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We propose a computational strategy to quantify the temperature evolution of the timescales and length
scales over which dynamic facilitation affects the relaxation dynamics of glass-forming liquids at low
temperatures, which requires no assumption about the nature of the dynamics. In two glass models, we find
that dynamic facilitation depends strongly on temperature, leading to a subdiffusive spreading of relaxation
events which we characterize using a temperature-dependent dynamic exponent. We also establish that this
temperature evolution represents a major contribution to the increase of the structural relaxation time.

DOI: 10.1103/PhysRevLett.132.258201

The relaxation dynamics of glass formers in the vicinity
of the experimental glass transition is not fully elucidated
[1–3]. It is often difficult to draw firm conclusions about the
relative role of distinct mechanisms from measurements
without relying on unproven hypothesis [4]. Our main goal
is to quantitatively assess the role and temperature evolu-
tion of dynamic facilitation [5–8] in the relaxation of glass-
forming liquids without making assumptions about the
nature of relaxation events.
Dynamic facilitation captures the physical idea that a

relaxation event happening somewhere causally triggers
future relaxation events. It is invoked in several theoretical
approaches [9–11]. Some models and theories are directly
constructed around facilitation [6–8,12], thought to be
triggered by localized mobility defects. It has been sug-
gested that elasticity may be responsible for mediating
dynamic information [10,13–15]. However, there exists no
first-principles description of dynamic facilitation to pre-
dict its strength and temperature evolution for atomistic
models.
Progress will require quantitative observations from

realistic models. Previous work suggested the existence
of dynamic facilitation by detecting cross-correlations
between successive relaxation events [16–20], but this
approach remains qualitative. In [18,21,22], the relaxation
dynamics was deemed hierarchical, which amounts to the
logarithmic growth of energy barriers with distance.
Invoking the Arrhenius law, this is mathematically
equivalent to a power-law relation between timescales
and length scales, t ∼ lz, with a temperature-dependent
dynamic exponent, zðTÞ ∼ 1=T, as explicitly found in
certain kinetically constrained models [7,23,24].
The large body of data accumulated in studies of four-

point correlations [25–28] for dynamic heterogeneity [29]
can potentially elucidate the relation between space and
time [24]. However, their interpretation is not unique [27],
as multipoint functions do not directly probe the underlying

relaxation mechanisms. At times shorter than the structural
relaxation, this problem was circumvented by introducing a
growing length scale characterizing the subdiffusive
spreading of mobile regions [30].
The emergence of propagating fronts in ultrastable

glasses heterogeneously transforming into supercooled
liquids [31,32] is a form of dynamic facilitation [33,34],
but the nonequilibrium nature of the relaxation leads to a
ballistic (l ∝ t) growth of relaxed regions [35], unlike the
subdiffusion found in equilibrium.
Here we propose a computational strategy to understand

if and how much dynamic facilitation affects the equilib-
rium dynamics of deeply supercooled liquids. We conduct
simulations where a macroscopic interface separates two
regions evolving with distinct equilibrium dynamics at the
same temperature T: ordinary molecular dynamics (MD) in
one domain, and swapMonte Carlo (SMC) dynamics in the
other. The rationale is that in bulk dynamics [Fig. 1(a)], rare
mobile regions appear whose spatial spreading reveals
facilitation [30]. Here instead, SMC dynamics creates a
macroscopic mobile region whose influence then spreads to
the MD region by facilitation in a controlled geometry
[Fig. 1(a)]. Since both regions are equilibrated at the same
T, they are structurally indistinguishable at any time and the
system is stationary. Therefore, the fast dynamics in the
SMC region facilitates relaxation in the MD region. The
observed relaxation is representative of the equilibrium
dynamics, but the measurement of a macroscopic mobility
front [Fig. 1(b)] does not rely on any assumption about the
nature of the microscopic events or on detailed knowledge
of the origin of facilitation. This allows us to directly access
the relation between space and time over a broad range of
temperatures [Fig. 1(c)].
We perform simulations in two and three dimensions of

soft size-polydisperse spheres [41,42], with the same size
polydispersity δ ¼ 23% (see Supplemental Material [36]).
The pairwise interaction potential is
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where rij is the interparticle distance and σij ¼
½ðσi þ σjÞ=2�ð1 − ηjσi − σjjÞ, with η ¼ 0.2 a nonadditivity
parameter. The parameters c0 ¼ −28ε=r12c , c2 ¼ 48ε=r14c ,
and c4 ¼ −21ε=r16c , ensure the continuity of the potential
up to its second derivative at the cutoff distance
rc ¼ 1.25σij. We use reduced units based on the particle
mass m, the energy scale ε, and the average particle
diameter σ, so the time unit is τ ¼ σ

ffiffiffiffiffiffiffiffiffi
m=ε

p
.

We first equilibrate the entire system at the desired
temperature T and number density ρ ¼ 1 using swap
Monte Carlo [42–44]. We then impose two distinct dynam-
ics in two regions of space, keeping the periodic boundary
conditions. For x < 0we run SMC using the hybrid scheme
developed in [44]. For x > 0, we run standard molecular
dynamics. Because of the periodic boundary conditions the
mobile SMC region forms a slab. As rationalized below, we

found it convenient to impose SMC on 25% of the system,
andMD in the rest. Simulations are performed at constant T
using a Nosé-Hoover thermostat with a time step of 0.01.
We also varied the amount of swap MC moves [44] for
x < 0 to assess its role in the quantification of dynamic
facilitation. Additional details and several tests are pro-
vided in Supplemental Material [36].
We adopt the usual definitions of characteristic tempera-

ture scales [30]. In three dimensions, the onset temperature
is To ¼ 0.2, the mode coupling crossover Tmct ¼ 0.095,
and the glass transition temperature Tg ¼ 0.056. The total
number of particles is N ¼ 96 000 and we explored
temperatures in the range T ∈ ½0.075; 0.2�. In two dimen-
sions, To ¼ 0.2, Tmct ¼ 0.12, Tg ¼ 0.07, and we explored
temperatures T ∈ ½0.07; 0.2�. The number of particles for
T ≥ 0.1 is N ¼ 10 000. For lower T, the relaxation time-
scale in the MD region is so large that mobility far from the
interface is negligible. For T < 0.1, we thus simulated a
smaller system with N ¼ 2500 reducing only the length of
the MD region. When possible, we checked that the two
geometries provide similar results. We run simulations up
to t ¼ 2 × 107 (about 2 weeks of CPU time), and perform
up to 50 independent simulations per temperature.
We use the bond-breaking correlation to quantify the

dynamics:

Ci
BðtÞ ¼

niðtj0Þ
nið0Þ

; ð2Þ

with niðtÞ the number of neighbors of particle i at time t,
and niðtj0Þ the number of those initial neighbors that
remain at time t. We follow [45] for the neighbor defi-
nitions. At t ¼ 0, the neighbors of particle i are particles j,
which are closer than a threshold, rij=σij < 1.35 in two
dimensions and rij=σij < 1.49 in three dimensions, which
correspond to the first minima of the rescaled radial
distribution function gðr=σijÞ. We spatially resolve the
dynamics by measuring CBðx; tÞ for all particles in the
interval x� δx=2, with δx ¼ 0.25. We define the relaxation
time τðx; TÞ as CBðx; τÞ ¼ 0.7. We obtained equivalent
results for different thresholds. We denote τsmc and τα the
bulk relaxation times for SMC and MD dynamics,
respectively.
Dynamic facilitation is demonstrated in Fig. 1(b), where

a gradient of relaxation times is observed near the macro-
scopic interface at x ¼ 0, showing that the mobile regions
at x < 0 indeed trigger the relaxation of particles following
the conventional MD dynamics at x > 0. Because the
structure is completely homogeneous along x at all times
(see Supplemental Material [36]), this acceleration neces-
sarily results from dynamic facilitation. Dynamic profiles
τðx; TÞ are reported in Fig. 1(c), using τsmc as normaliza-
tion. These data reveal that the spatial spreading of mobility
becomes less efficient, and thus much slower, at lower

FIG. 1. Direct measurement of dynamic facilitation. (a) Instead
of measuring the growth of rare mobile regions in the bulk (left),
we create a macroscopic interface (right) separating a mobile
region for x < 0 (using swap MC) from a region at x > 0 where
conventional MD at the same T is used. The system is structurally
homogeneous at all times. (b) Map of local relaxation times near
x ¼ 0 showing the spatial spreading of mobility along the
horizontal axis (T ¼ 0.09). (c) Dynamic profiles showing the
evolution of the structural relaxation with x, normalized by τsmc,
for the two-dimensional system. Dynamic facilitation becomes
less efficient at lower T. Typical error bars are shown at some
selected data point for each temperature. Full error bars are shown
in the Supplemental Material [36].
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temperature. See Supplemental Material [36] for an equiv-
alent observation in three dimensions.
Normalizing the data by τsmc simply shifts the data

vertically by an amount τsmc, which depends on the details
of the swap Monte Carlo simulations. We have run
simulations changing the parameters of the SMC dynamics,
and confirmed that the normalized profiles τðx; TÞ are
unchanged, see Supplemental Material [36]. When T is not
too low we can observe plateaus in both regions when
jxj ≫ 1. In particular, convergence to the MD plateau
occurs for x ∼ ξd, where ξdðTÞ is the dynamic correlation
length [46]. At low temperatures, τα becomes too large and
we cannot follow the profiles up to τα in the MD region.
Crucially, however, since relaxation remains fast in the
SMC region, we can still characterize dynamic facilitation
over several decades in time down to Tg.
To quantify these observations, we describe for

0 < x < ξd subdiffusive spreading of mobility from fast
to slow regions using either a power law,

x ∼ τðx; TÞ1=zðTÞ; ð3Þ

where zðTÞ is a temperature dependent dynamic exponent,
or a thermally activated logarithmic form:

x ∼ T log τðx; TÞ: ð4Þ

For x ≈ ξd, we expect a saturation to τα, which we capture
using

τðx; TÞ ∼ ταð1 − e−x=ξdÞ: ð5Þ

In practice, we account for the crossover to τsmc at x < 0

using the expression τðxÞ=τsmc ¼ 1þ aðTÞðxþ x0ÞzðTÞ,
where a, x0, and zðTÞ are fitting parameters. This reduces
to Eq. (3) in the relevant regime τsmc ≪ τðx; TÞ ≪ τα. We
found that fixing x0 ¼ 3.3 in two dimensions and x0 ¼ 3.4
in three dimensions described the data well. The quality of
the fits can be appreciated in Supplemental Material [36].
The temperature evolution of a and z are shown in
Figs. 2(a) and 2(b) using the rescaled axis To=T to compare
both two- and three-dimensional models. We first notice the
very comparable evolution obtained for the two models,
which reveals the weak influence of the spatial dimension.
The temperature evolution of a mostly mirrors the one of
τsmc, as it should. The most interesting observation is the
evolution of zðTÞ which reveals nearly diffusive behavior
(z ∼ 2) near To, but increases very fast as T is lowered
reaching the large value z ≈ 12 near Tg in two dimensions.
The rapid growth of zðTÞ captures the evolution of dynamic
facilitation towards much slower mobility propagation at
low temperatures. Our data are compatible with zðTÞ ≈
A=T at low T, with A some constant. The agreement with
the single data point reported in Ref. [30], determined in the
bulk geometry for the same two-dimensional model, is

quite good, given the difference in methodologies. We also
characterized the growth of isolated domains directly in the
bulk (see Supplemental Material [36]), and found good
agreement with the zðtÞ results reported in Fig. 2(b). This
provides quantitative support to the analogy between the
geometries illustrated in Fig. 1(a).
Given the large values of z, it is natural that a logarithmic

growth can also be used, although the linear behavior
predicted in Eq. (4) is not obvious in the profiles shown in
Fig. 1(c). In practice, we fit the data to the functional form
τðx; TÞ=τsmc ¼ 1þ cðTÞ exp½bðTÞx=T� with c and b fitting
parameters. This expression reduces to Eq. (4) far from the
plateaus. This second form fits a slightly smaller x range
but describes the evolution of the dynamic profiles
reasonably well, as shown in Supplemental Material [36].
We report the mild, but non-negligible, evolution of the
parameters b and c in Figs. 2(c) and 2(d) which again
reveal a similar evolution for both models. It is not
surprising that both power-law and logarithmic functional
forms can fit the data at low temperatures, as they are
mathematically close when zðTÞ ≈ A=T since x ∼ τ1=zðTÞ ¼
eðT=AÞ log τ ∼ 1þ ðT=AÞ log τ. This coincidence was noted
before [47,48].
We finally use Eq. (5) to extract the dynamic correlation

length scale ξd. At very low temperatures where the MD
plateau cannot be reached, we use an extrapolation of the
bulk relaxation times ταðTÞ using a parabolic law [49]. We
then estimate ξd from the fit to the dynamic profile,
assuming τðx ¼ ξd; TÞ ¼ ταðTÞ. We verified that both

FIG. 2. Temperature evolution of space-time relation. Evolu-
tion of fitting parameters in two- and three-dimensional models.
(a),(b) Parameters for power law fit. The red star in (b) corre-
sponds to the measurement in Ref. [30], and the black dashed line
to a z ∼ 1=T behavior. (c),(d) Parameters for logarithmic growth.
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approaches (direct measurement and extrapolation) com-
pare well when both can be used. The temperature
evolution of ξd, normalized by its value at the onset
temperature ξ0 ¼ ξdðToÞ, is shown in Fig. 3(a). After a
fast transient at high temperature, we observe that the
characteristic dynamic length scale is well described by an
Arrhenius form, ξd=ξ0 ∼ expðEd=TÞ, with Ed ≈ 0.13, lead-
ing to an overall increase of a factor 4 between To and Tg in
2d. Our estimate for ξd compares very well, but extends to
lower T, the evolution of the average chord length reported
for the same two-dimensional model [30]. Given the
modest evolution of ξd, other functional forms are pre-
sumably possible.
We now compare our findings with earlier work. The

good agreement with the determination of zðTÞ from the
average chord length measured in bulk simulations [30] not
only confirms the validity of our strategy, but also shows
that our approach is more flexible and much easier to
implement over a broader temperature range.
Reference [18] proposes, among other measurements, a

strategy to relate the extent of spatial relaxation events to
their timescale. We can recast these results into a dynamic
exponent, zðTÞ ¼ αð1=T − 1=ToÞ with a prefactor α that
was evaluated for several models [18]. We explain this
dictionary in Supplemental Material [36]. We compare
these results to ours in Fig. 3(b). The two datasets deviate
on two aspects. First, our data do not indicate that z
vanishes at To. Second, our approach yields considerably
larger values at low T: both sets yield z ≈ A=T at low T
but with different prefactors. Measurements along the lines
of [18] should be performed at lower T to better assess the
nature of the reported difference in this regime.
A second comparison point with [18] is the characteristic

length ξd. While we directly measured it, Keys et al.
assume instead that relaxation events are triggered by
localised excitations and estimate the average distance

between them. We report tabulated values [18] in
Fig. 3(a). While both datasets suggest a similar
Arrhenius dependence, the corresponding energy scales
Ed differ considerably. The very large correlation length
predicted by Keys et al. at low T appears unrealistic [48].
We can conclude that either the numerical technique used
before [18,19,21,22,50] to estimate the concentration of
excitations is too crude, or that relaxation events are not
simply due to localized excitations [30]. The very low T
measurements in [50] do not show sign of a temperature
crossover which could reconcile both families of measure-
ments at low T.
Our results allow us to test the validity of the facilitation

picture. Assuming that localized excitations relaxing with a
characteristic timescale τexðTÞ ≪ ταðTÞ can relax the entire
system via dynamic facilitation, we arrive at

ταðTÞ ∼ τexξ
z
d; ð6Þ

which represents the time it takes to grow a domain of size
ξd from a localized excitation via dynamic facilitation. We
test Eq. (6) using our direct, agnostic determinations of z,
ξd, and τα. The results in Fig. 3(c) show that after a short
transient at high T, τα becomes indeed proportional to ξzd,
with a prefactor of about 102 near Tg. This result suggests
that the joint temperature evolution of ξdðTÞ and zðTÞ
accounts for most of the 12-decade slowdown of the
structural relaxation time ταðTÞ.
This conclusion is significant because it demonstrates

the central role played by dynamic facilitation in control-
ling the dynamic slowdown of deeply supercooled liquids.
At any temperature, dynamic facilitation “accelerates”
the relaxation via the successive triggering of relaxation
events [45], but since this process becomes increasingly

FIG. 3. Understanding the temperature evolution of structural relaxation. Simulation results for the two-dimensional system (circles),
compared to results for three different models from Ref. [18] (full lines are actual results, dotted lines are continuation to Tg using
asymptotic expressions). (a) Dynamic correlation length ξd normalized by its onset value as a function of To=T. Black dashed line is an
Arrhenius fit. (b) Dynamic exponent z as a function of To=T. Black dashed line is zðTÞ ∼ A=T. (c) Parametric plot of τα against its
facilitation estimate ξzd. Black dashed line indicates linear relation, which leaves an offset of about two decades.
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inefficient at low T (as captured by the rapid growth of z)
the overall relaxation takes a longer time.
Our Letter thus identifies the two major contributors,

zðTÞ and ξdðTÞ, to the temperature dependence of ταðTÞ.
While the interpretation of z is clear (it quantifies facili-
tation), our approach does not explain the evolution of
ξdðTÞ shown in Fig. 3(a), and this should be the subject of
future studies. Combining the asymptotic Arrhenius evo-
lution of ξd to the 1=T dependence of z found numerically
provides an expression for the relaxation time:

τα ∼ ξzd ∼ exp

�
EdA
T2

�
; ð7Þ

which is the parabolic Bässler law [51]. While [18] arrived
at a similar functional form, we noted above that our
determinations of Ed and A differ quantitatively, even if the
products EdA in Eq. (7) appear very close to those reported
in Ref. [18], as seen in Fig. 3(c).
The proposed slab geometry allows us to quantify how

fast mobile regions spread to immobile ones with no
assumption about the underlying microscopic mechanism.
We can, however, test the specific modeling of facilitation
of [10] which assumes that local elasticity is responsible for
dynamic facilitation. As noted recently in thin polymer
films [15], the slab geometry yields an algebraic gradient of
elastic moduli, thus leading to algebraic dynamic profiles.
We have tested this model by measuring spatial profiles of
the Debye-Waller factor (mean-squared displacement at
short times, known to strongly correlate with the shear
modulus), and found rapid (nonalgebraic) convergence to
the bulk value (see Supplemental Material [36]), in agree-
ment with earlier results [52]. There is thus no correlation
between elasticity and dynamic profiles, which are also
found to converge exponentially (not algebraically) to the
bulk behavior [recall Eq. (5)]. Together with [52], our data
do not follow the analytic description of Ref. [10]. It would
be interesting to analyse thermal elastoplastic models [13]
in slab geometries. Although more limited, our results also
suggest that the rugosity of the dynamic profiles decreases
at low temperatures (see Supplemental Material [36]). This
is in agreement with earlier numerical findings [30,53,54],
but differs from hierarchical kinetically constrained models
[24] and geometries found in elastoplastic models [13].
In conclusion, we introduced a computational scheme to

quantify the role of dynamic facilitation in the relaxation
dynamics of deeply supercooled liquids, which demon-
strates a strongly subdiffusive and temperature dependent
spatial spreading of relaxation events. A first future task is
to expand these studies to a broader range of models to
validate the generality of our findings. Our results also
suggest that extending the approach of [18] to lower
temperatures would be instructive. Future work should
elucidate the microscopic mechanisms giving rise to the
particular temperature dependence of the dynamic

exponent zðTÞ. Finally, it is unclear how these results
can be reconciled with the idea that dynamics proceeds via
cooperative activated events stemming from static configu-
rational fluctuations [55–57]. Overall, our Letter consid-
erably sharpens the set of questions to be addressed in order
to fully elucidate the nature of the structural relaxation in
supercooled liquids near the glass transition.
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