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We numerically elucidate the microscopic mechanisms controlling the relaxation dynamics of a three-
dimensional lattice glass model that has static properties compatible with the approach to a random first-
order transition. At low temperatures, the relaxation is triggered by a small population of particles with
low-energy barriers forming mobile clusters. These emerging quasiparticles act as facilitating defects
responsible for the spatially heterogeneous dynamics of the system, whose characteristic length scales
remain strongly coupled to thermodynamic fluctuations. We compare our findings both with existing
theoretical models and atomistic simulations of glass formers.
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The glass transition of supercooled liquids is character-
ized by a drastic dynamical slowing down, with timescales
that increase much faster than the Arrhenius law in fragile
glass formers [1,2]. These dynamics become increasingly
spatially heterogeneous upon approaching the glass tran-
sition [3,4], in a manner revealed by four-point dynamic
susceptibilities and correlation functions [4–7]. Over the last
decade, massive efforts were also deployed to establish and
characterize the growth of relevant thermodynamic fluctua-
tions and static correlation length scales accompanying this
slowing down [8–11], with results compatible with an
approach to a random first-order transition (RFOT) [12–16].
The central open question that remains, then, concerns

the existence of a causal link between static and dynamic
fluctuations, to go beyond known correlations [17]. While
RFOT theory suggests that static fluctuations directly
control the evolution of dynamic heterogeneity and explain
the slowing down of the dynamics [18–20], alternative
approaches use local energy barriers and dynamic facili-
tation [21–25], making no reference to the underlying
complex free energy landscape.
Experimental measurements do not easily discriminate

these views [26], and original strategies are needed [27].
Recent developments in computational studies of atomistic
glass formers [28] helped reveal the importance of dynamic
facilitation at very low temperatures [29–32], strengthening
earlier results [24,33]. The reported decoupling between
static and dynamic length scales [32,34] weakens the idea
that statics fully controls dynamics, as does the observation
that local Monte Carlo algorithms strongly impact the
equilibrium dynamics [35]. While RFOT theory accounts
for all these observations [20,36,37], the current situation is
confused.
Simplified lattice models with minimal (but not too

minimal) ingredients are ideally suited to clarify these

questions [2]. Kinetically constrained lattice glass models
have no complex thermodynamics but display dynamic
heterogeneity stemming instead from dynamic facilitation
and kinetic constraints [38–42]. Interacting plaquette spin
models form another class, in which similar kinetic con-
straints emerge from interacting degrees of freedom [43–
45]. Finally, lattice glass models with frustrated interactions
also exist [46–50]. Differently from the other two families,
they display, just like atomistic models, a random first-
order transition in the mean-field limit. They are therefore
ideal candidates to study the interplay between static and
dynamic fluctuations in finite dimensions. This is the
central motivation for our work.
Recently [51], a lattice glass model with good glass-

forming ability in d ¼ 3 was numerically shown to display
thermodynamic fluctuations consistent with both RFOT
theory and finite-d glass formers. Here, we study its
dynamics to shed light on how structural relaxation occurs
in a many-body particle system approaching a RFOT. We
find that the dynamics becomes glassy and spatially hetero-
geneous, with a strong coupling between static and dynamic
fluctuations. However, structural relaxation is triggered by
emerging quasiparticles composed of localized clusters of
particles with low-energy barriers, which gradually relax the
correlated slow regions in a manner reminiscent of dynamic
facilitation. While statics plays a role in the dynamics, this
differs strongly from the predictions of RFOT theory.
We study a binary mixture of particles [51] on a periodic

cubic lattice of linear dimension L and Hamiltonian

H ¼
X
i

�X
j

δðjri − rjj; 1Þ − lσi

�
2

; ð1Þ

with δð·; ·Þ the Kronecker delta, ri the position of particle i
taking values ri;α ¼ 1; 2;…L (α ¼ x, y, z), and σi ∈ f1; 2g
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specifying the particle type. Each particle type has a
preferred number of neighbors, lσ, and quadratic devia-
tions from this number provide the local energy cost; see
SM [52]. We set l1 ¼ 3 and l2 ¼ 5, fix the density to
ϕ ¼ N=L3 ¼ 0.75, where N is the number of particles, and
the concentrations ρ1 ¼ N1=N ¼ 0.4 and ρ2 ¼ N2=N ¼
0.6 [51]. We use L ¼ 20, apart from the temperature
T ¼ 0.26, where we set L ¼ 10 as the simulations take
much longer to converge.
To obtain equilibrium configuration of the system defined

by Eq. (1) we use a nonlocal swap dynamics, where two
lattice sites with different occupation numbers or particle
types are randomly chosen and swapped with Metropolis
probability. To study the physical dynamics, we restrict the
above rule to pairs of nearest neighbors [51]. This local
dynamics allows us to explore structural relaxation down to
T ≈ 0.3, while Ref. [51] locates the putative Kauzmann
transition near T ≈ 0.24. At T ¼ 0.3, the nonlocal swap
provides a comfortable speedup of about 103, allowing us to
explore the equilibrium dynamics of the model at temper-
ature where the physical dynamics is extremely slow. The
unit time represents L3 attempted moves.
The structural relaxation of the system can be followed

using the collective overlap

hQðtÞi ¼ 1

1 −Q0

�
1

N

X
i

qiðtÞ −Q0

�
. ð2Þ

In this expression the local overlap qiðtÞ remains 1 only
when the site occupied by particle i at time 0 is again
occupied by any particle of the same type at time t later,
where qiðtÞ ¼

P
j δðrið0Þ; rjðtÞÞδðσið0Þ; σjðtÞÞ and Q0 ¼

ϕðρ21 þ ρ22Þ. The brackets h·i stand for an average over
initial equilibrium configurations. The collective overlap in
Eq. (2) is the lattice analog of the overlap defined for
particle systems [10]. It is normalized to decay from 1 to 0
when the structure at t ¼ 0 has fully relaxed. Numerical
results are shown in Fig. 1(a). At high temperatures T ≫ 1,
the system rapidly decorrelates. When T ≲ 0.55, hQðtÞi
starts to have a plateau [see enlargement in Fig. 1(b)] and
the corresponding relaxation time τα departs from an
Arrhenius behavior; see Fig. 1(c).
With decreasing T further, the dynamics keeps slowing

down, and at very low temperatures T ≲ 0.325, a more
complex short time dynamics emerges. This is better
appreciated in the Fourier relaxation spectrum [56]

χ00ðωÞ ¼
Z

d log τ
dhQðτÞi
d logðτÞ

ωτ

1þ ðωτÞ2 ; ð3Þ

as shown in Fig. 1(d) (see details in SM [52]). This
representation clearly reveals additional relaxation proc-
esses taking place at intermediate frequencies between the
microscopic peak and the main peak corresponding to the
structural relaxation, in qualitative agreement with recent
observations in particle models [30,31].

We turn to the mean-squared displacement (MSD)

hΔ2ðtÞi ¼
�
1

N

X
i

jriðtÞ − rið0Þj2
�
; ð4Þ

to understand how particle motion leads to structural
relaxation; see Fig. 2(a). We find, as usual, that the
MSD only becomes diffusive at long enough times, after
a transient plateau that becomes longer at lower temper-
atures and a decreasing diffusion constant. However, the
MSD slows down much less than the overlap. For instance,
at the lowest temperature T ¼ 0.26 and at t ¼ 3 × 108,
hQðtÞi ≃ 0.98 while hΔ2ðtÞi ≃ 102. It is a priori surprising
that such large particle displacements lead to so little
relaxation in the structure.
To better understand this finding, we determine the

corresponding van Hove distribution

PtðΔxÞ ¼
�

1

3N

X
i;α

δfΔx − ½ri;αðtÞ − ri;αð0Þ�g
�
; ð5Þ

(a)

(b)

(c)

(d)

FIG. 1. (a),(b) Temperature evolution of the collective overlap
hQðtÞi. (c) Arrhenius plot of the relaxation time τα; the broken
line is an Arrhenius fit valid at high temperatures. (d) Relaxation
spectrum from Eq. (3); dashed curves represent the spectrum
corresponding to the final stretched exponential decay of the
overlap.
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see Figs. 2(b) and 2(c). At high temperatures, the particle
dynamics is diffusive and PtðΔxÞ very close to a Gaussian
at any time. In contrast, PtðΔxÞ is non-Gaussian at short
times with nearly exponential tails [57] when decreasing
temperature, and only becomes Gaussian when t ≫ τα; see
T ¼ 0.4 in Fig. 2(b). At very low temperature, e.g., T ¼
0.26 in Fig. 2(c), PtðΔxÞ develops extremely extended tails
coexisting with a large peak at Δx ¼ 0. This peak corre-
sponds to a large fraction of particles that have not moved at
all since t ¼ 0, coexisting with a population of particles that
have covered distances up to tens of lattice sites. Clearly,
dynamics is highly heterogeneous, and different particles
can exhibit different behavior. Also, the large decoupling
between the overlap and the MSD arises because a small
fraction of particles travels large distances while many
others have not yet moved.
The emergence of a small population of fast moving

particles in an otherwise nearly frozen backbone is unex-
pected as it is not directly included in the Hamiltonian in
Eq. (1), contrary to kinetically constrained models. To
understand this feature, we measure for lattice site i in an
equilibrium configuration a local energy barrier, Δei,
defined as the minimum energy cost to swap with one
of its nearest neighbors. Such analysis is not possible in off-
lattice models, but is very easy here. We show in Fig. 3(a)
the cumulative probability distribution of Δe=T. Lattice
sites with Δe=T ≥ 10, for instance, are only swapped with
probability ≤ 10−4. At high temperature, a large fraction of
lattice sites haveΔe=T ≤ 0 and can movewith no rejection.
With decreasing temperature, local energy barriers become

very large. At T ¼ 0.3, a majority of sites have Δe=T ≥ 26,
yielding a local timescale ≥ 1011. Strikingly, however, a
fraction of about 0.1% of the lattice sites remains totally
free to swap.
In Figs. 3(b)–3(d), we show the lattice sites with Δe ≤ 0

at T ¼ 0.3. A significant fraction of these are dimers and
trimers, which result in reversible local particle exchanges.
More rarely, we observe a larger cluster, as highlighted in
red. Our visualizations indicate that these localized clusters
can move very rapidly throughout the system. In the
example of Fig. 3, the cluster travels more than L=2 over
about 400 time steps. The identity of the particles that
belong to the cluster also changes rapidly. Therefore, these
fast moving localized clusters are emerging quasiparticles
that can move large distances. Particles advected by clusters
are responsible for the extended tails in the van Hove
distributions.
After many quasiparticles have been observed, the sites

that have relaxed are not homogeneously distributed, as
shown in Fig. 3(e). This suggests the existence of specific
paths along which the motion of quasiparticles occurs
preferentially. As a corollary, there exist large compact

(a)

(b)

(c)

FIG. 2. (a) Time dependence of the MSD; diffusive behavior is
indicated with dashed lines. The van Hove distribution functions at
(b)T ¼ 0.4where τα ≃ 2 × 105 and (c)T ¼ 0.26where τα ≫ 1010.

(a)

(b) (c)

(d) (e)

FIG. 3. (a) Cumulative distribution of local energy barriers. The
vertical line indicates Δe ¼ 0. (b)–(d) Snapshots showing lattice
sites with Δe ≤ 0 at T ¼ 0.3 at three different times. The time
intervals between (b) and (c) and between (c) and (d) are 50 and
350, respectively. Sites highlighted in red belong to a quasipar-
ticle moving rapidly. (e) Lattice sites with states that differ
between times 0 and 7 × 104, showing the superposition of
multiple quasiparticle paths.
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domains in which fast motion cannot occur and can only
relax by the repeated motion of many quasiparticles at their
boundaries. This represents, for the lattice glass model
under study, the analog of the dynamic facilitation reported
for off-lattice simulations [24,32].
To describe more quantitatively the emerging dynamic

heterogeneity, we measure the four-point correlation func-
tion G4ðr; tÞ, defined as

G4ðr; tÞ ¼
1

4πr2

�
1

N

X
i;j

δqiðtÞδqjðtÞδðr − jri − rjjÞ
�
; ð6Þ

with δqiðtÞ ¼ qiðtÞ −
P

jhqjðtÞi=N the local fluctuation of
the overlap. We extract the dynamic length scale ξ4ðtÞ using
the definition G4ðξ4; tÞ=G4ð0; tÞ ¼ 10−2, as well as the
dynamical susceptibility χ4ðtÞ ¼

R
dr4πr2G4ðr; tÞ. At high

temperatures,G4ðr; tÞ decays rapidly over a few lattice sites
even near τα, showing that relaxation is purely local. Spatial
correlations revealed by a much slower decay in G4ðr; tÞ
appear at lower temperatures; see Fig. 4(a) for T ¼ 0.325
where ξ4 grows up to ξ4 ≈ 6 near τα ≈ 108. This evolution is
observed for both ξ4 and χ4, whose time dependencies are
shown in Fig. 4. These data are familiar [6], with a slow
growth for t ≪ τα followed by a maximum near τα.
Interestingly, at very low temperatures, the slow growth
of ξ4 toward its peak is compatible with a power law,
ξ4 ∼ t1=z, with a small exponent 1=z ≈ 0.15, in line with
recent off-lattice findings [32].

We collect all relevant length scales in Fig. 5 where we
show both ξ4 and χ4 measured at their maximum near τα.
Our data indicate that the simple relation χ4 ∼ ξ34 holds (not
shown), confirming that slow domains have a compact
geometry and thus we report the quantity χ1=34 in Fig. 5. We
normalize these quantities by their values at temperature
T ¼ 0.45, below which important thermodynamic quan-
tities have been determined before [51].
Two estimates of the configurational entropy [53] were

measured. First, the total entropy sðTÞ itself was measured
using thermodynamic integration. It should be close to the
configurational entropy since vibrational contributions are
negligible on the lattice. Second, the inverse of the critical
coupling field εc [51] in the Franz-Parisi scheme [54] also
represents a solid estimate of the configurational entropy
[55], which is itself inversely proportional to the point-to-
set correlation length scale quantifying static correlations
[18,19,53] (see SM [52] for a review of these connec-
tions). These two indirect estimates of a static length scale
are included in Fig. 5, also rescaled at T ¼ 0.45. They
appear to grow at least as significantly (if not more
strongly) than dynamic length scales. The coupling
between static and dynamic length scales is therefore
stronger here than in atomistic models [10,32,34,58]. This
finding encourages us to directly test the relation between
timescales and length scales predicted in RFOT theory;
see Fig. 5, where the relation log τα ∼ ξψ4 =T with ψ ≈ 0.84
is followed by the data. While a larger exponent ψ
(between d=2 and d) is expected from cooperative
relaxation events, it is not surprising that a lower apparent
value is found here, as dynamic facilitation via mobile
quasiparticles provides more efficient dynamic pathways.
This result indicates that the RFOT theory picture of
cooperative activated dynamics is not dominant for the
studied model. Interestingly, values ψ < 1 were also
inferred from analysis of experimental data [59,60] and
numerically [9,61].
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FIG. 4. (a) Four-point correlation function G4ðr; tÞ at T ¼
0.325 where τα ≈ 108. (b) Dynamical susceptibility χ4ðtÞ and
(c) dynamical length scale ξ4ðtÞ demonstrating increasing dy-
namic heterogeneity.

FIG. 5. Evolution of two estimates of a dynamic length scale,
ðχ4Þ1=3 and ξ4, and of two estimates of a static correlation length
scale 1=sðTÞ and 1=εcðTÞ. Each quantity is normalized by its
value at T ¼ 0.45. Inset shows T logðταÞ as a function of ξ4; the
dashed line is a fit to logðταÞ ∼ ξψ4 =T with ψ ¼ 0.84.
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In conclusion, our results establish that, differently from
all other classes of lattice models for glassy dynamics, the
3D lattice glass model studied here displays thermody-
namic and dynamic properties that compare favorably with
atomistic glass formers, with growing static point-to-set
and four-point dynamic length scales. While static and
dynamic fluctuations appear to be strongly coupled, the
relaxation dynamics is nevertheless different from the
RFOT theory description invoking cooperative relaxation
events. Instead, while the system genuinely approaches a
random first-order transition, it also leaves behind a small
population of weakly constrained particles forming emer-
gent quasiparticles whose fast propagation slowly relaxes
the entire system eventually at large times. These quasi-
particles thus resemble the dynamic defects postulated in
kinetically constrained models, or those emerging from the
specific interactions of plaquette models. They also lead to
signatures at intermediate timescales that are reminiscent of
recent findings in atomistic models [30,32].
While details of the emergent quasiparticles and dynami-

cal defects may be specific to our model, the physical
picture emerging from our study appears generic. It is
consistent with the recent body of results regarding glassy
dynamics at very low temperatures and it supports the
generic conclusion that cooperative events from statically
correlated domains are preempted by faster relaxation
events involving localized regions acting as facilitating
defects [31,32,62]. Our results provide a unified picture for
glassy dynamics near the glass transition where facilitated
dynamics takes place near localized regions, whose temper-
ature evolution is strongly connected to emerging static
correlations. We hope that future studies will confirm the
validity of these conclusions across a broader range of
models (including molecular systems) and spatial dimen-
sions, and study the fate of models even closer to the
putative ideal glass transition where cooperative events
could finally become dynamically relevant.
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