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Equilibrium sampling of the configuration space in disordered systems requires algorithms that bypass
the glassy slowing down of the physical dynamics. Irreversible Monte Carlo algorithms breaking detailed
balance successfully accelerate sampling in some systems. We first implement an irreversible event-chain
Monte Carlo algorithm in a model of continuously polydisperse hard disks. The effect of collective
translational moves marginally affects the dynamics and results in a modest speedup that decreases with
density. We then propose an irreversible algorithm performing collective particle swaps which outperforms
all known Monte Carlo algorithms. We show that these collective swaps can also be used to prepare very
dense jammed packings of disks.
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Sampling the Boltzmann distribution in dense fluids
becomes a formidable computational problem as the glass
transition is approached at large density or low temperature
[1]. If conventional methods such as molecular dynamics or
local Monte Carlo algorithms are used [2–4], the rapidly
growing timescale characterizing the glassy dynamics also
controls the sampling efficiency [5]. The microscopic
mechanisms responsible for the dynamical slowing down
continue to elude our understanding [6]. This represents a
fascinating physics problem, but constitutes a major
obstacle to the development of algorithms that can effi-
ciently shortcut the slow dynamics to reach and study
equilibrium states close to the glass transition. Glass
formers are a challenging benchmark for systems exhibit-
ing a complex and rugged energy landscape, even far
beyond the realm of the physical world [7–10].
Recently, an efficient Monte Carlo algorithm was devel-

oped for size polydisperse fluids, where local Monte Carlo
moves are performed in an enlarged configuration space
composed of particle positions and diameters [11–13].
The sequential Swap of particle pairs respects detailed
balance and ensures that the particle size distribution is
conserved [11]. The resulting Swap Monte Carlo algorithm
(hereafter called Swap) allows equilibration at very low
temperatures, exploiting dynamic pathways unavailable to
the local dynamics [13]. Swap paved the way for numerous
physical studies [14–16] and computational developments
[17,18]. Diameter dynamics can be implemented in mole-
cular dynamics, both in thermal equilibrium [19] or in
gradient descent [20,21]. For hard particles, this optimi-
zation strategy was exploited to produce jammed packings
with large stability and novel physical properties [21–23].

The Swap algorithm samples the Boltzmann distribution
owing to reversible evolution rules obeying detailed bal-
ance. In many areas of physics and applied mathematics, it
was realized that giving up detailed balance—while
preserving the target distribution—can be rewarded with
sampling acceleration. Ironically, the seminal 1953
article [24] by Metropolis et al. presented an algorithm
to sample the Boltzmann distribution for simple fluids
whose elementary moves did not, strictly speaking, satisfy
detailed balance. As long as the global balance condition is
satisfied by the transition rates, the target distribution is
correctly sampled, even if dynamic pathways again become
unphysical.
In specific instances, it can be proved that irreversible

algorithms carry out their sampling task faster than in
equilibrium [25,26]. A successful implementation of these
ideas for particle models is the event-chain Monte Carlo
(ECMC) algorithm [27] that also operates in an enlarged
configuration space where irreversible collective particle
translations are performed. For hard disks near their hexatic
ordering transition, ECMC offers a 2 orders of magnitude
speedup that led to a better understanding of the phase
diagram [28]. This approach was extended in various
directions [29–36], but quantitative benchmark in dense
disordered states is lacking.
Here we propose, implement, and benchmark irrevers-

ible Monte Carlo algorithms where collective and directed
particle translations and diameter swaps are performed
while maintaining global balance, see Fig. 1. We carefully
test the respective and combined effects of these moves
in continuously polydisperse models of hard disks display-
ing glassy dynamics in equilibrium, and that can be
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compressed towards jamming [23]. We find that the
directed translational moves used in ECMC marginally
affect the dynamics, with a speedup that plummets with
increasing density. By contrast, irreversible collective
swaps (cSwap) produce an opposite trend offering a
comfortable gain over Swap that improves with density.
Combining both types of moves in a novel algorithm
(cSwapECMC) provides an overall computational speedup
reaching about 40 over the conventional Swap. In addition,
cSwapECMC remains extremely efficient during nonequi-
librium compressions, producing jammed packings com-
parable to gradient descent protocols preserving the particle
size distribution.
We consider a two-dimensional mixture of N ¼ 1024

hard disks in a periodic square box of linear size L with a
fixed continuous polydispersity of about 25% (see
Supplemental Material [37] for results on a different
polydisperse model and different system sizes). Lengths
are measured in units of the average diameter σ̄, and the

packing fraction is ϕ ¼ Nπσ2=ð4L2Þ. We work in a density
regime characterized by glassy dynamics, typically much
beyond the one explored in [27] for monodisperse systems.

We run NVT Monte Carlo simulations [3]. To compare
the efficiency of various algorithms, we need to care-
fully define a specific unit of time, tmove, adapted for each
case. In Metropolis Monte Carlo (MMC) dynamics, a
random particle is selected uniformly, and a random
displacement is uniformly drawn from a square of length
δ centered around the origin. We take δ ¼ 0.115σ̄. The
displacement is accepted if it creates no overlaps. One such
attempt defines tmove. In Swap, we randomly alternate
translational moves (as in MMC) with particle swaps with
probability pswap ¼ 0.2. During tmove, two particles are
randomly selected and their radii are exchanged if the swap
does not create overlaps.
In both MMC and Swap, a configuration is specified by

C ¼ frN; σNg, encoding the N particle positions and
diameters. For ECMC, the phase space is lifted by two
additional degrees of freedom, corresponding to the label i
of the active particle performing directed motion, and its
direction of motion v. During a time interval tmove, particle i
travels along direction v until it collides with one of its
neighbors, j. The activity label is then updated from i to j.
After a time ntmove, with n an integer, a directed chain of n
particles has moved in direction v, see Fig. 1. To warrant
ergodicity, both v and the activity label are uniformly
resampled after the total directed displacements add up to a
fixed total length l (see Supplemental Material [37] for
more details on the numerical implementation). Following
the original choice [27,38], v is uniformly resampled from
fex; eyg. Of course, ECMC can be combined with Swap,
which trivially leads to a new algorithm, SwapECMC.
We now show how to perform directed, irreversible,

collective moves in diameter space to arrive at cSwap. We
define a one-dimensional array containing the particle
labels in order of increasing diameters and the operators
ðL;RÞ acting on the labels: LðiÞ returns the label of the
particle immediately to the left of i (with a smaller
radius); RðiÞ returns the label of the particle to the right
(with a larger radius). During tmove we perform the
following operations. A particle i is uniformly selected
to become active and the state of the system is described
by C ¼ frN; σN; ig. We then determine the largest diameter
σj ∈ σN that particle i can adopt without generating an
overlap. To preserve the particle size distribution, we now
perform a cascade of swaps: σi ← σj (maximal authorized
expansion of i), followed by a series of incremental
deflations σj ← σLðjÞ, σLðjÞ ← σL2ðjÞ;…; σLnðjÞ ← σi, with
n such that LnðjÞ ¼ RðiÞ, thus completing the cascade.
Finally, a lifting event occurs leading to C0 ¼
frN; σ0N;LðiÞg, where σ0N is reached after the collective
swap. If i is the particle with the smallest diameter, LðiÞ is
the particle with the largest diameter. To warrant ergodicity,
we perform with probability 1=N a uniform resampling
of the lifting label. Finally, ECMC can be combined
with cSwap, leading to a fully irreversible algorithm,
cSwapECMC. The invention and implementation of

(a) (b)

(c) (d)

FIG. 1. (a),(b) Event-chain Monte Carlo algorithm: the lifted set
of degrees of freedom, the active label j, and the speed direction v
(magenta), produce a directed translational motion of a chain of
three particles. (c),(d) Collective Swap algorithm: the active
particle (in magenta) inflates while other particles deflate,
resulting in a directed motion in diameter space (as seen at the
bottom) and a collective swap of five particles.
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irreversible and collective swap moves is our main algo-
rithmic development. While cSwap is broadly applicable
for any particle size distribution, its efficiency should be
optimal for continuous distributions, or discrete ones with a
large number of families. For bidisperse models, cSwap
remains rejection-free and irreversible, but loses its collec-
tive character.
We must prove that the stationary state of the

cSwap dynamics is the Boltzmann distribution,
i.e., πssðfrN; σN; igÞ ¼ πBðrN; σNÞνðiÞ, where πB ¼
½R dσ0NπBðrN; σ0NÞ�−1 ≡ Z−1 is the Boltzmann distribution
for a system of polydisperse hard disks for a fixed set of
positions rN , and νðiÞ ¼ N−1 is the uniform distribution for
lifting. Denoting by pðC → C0Þ the transition probability
from C ¼ frN; σN; ig to C0 ¼ frN; σ0N; i0g, we must prove
that the stationarity condition

X

C0
πssðC0ÞpðC0 → CÞ ¼ πssðCÞ ð1Þ

is satisfied by πss ¼ πB=N. The left-hand side is decom-
posed into label resampling and collective swaps:

pðC0 → CÞ ¼ 1

N2
δσ0N;σN þ

�

1 −
1

N

�

δC0;C� ; ð2Þ

where C� is the configuration reaching C after a cSwap
move (we show below that C� exists and is unique).
Substituting (2) into (1), using the definition of πss andP

C ¼
P

j

R
dσN , we get

1

N
πBðrN; σNÞ þ

�

1 −
1

N

�

πBðrN; σ�NÞ ¼ πBðrN; σNÞ:

Since for hard disks, πB is uniform over allowed
configurations, stationarity is proven. Finally we construct
the configuration C� ¼ frN; σ�N; i�g that will reach
C ¼ frN; σN; ig. We first transform σRðiÞ ← σR2ðiÞ if the
change does not generate any overlap. We then repeat this
operation forR2ðiÞ,R3ðiÞ, etc. After n iterations, either the
transformation σRnðiÞ ← σRnþ1ðiÞ is no longer allowed, or
the largest particle is reached. When n is reached, we set
i� ¼ RnðiÞ and transform σRnðiÞ ← σRðiÞ. The resulting
configuration defines σ�N , as directly verified by perform-
ing a cSwap move on C�.
The above reasoning establishes the stationarity of the

Boltzmann distribution. The general proof of ergodicity of
the algorithm, as obtained for ECMC [44], is left for future
work. As a test, we computed the stochastic matrix
associated to the cSwap algorithm for a small system of
N ¼ 4 hard disks (see Ref. [37]) and analytically confirmed
ergodicity in that case. For larger systems, we support our
claim of ergodicity by extensive numerical tests of correct
sampling using cSwap, as compiled in Supplemental
Material [37].

We run simulations comparing MMC, ECMC, Swap,
SwapECMC, cSwap, and cSwapECMC for increasing
packing fractions. After careful equilibration, we measure
a representative time correlation function for 2d glass
formers, namely, the time autocorrelation of the global
hexatic order Cψ ðtÞ, and define the structural relaxation
time τα from Cψ ðταÞ ¼ 1=e [37]. For each algorithm, we
collect the evolution of the correlation time ταðϕÞmeasured
in units of Ntmove in Fig. 2. The most costly part of
Monte Carlo moves is the overlap detection involving a
sum over neighbors. Since one such sum is needed over the
time tmove in each algorithm, the comparison in Fig. 2
accurately describes CPU times [37].
Each algorithm displays hallmarks of glassy dynamics,

and we follow for about 5 decades the slowing down. The
algorithms are split into two families, depending on the
presence of swap moves. MMC and ECMC only contain
translations and equilibration becomes difficult above
ϕ ≈ 0.79. Yet, ECMC clearly outperforms MMC through-
out the entire density range, but the edge of ECMC
over MMC is lost as ϕ increases. This is demonstrated
in Fig. 3(a), which shows that the ratio of their relaxation
times decreases from ≈22 in the fluid, down to ≈10 near
ϕ ¼ 0.79. This suggests that the irreversibility introduced
by the directed chain moves does not help the system to
discover new, faster pathways across the configuration
space. This interpretation is confirmed by the snapshots
in Figs. 3(b) and 3(c) showing particle displacements
with respect to the system’s center of mass from the same
initial condition, using either MMC or ECMC. Despite the
very different particle moves in both dynamics, the long
time relaxation proceeds along a similar path. A similar
conclusion was recently reached for systems submitted to
transverse forces [45].

FIG. 2. Equilibrium relaxation time of six different Monte Carlo
algorithms as a function of packing fraction. MMC and the faster
ECMC fall out of equilibrium much before the four swap
algorithms. The large speedup offered by Swap can be further
improved using irreversible MC moves, cSwapECMC providing
a further speedup of about 40 near ϕ ¼ 0.88.

PHYSICAL REVIEW LETTERS 133, 028202 (2024)

028202-3



By constrast, the four algorithms employing particle
swaps sample the Boltzmann distribution much faster than
MMC and ECMC and only become inefficient near
ϕ ≈ 0.88, see Fig. 2. All algorithms thus display a dramatic
speed up compared to MMC and ECMC. Using Swap as a
reference, we again observe that the introduction of trans-
lational chains in SwapECMC provides a modest accel-
eration over conventional Swap of about 5 at ϕ ¼ 0.77,
decreasing to about 2 at the largest density (see Fig. 4).
Therefore, coupling Swap to ECMC is not very helpful.
The situation is more favorable when collective swap
moves are introduced, as the speedup offered by the
irreversibility in cSwap now grows with density, as
demonstrated in Fig. 4, to reach a factor about 10 near
ϕ ¼ 0.88 over Swap. These results suggest that it is useful
to combine cSwap and ECMC into cSwapECMC, where
both translational and diameter moves are now collective
and irreversible. Getting the best of both types of moves,
cSwapECMC now offers a comfortable speed up over

Swap that increases from 10 to about 40 at the largest
packing fraction studied, clearly outperforming the Swap
Monte Carlo algorithm.
An interesting avenue for our algorithms is the produc-

tion of jammed disk packings, which are typically produced
using specific nonequilibrium compression protocols
[46,47]. Using conventional MMC for compressions, the
jamming packing fraction ϕJ can be reached using NPT
Monte Carlo. The simplest protocol starts from an equi-
librium hard disk configuration at ϕinit, before suddenly
turning the pressure to infinity [48]. At long times, the
packing fraction saturates to a value ϕJ, which is an
increasing function of ϕinit [49]. This is confirmed in
Fig. 5, where the range ϕJ ∼ 0.855–0.895 is covered.
Very similar results are obtained using ECMC during
compressions, see Fig. 5. Note that the preparation of
equilibrium configurations for ϕinit > 0.79 requires par-
ticles swaps [50], which are no longer used during
compressions. Interestingly, introducing swaps during
compressions from the same range of initial conditions
leads to jamming densities that are considerably larger,
ϕJ ≈ 0.904–0.906 (Fig. 5). At the time of writing, such
large packing fractions have only been obtained using
gradient descent algorithms simultaneously optimizing
diameters and positions to more efficiently pack the
particles, followed by geometric triangulation methods
[23]. That similar performances can be reached using
cSwap suggests that these nonequilibrium algorithms in
fact explore pathways similar to the ones allowed by
swap moves. In addition, the very weak dependence of
ϕJ on ϕinit rationalizes the surprising efficiency of aug-
mented gradient-descent algorithms. A major advantage of
cSwap is that the particle size distribution is strictly
conserved, rather than annealed, during the compression.

(a)

(b) (c)

FIG. 3. (a) The speedup offered by ECMC over MC decreases
with density. (b),(c) Comparison of the displacement field relative
to the center of mass after a time comparable to the relaxation
time starting from the same initial condition at ϕ ¼ 0.79 using
MMC (t ¼ 4.6 × 106Ntmove) or ECMC (t ¼ 2.2 × 105Ntmove).
Despite different dynamic rules, both algorithms follow similar
dynamic pathways.

FIG. 4. Acceleration provided by three novel algorithms
(SwapECMC, cSwap, cSwapECMC) with respect to conven-
tional Swap Monte Carlo. In cSwapECMC, the combination of
collective swaps and chain moves provides the fastest algorithm
with a speed up increasing with ϕ and reaching 40.
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Using swap and event-chain Monte Carlo as stepping
stones, we demonstrate that simple Monte Carlo algorithms
with increasing efficiency can be devised, that provide a set
of improved computational tools to more efficiently equili-
brate deep glassy states, prepare more stable configura-
tions, with lower configurational entropy, thus approaching
closer the putative Kauzmann transition. In order to become
new standards, the cSwap algorithm and its derivatives
proposed here need to be pushed in several directions. A
first encouraging result is the successful scaling of their
performances with system size, see Ref. [37], in line with
results for ECMC and Swap. A less obvious direction is the
application to three dimensions, which is the subject of on-
going efforts, again with encouraging preliminary results.
A third direction concerns the application to glass formers
with soft potentials. Swap performances do not decrease
with continuous potentials [13], and some extensions of
ECMC to continuous potentials were successful [29,51].
Future work should develop extensions of cSwap for glass
formers with continuous potentials to extend the range of
applicability of irreversible Monte Carlo methods in the
field of supercooled liquids. All these perspectives directly
follow from our work; they should help the development of
efficient, versatile, and simple to implement sampling
methods for disordered systems with a complex free energy
landscape.
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