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We study two models of overdamped self-propelled disks in two dimensions, with and without aligning
interactions. Both models support active mesoscale flows, leading to chaotic advection and transport over
large length scales in their homogeneous dense fluid states, away from dynamical arrest. They form streams
and vortices reminiscent of multiscale flow patterns in turbulence. We show that the characteristics of these
flows do not depend on the specific details of the active fluids, and result from the competition between
crowding effects and persistent propulsions. This observation suggests that dense active suspensions of
self-propelled particles present a type of “active turbulence” distinct from collective flows reported in other
types of active systems.
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Active matter has emerged as an important class of
nonequilibrium systems, where energy injection at single-
particle level can produce emerging collective phenomena
at large scales [1]. Among these, collective motion [2] is
interesting because of its biological and social interest, e.g.,
for wound healing [3] or crowd management [4]. Collective
motion can be ordered, as in flocking [5,6], where local
interactions between individuals can lead to global motion
along a given direction, or be more irregular or even
chaotic, as in bacterial swarms [7] or active nematics [8],
which display intermittent swirling motion.
Building on early results for bacterial suspensions

[9–12], the term “active turbulence” [13] recently became
popular to describe chaotic mesoscale flows in systems
including dense epithelial tissues [14] and active suspen-
sions of microtubules [15]. Unlike classical turbulence,
active turbulence occurs in the absence of inertia.
Moreover, the energy injection is not externally imposed
but self-generated at small scales [13]. A recent classifi-
cation [13] organizes active turbulent models into four
classes, depending on their symmetries: a model’s order
parameter can be either polar or nematic; it is called “wet”
if it conserves momentum—for example, if hydrodynamic
interactions dominate—and “dry” if it does not.
In both wet and dry nematic systems [16–18], flow

derives from a dynamical instability of the nematic director

field, with an emerging length scale determined by the
balance between active and nematic stresses [16,18]. Long-
range velocity correlations in these flows are universal [18].
Most studies of polar active turbulence have either con-
sidered wet systems of swimmers [19], or the Toner-Tu-
Swift-Hohenberg equation [10,20], which describes
incompressible flows in dry systems. In this latter descrip-
tion, polarization and velocity are assumed to be aligned:
this is appropriate in the absence of steric interactions.
Diverse particle-based models have also been shown to
display active turbulence: extensions of the Vicsek model
[21,22], self-propelled rods [10,17,23,24] and dumbbells
[25], microswimmers with hydrodynamic interactions
[26,27]. All these previously studied models comply with
the existing classification [13].
Here, we establish that the simplest class of active

matter models—overdamped self-propelled disks—also
develops mesoscale chaotic flows qualitatively similar to
active turbulence; see Fig. 1. In two distinct models, we
find that the homogeneous dense active fluid develops
extended spatial velocity correlations [28–34] that advect
particles over large distances along a disordered array of
streams and vortices, accompanied by hallmarks of active
turbulence, including advective mixing. Within the existing
symmetry classification [13], the natural comparison is
polar turbulence with dry friction [10] but our results show
different scaling behavior. This is due to particle crowding,
which is absent from previous descriptions of active
turbulent systems. Based on these observations we argue
for a new class of active turbulent behavior, which should
encompass diverse models such as vibrated disks [35], self-
aligning self-propelled particles [36,37], or self-propelled
Voronoi models of confluent tissues [38].
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We study N overdamped athermal self-propelled par-
ticles in a square L × L box with periodic boundary
conditions, following overdamped dynamics:

ṙi ¼ −μ
X

j≠i
∇iUðrijÞ þ μpi; ð1Þ

where ri is the position of particle i, pi the self-propulsion
force, μ the particle mobility, rij ¼ jri − rjj, and particles
interact via a repulsive Weeks-Chandler-Andersen potential
U ¼ 4ε½ðσij=rijÞ12 − ðσij=rijÞ6 þ 1=4� for rij < 21=6σij
and U ¼ 0 otherwise, where σij ¼ ðσi þ σjÞ=2 with σi
the diameter of particle i.
The dynamics of the self-propulsion forces pi defines the

active model [39]. We considered two distinct dynamics,
active Ornstein-Uhlenbeck particles (AOUPs) [40,41]
and aligning active Brownian particles (ABPs) [42–45].
To frustrate positional order, we introduce size polydisper-
sity. The diameters of the AOUPs are drawn from a uniform
distribution of mean σ ¼ σi and polydispersity 20%
[41,46]. The ABPs are a 50∶50 bidisperse mixture with
diameters σ and 1.4σ. The packing fraction is ϕ ¼
21=3πNσ2i =ð4L2Þ. The unit length is σ, the unit energy is
ε, and the unit time is μσ2=ε. We measure velocities
vi ¼ ṙi − N−1P

j ṙj in the center-of-mass frame.
For AOUPs, the self-propulsion forces obey

τpṗi ¼ −pi þ
ffiffiffiffiffiffiffiffiffi
2D0

p
ηi; ð2Þ

where τp is the persistence time, D0 the diffusion constant
of a free particle, and ηi a Gaussian white noise of zero
mean and unit variance, hηiðtÞηjð0Þi ¼ 1δijδðtÞ. From
Eq. (2), the amplitude of the self-propulsion force fluc-
tuates around

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hjpij2i

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D0=τp
p

. We use D0 ¼ 1, and
vary τp toward large values. We use system sizes up to
N ¼ 262144 (depending on the state point), to ensure that

results are not significantly affected by finite size effects
(see SM [47] for numerical tests).
For aligning ABPs, pi ¼ v0ui with a constant amplitude

v0 and orientations ui ¼ ðcos θi; sin θiÞ evolving as

θ̇i ¼
γ

ni

X

j≠i
fðrijÞ sinðθj − θiÞ þ

ffiffiffiffiffiffiffiffi
2Dr

p
ξi; ð3Þ

with γ the alignment strength, fðrijÞ ¼ 1 if rij=σij < 2 and
zero otherwise, ni ¼

P
j≠i fðrijÞ the number of particles

interacting with particle i, and Dr the rotational diffusivity
that controls the single-particle persistence time τ ¼ D−1

r .
We fix v0 and Dr to 1, and use modest γ values, which are
well below the onset of polar order. We use system sizes up
to N ¼ 51200.
Figure 1 illustrates the emergent flows that are the main

subject of this work (see SM [47] for corresponding
movies): it displays velocity (v) and vorticity (∇ × v,
coarse-grained over a suitable length) fields, as well as
streamlines. For suitable parameters, both models support
homogeneous states where spatiotemporal fluctuations of
the velocity field lead to mesoscale chaotic flows: these
are the established features of active turbulence [13]. The
patterns in Fig. 1 are highly dynamical and constantly form
new networks of streams and vortices. Velocity correlations
appear in these systems under a broad range of conditions
(phase-separated [48], glassy [29,32], jammed [28,49],
crystalline [31]). Our central finding is that homogeneous
active fluids support, in addition to extended velocity
correlations at large persistence, active turbulent phenom-
enology. This can be easily missed because the turbulence
is suppressed by phase separation and by dynamical arrest
(or emergence of positional order in monodisperse sys-
tems), to which dense persistent active fluids are very
susceptible [41,50].
Such active turbulent phenomenology in AOUPs

is surprising because there are no interactions favoring

(a) (b) (c) (d)

FIG. 1. (a) Configuration snapshot at ϕ ¼ 0.8425 of N ¼ 16384 AOUPs with velocity field (arrows) and corresponding velocity
amplitude (color) showing fast and slow regions of collective motion for τp ¼ 104. The corresponding vorticity field with streamlines in
(b) highlights the presence of streams and vortices in the velocity field. (c),(d) Are for N ¼ 12800 aligning ABPs, which show a
comparable phenomenology at ϕ ¼ 0.97 and γ ¼ 2.5.
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alignment of the self-propulsion forces explicitly or via
shape anisotropy. Instead, flows emerge because extended
velocity correlations arise from the coupling between per-
sistent self-propulsion and density fluctuations [31–33]. The
relevant densities are large enough to avoid motility induced
phase separation [51] and small enough to avoid dynamic
arrest [41]. For AOUPs under these conditions, advective
flows develop gradually as τp increases [33] [τp ¼ 104 in
Figs. 1(a) and 1(b)]. This observation motivates our second
model with weak alignment, in which similarly persistent
self-propulsion arises from the aligning interactions, even if
isolated particles decorrelate quickly (τ ¼ 1). This drives
aligning ABPs toward the same turbulent behavior as highly
persistent AOUPs. Strong velocity correlations emerge in
both models from the interplay of crowding and very long
persistence times; for the AOUPs this persistence comes
from the particles themselves but for aligning ABPs it comes
from the combination of a moderate Dr with an aligning
interaction, which slows down the orientational relaxation.
Despite differences in microscopic details, Fig. 1 shows

that the velocity correlations are almost indistinguishable in
both models, as confirmed below. These quantitative
similarities for systems controlled by particle crowding
support our identification of a new class of active turbulent
systems, whose origin is the interplay of self-propulsion
and crowding. In all cases, velocity correlations are much
longer-ranged than the correlations of the self-propulsion
forces pi, which are either absent (AOUPs) or weak
(aligning APBs): velocity correlations are an emerging
property. This situation is in contrast to the mechanism of
correlated propulsions described by existing continuum
theories [10], supporting our claim that these observations
are not included in the current classification of active
turbulent systems [13].
We now provide quantitative measurements for both

velocity correlation and chaotic advective transport, sup-
porting the above conclusions. Figures 2(a) and 2(b) show
velocity autocorrelation functions, hvið0Þ · viðtÞi=hjvj2i,
which reveal the temporal behavior of the flows.
Packing fractions ϕ are chosen so that the system does
not phase separate and remains away from dynamical
arrest. Unlike the exponential decay of simple fluids [52],
both models show two-step decay that becomes more
pronounced with more turbulent flows. These two time-
scales respectively correspond to the short collision time
and the increasing decorrelation time of the self-propulsion
forces. In AOUPs, this longer correlation time corresponds
to the persistence time τp; in ABPs, it is controlled by the
alignment strength γ (recall that τ ¼ 1 throughout).
We quantify spatial velocity correlations using the

analog of the kinetic energy spectrum [10]

EðkÞ ¼ 2π

L2
khjṽðkÞj2i; ð4Þ

with k¼jkj and ṽðkÞ¼R
d2rvðrÞexpð−ik ·rÞ the Fourier

transform of the velocity field vðrÞ ¼ P
i viδðr − riÞ; see

Figs. 2(c) and 2(d). Velocity correlations in real space are
directly related to EðkÞ. For all parameters, EðkÞ ∼ k for
small enough k, which implies the existence of a maximum
length scale ξ beyond which velocities are uncorrelated, so
that hjṽðkÞj2i ¼ const for kξ ≪ 1. This ξ is the correlation
length of the velocities.
For wave vectors k intermediate between 2π=ξ and 2π=σ,

we report a decay of the energy spectrum EðkÞ ∝ k−α with
α ≃ 1=2. This corresponds to a scale-free decay ∼rα−1 of
velocity correlations for length scales between the particle
size σ and the correlation length ξ [53]. Established classes
[13] of active turbulent behavior involve exponents α ≃ 1
[18,19] or much larger (for example α ¼ 8=3 [10]).
Physically, α quantifies the observation that the velocity
fields in Figs. 1(a) and 1(c) display self-similar structure
up to the (parameter-dependent) correlation length ξ. For
systems of nonaligning self-propelled particles, previous
studies [32,33,54] focusing on different parameter regimes
reported results qualitatively similar to those of Fig. 2 but
suggested α ¼ 1, consistent with hydrodynamic models
of self-propulsion coupled to small density fluctuations,
leading to predictions of the Ornstein-Zernike form that
cannot describe our numerical results (see SM). While this
discrepancy could be due to corrections to scaling in the
explored numerical regime, our observations can also be
interpreted as a breakdown of the assumption of small

(a)

(c)

FIG. 2. (a),(b) Velocity autocorrelations in time and (c),(d) ki-
netic energy spectra defined in Eq. (4) for (a),(c) AOUPs at
various persistence times τp and (b),(d) aligning ABPs for a range
of alignment strengths γ. For AOUPs, ϕ ¼ 0.84 for τp ¼ 102; 103

and ϕ ¼ 0.8425 for τp ¼ 104. For ABPs, ϕ ¼ 0.97.
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Gaussian fluctuations in the presence of strong chaotic
flows. Indeed we find that α ¼ 1 describes our data very
well in the arrested solid regime at much larger density,
where the assumptions of Ref. [32] apply.
To further characterize these flow patterns, we decom-

pose the real-space velocity correlations into longitudinal
(λ ¼ k) and transverse (λ ¼ ⊥) components:

CλðrÞ ¼
hPi;jv

λ
i v

λ
jδðrij − rÞi

hPi;jδðrij − rÞi ; ð5Þ

where vλi is the velocity component in the direction parallel
or transverse to the unit vector ðri − rjÞ=rij. The total
velocity correlation function is CðrÞ ¼ CkðrÞ þ C⊥ðrÞ, but
this decomposition is distinct from the Fourier space
analysis of [32,33], where v is instead resolved parallel
and perpendicular to the wave vector k (see SM [47] for
data and finite size analysis). Figure 3 shows results in both
models for a range of state points. The decomposition
separates the long-ranged positive correlations along
streams [in CkðrÞ], and the anticorrelations characteristic
of vortices [in C⊥ðrÞ] [55]. The data confirm a similar
structure for both models, and show quantitatively that
velocities are correlated over tens of particle diameters for
the more persistent systems, in agreement with the peak
position in EðkÞ and the snapshots in Fig. 1. The character-
istic size ξ of the velocity patterns can be tuned via the
persistence time τp of AOUPs, or the alignment strength γ
of ABPs. This leads in both cases to more extended streams
and vortices, together with increasing length scales inCkðrÞ
and C⊥ðrÞ. The latter two length scales do not need to grow
in the same manner [33].
These emerging velocity correlations dramatically

impact particle transport in these highly persistent, homo-
geneous fluid states. This is revealed in Fig. 4 by “dyeing”
particles according to their position at some initial time t0
in the steady state, and watching them spread over time.
Transport is dominated at initial times by rapid advection
along extended streams, as revealed by the initial distortion
of the pattern with mutually invading branches that stretch
and fold over a range of length scales, resembling chaotic
advection (see times t1 and t2). Only at large times do
particles diffuse into regions of different colors, which
eventually blends the dyes. We highlight three tracer
particles that are initially close, showing that particle pairs

(a) (c)

(b) (d)

FIG. 3. Real-space velocity correlations CkðrÞ and C⊥ðrÞ
defined in Eq. (5), for AOUPs and aligning ABPs. The correlation
length in CkðrÞ (a),(c) and the amplitude of negative correlations
in C⊥ðrÞ (b),(d) can be tuned by increasing τp or γ respectively.
Volume fractions ϕ are as in Fig. 2.

(a) (b)

(c) (d)

(e) (f)

FIG. 4. (a)–(d) Time series of configurations for aligning ABPs at γ ¼ 2.5, ϕ ¼ 0.97. Particles are colored according to their x position
at some time in the steady state denoted t0 ¼ 0. (e),(f) Mean-squared displacement Δ2ðtÞ (full symbols) and mean-squared displacement
difference of initially close-by particles D2ðtÞ (open symbols) for (e) AOUPs and (f) aligning ABPs. The indicated times in
(f) correspond to the snapshots in (b)–(d). Volume fractions ϕ are as in Fig. 2.
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are either advected large distances together or separated
almost immediately. These time-dependent patterns are
qualitatively similar to the chaotic advection created by
time periodic flows [56].
We quantify these observations using the mean-squared

displacement Δ2ðtÞ ¼ hjΔriðtÞj2i and the mean-squared
distance between initially close-by particles (as studied in
inertial turbulence [57–59]), D2ðtÞ ¼ hjΔriðtÞ − ΔrjðtÞj2i,
whereΔriðtÞ ¼ riðtÞ − rið0Þ and the average is restricted to
nearby pairs of particles with jrið0Þ−rjð0Þj<1.15σij [60].
By construction, both quantities vanish at t ¼ 0, while
D2 ∼ 2Δ2 ∼ t holds in the diffusive regime at large
times (for which particles i, j eventually decorrelate);
see Figs. 4(e) and 4(f).
Self-propulsion causes ballistic motion Δ2 ∼ t2 at small

times. The corresponding velocity decreases significantly for
AOUPs as τp is increased at constant D0, mirroring the
reduction in strength of pi. In contrast, the velocity increases
slightly with γ for ABPs. This ballistic regime is quickly
interrupted by interparticle collisions at a corresponding very
small length scale. At very large times, memory of the self-
propulsion forces is lost and particles diffuse, Δ2 ∼ t.
Between these two limits, we observe an intermediate
advective (superdiffusive) regime, which is demarcated by
the two well-separated timescales found in the velocity
autocorrelation function [recall Figs. 2(a) and 2(b)].
The advection is also apparent in D2, which is similarly

ballistic at very short times. At intermediate times, D2

grows significantly slower than Δ2, showing that pairs of
particles can be advected together over extremely large
distances, leading to D2 ≪ Δ2. Eventually, particles’
memory of their initial conditions is lost: this leads to
superdiffusive scaling, as D2 “catches up” with the long-
time diffusive scaling D2 ∼ 2Δ2 ∼ t.
In conclusion, we established that a novel form of active

turbulence generically emerges in two well-studied models
of dry, isotropic, self-propelled particles. The resulting
mesoscale flows should be observable in a broad range of
systems; they resemble other active chaotic flows, display-
ing scale-free behavior from the particle size up to a
correlation length scale that is easily tuned by the model
parameters. While previous theoretical descriptions of
active turbulence rely on either polar or nematic inter-
actions [13], velocity correlations emerge in both our
models from the competition between highly persistent
forcing and crowding. The link between spontaneous
spatial velocity correlations in dense active matter
[32,33,48] and active turbulence [13] has been overlooked.
Further work is thus needed to determine if existing
theories for either of these phenomena are compatible,
or if new theoretical approaches are needed. Unusual
transport properties emerge from the correlated velocity
fields, including chaotic advection over large distances,
which directly impact mixing dynamics. Such properties

may be useful when energy sources for the active
particles are localized [61], in active matter with open
boundaries [3], or for mixtures of active particles [62]: all
these cases deserve further study.
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