure factor at γ ¼ 0 (full color) and γ ¼ 8
(dashed) at two temperatures. (b) Mean-squared displacement of
the A particles for different temperatures. Two-step dynamics
becomes visible below the onset temperature near T≈ ¼ 1.0.
(c) Mean-squared displacement of the A particles at T ¼ 0.8 for
various values of γ.

FIG. 3. (a) Diffusion constant Dðγ; TÞ normalized by its
equilibrium value at γ ¼ 0 as a function of inverse temperature.
The temperature axis uses a logscale to emphasize the non-
monotonic dependence. The right axis describes the odd diffu-
sivity as a function of T−1 for various values of γ. (b) Same as
(a) using a linear scale to concentrate on the glassy regime below
T ¼ 1.0. The black dashed line corresponds to the equilibrium
efficiency.
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we turn to two analytical approaches, focusing for simpli-
city on a monodisperse fluid.
First, we consider the mean-field limit which is achieved,

for simple fluids, by increasing the space dimension d to
infinity [56–60], while keeping the number of neighbors
per space direction of order unity. In this limit, one can
derive an effective Langevin equation for the position of a
tagged particle with an effective noise that originates from
the remaining components and the coordinates of all other
particles. We defer technical details to [61]. Even out of
equilibrium [62,63], the influence of the bath appears as a
sum of a position-independent friction kernel and a noise.
The friction kernel and the noise autocorrelation need to be
determined self-consistently, in a typical mean-field pro-
cedure. For our problem, we find that the position ri of
tagged particle i evolves according to

driðtÞ
dt

¼−μβ
Z

dt0ð1þγAÞMðt− t0Þdriðt
0Þ

dt0
þΞiðtÞ; ð5Þ

where M is a d × d memory kernel to be determined, and
Ξi is a zero-average Gaussian noise with correlations

hΞiðtÞ ⊗ Ξjðt0Þi ¼ δij
�
2Tμ1δðt − t0Þ

þ ð1þ γAÞMðt − t0Þð1 − γAÞ�: ð6Þ

The memory kernel M is given by correlations of the pair-
potential gradients,

MðtÞ ¼
X
j

h∇iVðrijðtÞÞ ⊗ ∇iVðrijð0ÞÞi; ð7Þ

where rij ¼ ri − rj. To determine M we need to consider
the evolution of the relative position r ¼ rij, which can be
shown [61] to follow

1

2

dr
dt

¼ −μð1þ γAÞ∂rV −
μβ

2

Z
dt0ð1þ γAÞMðt − t0Þ dr

dt0

þ ΞðtÞ; ð8Þ

where theGaussian noiseΞ has correlations hΞðtÞ⊗Ξðt0Þi¼
1Tμδðt− t0Þþ 1

2
ð1þγAÞMðt− t0Þð1−γAÞ. The procedure

is to determine the statistics of r as a functional of M, and
then to determine the force statistics in the rhs of Eq. (7)
as a functional of M, hence obtaining a self-consistent
functional equation for M. In practice, even for equilibrium
dynamics, M can only be determined numerically [64]. To
evaluate the diffusion constant we only need the time integral
of the kernel which becomes diagonal, M ¼ 1M. The
diffusion constant is expressed in terms of its time integral
M̂ðγ; TÞ ¼ Rþ∞

0 MðtÞdt as

Dðγ; TÞ ¼ Tμ
1þ ð1þ γ2ÞβM̂

ð1þ βM̂Þ2 þ ðβγM̂Þ2 : ð9Þ

This result is obtained in even space dimension for a
matrix A [61] made of d=2 identical 2 × 2 blocks with �1
entries (nonidentical blocks would require averaging over the
blocks, without affecting our conclusions; working in an odd
space dimension would involve a single extra space dimen-
sion with negligible effect as d ≫ 1). In the ergodic phase,
one can show that the γ-dependent relaxation time ofM scales
as τðγÞ ¼ M̂ ∝ γ−1 when γ ≫ 1. The diffusion constant
Dðγ; TÞ therefore behaves as D ∼ γ for large γ. Note also
that when MðtÞ does not relax to 0 then M̂ ¼ þ∞, and
Dðγ; TÞ vanishes.We expect that the constraint of Boltzmann
sampling is so strong that transverse forces cannot prevent the
emergence of diverging free energy barriers leading to
ergodicity breaking, in contrast with active forces [38] or
shear flows [39]. This implies that the dynamical transition
temperature at nonzero γ is unaffected by the transverse
forces [61].
The quantity M̂ diverges at a finite temperature while a

low-density approximation shows [61] that it increases with
1=T. It is thus natural to expect that M̂ is an increasing
function of 1=T. Under this assumption, and looking at
Eq. (9), we see that D becomes a nonmonotonous function
of temperature. Since the maximum of D occurs at high
temperature where memory is weak, it makes sense to
evaluate Eq. (9) using a low-density approximation for M̂.
It turns out that the equilibrium expression of M̂ obtained
in [64] still holds at nonzero γ [61], and it produces an
evolution ofD consistent with Fig. 3(a) as explicitly shown
in the Supplemental Material [49].
We also obtain the odd diffusivity, given by

D⊥ðγ; TÞ ¼ −γTμ
βM̂ þ ð1þ γ2ÞðβM̂Þ2
ð1þ βM̂Þ2 þ ðγβM̂Þ2 ; ð10Þ

and which behaves as D⊥ ∼ γ at large γ. At very
high temperature we have D⊥ ¼ −γμM̂ ≃ 0. We also see
that D⊥ ¼ −γμT below the dynamical transition tempera-
ture, when M̂ → ∞, consistently with the harmonic well
picture [49]. In the mean-field limit, a genuine glass phase
appears at low temperature in which particles are trapped in
a local harmonic environment created by their neighbors. In
a harmonic well the spectrum of the Fokker-Planck
operator only picks up an imaginary part when transverse
forces are applied, leaving the real part of the eigenvalues
unchanged [49], thereby capturing the emergence of
circular orbits within the well. The physical picture is that
chiral forces eventually lose their accelerating power by
wasting the injected energy into circular trajectories.
It is unclear whether these mean-field results are valid in

finite dimensions.We thus resort to an approximate theory in
the spirit of the mode-coupling theory of glassy dynamics
[65]. To compare with the infinite-dimensional calculation
we focus on the self-part of the intermediate scattering
function, Fsðq; tÞ ¼ ð1=NÞPjheiq·½rjðtÞ−rjð0Þ�i. The long
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wavelength limit of Fsðq; tÞ is related to the mean-squared
displacement, Fsðq→0;tÞ¼1−ðq2=6ÞΔr2ðtÞ, and there-
fore the long time dynamics ofFs at largewavelength allows
us to obtain the diffusion constant.
The standard mode-coupling approximation applies to

equilibrium dynamics, though recent inroads [66–69]
pave the way for nonequilibrium extensions. The main
technical difficulty in our case is the presence of transverse
currents, which come in addition to the usual longitudinal
ones. Within our own mode-coupling approximation
for transverse forces, we obtain the memory kernels
ðMkðq; tÞ;M⊥ðq; tÞÞ encoding respectively longitudinal
and transverse current-current correlations. The evolution
of Fsðq; tÞ is given by [55]

∂tFs þ Tμq2Fs þ μβð1þ γ2ÞM⊥ � Fs

¼ −
�
μβðMk þM⊥Þ þ μ2β2ð1þ γ2ÞðM⊥ �MkÞ

� � ∂tFs;

ð11Þ

where � denotes a time convolution. The functional
expression of Mk is the same as in equilibrium [70], while

M⊥ ¼ T2ρ0

Z
dk

ð2πÞ3
�
Aq · k
jAqj

�
2

cðkÞ2Fsðq − k; tÞSðk; tÞ;

with ρ0 is the number density, Sðk; tÞ the collective
intermediate scattering function, and ρ0cðkÞ≡ 1 − 1=SðkÞ.
The same matrix A as in our numerics is used. To close
Eq. (11) we need an equation of motion for Sðq; tÞ. This
equation, discussed in detail in [55], also predicts that the
location of the mode-coupling transition is not influenced
by the transverse currents, thus confirming the infinite-
dimensional results.
The zero-frequency mode of the memory kernel M̂α;i ¼

limq→0

Rþ∞
0 Mαðqei; tÞdt controls the behavior of the

diffusion constants,

Dk;x ¼ Tμ
1þ ð1þ γ2ÞβM̂⊥;x

ð1þ βM̂k;xÞð1þ βM̂⊥;xÞ þ γ2β2M̂k;xM̂⊥;x
;

Dk;z ¼
Tμ

1þ βM̂k;z
; ð12Þ

withDk;y ¼ Dk;x. We note two consequences of working in
finite dimension: M⊥ ≠ Mk and Dk;z ≠ Dk;x [note that
replacing both M⊥ and Mk with M in Eq. (12) for Dk;x
leads back to the infinite-dimensional expression Eq. (9)].
Assuming that the system falls into a nonergodic regime
below some transition temperature TMCT, the memory
kernels M⊥ðtÞ and MkðtÞ also saturate at a nonzero value
at long times, and the longitudinal diffusion constants
vanish. Whereas the location of the ergodicity-breaking
transition is independent of γ, the dynamics in the ergodic
phase is not. In particular, assuming that M̂k;i does not

exceed its equilibrium counterpart, one can show that the
longitudinal diffusion constants for γ ≠ 0 are always larger
than their equilibrium counterpart. If the diffusion constant
is larger, the long time relaxation of Fs is faster, and thus
the value of the zero-frequency limit of the kernels is
reduced, self-consistently demonstrating acceleration of the
dynamics for γ > 0. Remarkably, Eq. (12) shows that the
diffusion (quantified by Dk;z) along the z direction is also
indirectly accelerated by the coupling with the other
directions. Overall, the mode-coupling calculation high-
lights interesting differences with the large d limit, but the
main results are in agreement.
In conclusion, we found that the acceleration provided

by transverse forces in a dense interacting system strongly
depends on temperature, which comes as a surprise. The
acceleration departs from a simple rescaling of the time,
due to both interactions and emerging glassiness, which
also lead to nontrivial asymptotic scaling with γ. Transverse
forces begin to operate when the relaxation time of the
system exceeds τΣ ∼ τ0=γ2, but their efficiency decreases in
deeply supercooled states leading instead to circular tra-
jectories but only modest acceleration. This picture is
corroborated by the behavior of the odd diffusivity, which
is small as long as τΣ exceeds the relaxation rate of the
system, but saturates to a finite value as the glass phase is
approached. Our Letter resorts to a very local, and some-
what uninformed, way of driving the system out of
equilibrium. In the more elaborate methods implemented
in [31,71], spatially extended and correlated moves are
performed. It is a stimulating open question to find out how,
when pushed toward glassiness, these methods compare
with the minimal ones investigated here.
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