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Athermal creep deformation of ultrastable amorphous solids
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Abstract

We numerically investigate the athermal creep deformation of amorphous materials hav-
ing a wide range of stability. The imposed shear stress serves as the control parameter,
allowing us to examine the time-dependent transient response through both the macro-
scopic strain and microscopic observables. Least stable samples exhibit monotonicity in
the transient strain rate versus time, while more stable samples display a pronounced
non-monotonic S-shaped curve, corresponding to failure by sharp shear band formation.
We identify a diverging timescale associated with the fluidization process and extract the
corresponding critical exponents. Our results are compared with predictions from exist-
ing scaling theories relevant to soft matter systems. The numerical findings for stable,
brittle-like materials represent a challenge for theoretical descriptions. We monitor the
microscopic initiation of shear bands during creep responses. Our study encompasses
creep deformation across a variety of materials ranging from ductile soft matter to brittle
metallic and oxide glasses, all within the same numerical framework.

Copyright P. Chaudhuri et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2025-02-14
2025-08-25
2025-10-10

Check for
updates

doi:10.21468/SciPostPhys.19.4.092

Contents

1 Introduction 2

2 Models and methods 4
2.1 Model systems 4
2.2 Preparation of amorphous states with controlled stability 4
2.3 Numerical method for mechanical loading 5

3 Macroscopic rheological response 5
3.1 Creep responses and flow curves 5
3.2 Timescales and thresholds 7
3.3 Comparisons with scaling theories 8

4 Spatial analysis of onset of flow 8
4.1 Visualizing failure in three dimensions 10
4.2 Visualizing failure in two dimensions 10
4.3 Bifurcation near critical stress 11
4.4 Failure in solid with soft seed 12

1

https://scipost.org
https://scipost.org/SciPostPhys.19.4.092
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.19.4.092&amp;domain=pdf&amp;date_stamp=2025-10-10
https://doi.org/10.21468/SciPostPhys.19.4.092


SciPost Phys. 19, 092 (2025)

5 Conclusion and discussion 14

References 15

1 Introduction

Amorphous solids encompass a wide range of materials, including metallic glasses, colloids,
foams, and granular materials. These materials yield (or flow) under external loading in vari-
ous rheological setups, such as steady-state shearing, shear start-up, and oscillatory shear [1–
11].

Amorphous solids like glasses are non-equilibrium materials, with properties that depend
for that reason on their preparation history [4]. Notably, the degree of annealing qualita-
tively alters their mechanical response. Strain-controlled simulations have shown that poorly
annealed materials, such as colloids and foams, exhibit ductile yielding, characterized by a
continuous stress-strain curve and spatially homogeneous deformation. In contrast, ultra-
stable materials like metallic glasses, display brittle yielding with a discontinuous stress-strain
curve and shear localization [12,13]. The effects of annealing also significantly influence the
rheological behavior in cyclic shear deformation protocols [14–16].

The stress-controlled shear start-up protocol allows us to explore another interesting tran-
sient response to external loading, viz. creep deformation. This setup has been extensively
studied under both thermal [17–20] and athermal [21–24] conditions through experiments,
molecular simulations [25, 26], and coarse-grained models [24, 27, 28]. When the applied
stress σ is below the yield threshold σc , the strain, γ(t), initially increases but eventually
reaches a finite plateau value at long times. Hence the strain rate γ̇(t) grows initially but then
decreases and eventually vanishes when the systems is dynamically arrested. Conversely, when
σ exceeds σc , the system continues to deform, eventually reaching a steady state flow regime
where γ(t) ∼ t and γ̇(t) becomes constant. This constant strain rate for σ > σc corresponds
to the steady-state flow curve, usually described by the empirical Herschel–Bulkley (HB) law:
σ−σc ∼ γ̇n, where n is the HB exponent. This steady-state behavior, particularly in the context
of the Herschel–Bulkley law, has also been the focus of extensive research [3,29,30].

The response to the applied stress exhibits non-trivial signatures at intermediate timescales
when σ is near σc . Specifically, γ(t) increases very slowly over time, exhibiting sub-linear be-
havior known as creep. As a result, the time evolution of γ̇(t) shows a complex shape, which
varies depending on the material and its preparation history [26]. Notably, as the yield thresh-
old is approached, an extended creep response with γ̇(t)∼ t−ν (where ν is an exponent) is ob-
served, which is followed by either the complete cessation of flow, with γ̇(t)→ 0 whenσ < σc ,
or a sudden increase toward fluidization, forming an S-shaped curve with γ̇(t)∼ const. when
σ > σc . The threshold stress (denoted as σc) depends on the initial conditions. More stable
materials generally have a higherσc , which is picked up as the height of the stress overshoot in
quasistatic strain-controlled analysis [12]. This static yield stress σc is often distinct from the
critical threshold in the Herschel–Bulkley law, which is sometimes referred to as the dynamic
yield stress [22,31,32], and both stresses may coincide only for poorly annealed samples.

The slow creep deformation process leading to fluidization is characterized by an associ-
ated timescale for the onset of flow, known as the fluidization time, τ f . Specifically, τ f diverges
as the yield thresholdσc is approached from above, following the relation τ f ∼ (σ−σc)−β [17,
19, 25], where β is an exponent which may also depend on the initial stability of the sam-
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ple [27,33]. In shear-rate controlled rheology, the fluidization timescale similarly diverges as
the shear rate decreases, following τ f ∼ γ̇−α, where the exponent α depends on the annealing
history of the sample [34]. Recent theoretical work has sought to connect the physics of tran-
sient responses (characterized by parameters such as ν, τ f , β , and α) with steady-state behav-
ior, such as the Herschel–Bulkley law and its exponent n [35,36]. However, these theoretical
frameworks have primarily been applied to and validated using experimental and simulation
data from soft-matter materials, which tend to fall into the class of less stable systems.

The stability of a sample also affects the spatial manifestation of the fluidization pro-
cess [26]. Poorly annealed materials tend to exhibit homogeneous fluidization after the tran-
sient creep regime, while more stable materials often show sharper shear localization in the
regime where γ̇(t) increases after reaching a minimum [17, 26]. Theoretically, it has been
suggested that this upturn in γ̇(t) corresponds to the onset of shear banding [37]. More re-
cently, precursors to fluidization have been observed in experiments during the decreasing
branch of γ̇(t), prior to large-scale flow onset [38]. However, identifying such precursors from
real-space (microscopic) images remains challenging. It is expected that defects or weak spots
play a more significant role in stable materials, acting as precursors that lead to the formation
of sharper system-spanning shear bands [39, 40, 53]. For very stable systems, however, such
defects may become extremely rare, and their experimental observation may be complicated,
while numerical simulations may even totally miss them [53].

All these questions can be addressed using molecular simulations as they provide micro-
scopic insights into deformation processes. However, standard molecular simulations can only
vary the stability of a sample within a narrow range due to the limited simulation timescale.
Additionally, it has been argued that directly observing precursors, such as defects or shear
band embryos, relevant to macroscopic shear band formation is challenging in molecular sim-
ulations. This is because the probability of finding such defects is exponentially suppressed
with defect size, and the standard simulation system size is much smaller than that of macro-
scopic experimental samples [39, 40, 53]. The numerical recipe to solve this problem is to
introduce by hand localized soft regions, or seed, in the numerical samples and compare the
emerging physics to samples with no seed.

Here, we investigate the athermal creep deformation of glasses through molecular simula-
tions, varying the initial stability across an extremely wide range of annealing levels using the
swap Monte Carlo algorithm for sample preparation [54]. Our work extends the study of creep
deformation, which has been predominantly focused on soft matter systems, to more stable
systems relevant to metallic and oxide glasses. Our simulations capture both ductile responses,
characterized by relatively homogeneous deformation, and brittle responses, featuring strong
S-shaped transient behavior accompanied by sharp shear band formation. We characterize the
diverging fluidization timescale as the yield threshold is approached and compare our numer-
ical results with predictions from recent scaling theories, highlighting challenges in describing
stable materials. We analyse the shear band formation in real space during the onset of fluidiza-
tion, and introduce a specific procedure to assess the role played by soft defects in a sample,
thus shedding light on how precursors or shear band embryos develop into system-spanning
shear bands.

The manuscript is organized as follows. Section 2 outlines our numerical models and
computational methods. In Sec. 3, we describe the macroscopic rheological response of the
system and the associated timescales. Section 4 provides a visual analysis of the onset of flow
under various conditions. Finally, we discuss our results and present conclusions in Sec. 5.
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2 Models and methods

2.1 Model systems

We simulate systems of N size polydisperse spherical particles in cubic and square boxes of
length L in three (3D) and two (2D) dimensions using periodic boundary conditions. The pair
interaction between particles i and j is a soft-core repulsive potential,

u(ri j , di j)/ε=

�

di j

ri j

�12

+ c0 + c2

�

ri j

di j

�2

+ c4

�

ri j

di j

�4

,
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2
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1− 0.2|di − d j|
�

,

where ri j is the distance between particles i and j, di is the diameter of the particle i, and ε
is the energy scale of the potential. The set of parameters, c0, c2, and c4, are adjusted so that
the potential and its first and second derivatives vanish at the cutoff distance rcut,i j = 1.25di j .
The particle diameters are drawn randomly from a continuous size distribution P(d) = A/d3

in the range [dmin, dmax], where A is normalizing constant. We use parameters such that
dmin/dmax = 0.45 and the average size diameter is d = 1.0 and sets the unit length. These
two models have been carefully studied before [41, 42, 54, 55]. We perform simulations at
constant number density ρ = 1.02 for 3D, and ρ = 1 for 2D, using N = 96000 in 3D and
N = 64000 in 2D. We report macroscopic observables, such as γ̇(t), obtained from averaging
over 25 independent samples. We mainly present the data in 3D, yet due to its visual clarity,
we show some 2D data for the time evolution of the shear band formation.

2.2 Preparation of amorphous states with controlled stability

To prepare glassy samples with different stabilities at temperature T = 0, we first equilibrate
the system at a finite temperature, Tini, using the efficient swap Monte Carlo method [54].
These equilibrium configurations are then instantaneously quenched to T = 0 using the con-
jugate gradient method [43].

We generate glassy samples with initial temperatures Tini ∈ [0.062, 0.200] in 3D, covering
a broad range of initial stability. Within this temperature range, we observe a spectrum of
yielding behaviors from brittle to ductile when using strain-controlled athermal quasi-static
(AQS) shear simulations [12].

In 2D, the initial preparation temperature is Tini = 0.035, which places the system ex-
tremely deep within the glassy regime [55], leading to brittle yielding [13] characteristic of
ultrastable systems.

To introduce a soft region, or seed, within an otherwise stable glass, we follow the method
developed in Ref. [53]. We define an ellipsoidal region characterized by the major axis length
Da and the minor axis length Db. In this study, we set Da = 50 and Db = 8, which are much
smaller than the linear box length of the 2D system L = 253. We then perform additional
swap Monte Carlo simulations restricted to the particles within the ellipsoidal region, while the
particles outside remain pinned. The temperature for these additional Monte Carlo simulations
is set to Th = 10.0. The dynamical mode-coupling crossover temperature of the system is
Tmct ≈ 0.110, meaning that Th is about 100 times higher than this mode-coupling temperature.
After these high temperature Monte Carlo steps, we quench the obtained configuration back to
zero temperature using the conjugate gradient method. As a result of this protocol, the final
glass samples contain a poorly-annealed ellipsoidal seed region immersed in a much large
ultrastable glass matrix.
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2.3 Numerical method for mechanical loading

The response to applied shear stress is studied using molecular dynamics (MD) simulations,
following the method described in Ref. [25]. This approach involves integrating the equations
of motion for the constituent particles, as well as the equation governing the macroscopic strain
rate, γ̇(t), which emerges from the imposed shear stress, σ. The shear rate must adjust itself
in order to maintain a constant applied stress, and this is ensured using a feedback control
scheme [25,44]:

dγ̇(t)
dt

= B
�

σ−σx y(t)
�

, (1)

where σx y is the Irving-Kirkwood expression for the instantaneous shear stress, including the
kinetic contribution, and σ the desired value of the applied stress. The damping parameter
is set to B = 1. Additionally, to control dissipation under athermal conditions, we apply a
Langevin thermostat that couples only to the y-component of the particle velocities; the cor-
responding damping timescale is set to 0.1.

3 Macroscopic rheological response

3.1 Creep responses and flow curves

We begin by investigating the macroscopic rheological responses through flow curves. In
Figs. 1(a, b, c), we present the mean strain rate versus time curves, γ̇(t), for the three-
dimensional model, averaged over 25 independent samples. These data feature three repre-
sentative stability levels of the initial samples [12]: poorly annealed glasses (Fig. 1(a)), where
no stress overshoot is observed in the stress versus strain curve; modestly annealed glasses
(Fig. 1(b)), which exhibit a mild stress overshoot; and ultrastable glasses (Fig. 1(c)), charac-
terized by a large stress overshoot and a sharp, discontinuous stress drop. With this choice, the
corresponding materials in real experimental systems could be wet foams for poorly annealed
glasses, colloidal glasses for modestly annealed glasses, and metallic glasses for ultrastable
glasses.

Initially, after the shear stress is imposed, γ̇(t) increases linearly with time because we use
a first-order barostat in Eq. (1) formulated in terms of the strain rate; this early deformation
regime is same for all the annealing histories.

Subsquently, for poorly annealed glasses in Fig. 1(a), when the imposed stress is low
(σ = 0.14), there is a prolonged creep regime, where γ̇(t) ∼ t−ν with ν = 0.62, and γ̇(t)
decays to zero over time, i.e., the system remains in a dynamically arrested state. We observe
that after this initial power-law decay, there is a crossover to a faster decay at longer times
as the system approached dynamical arrest or jamming. The mechanism behind this ultimate
cut-off is still under debate, with proposed explanations including structural aging and the
relaxation of residual stresses [45]. As the stress increases, particularly for σ ≳ 0.18, γ̇(t)
reaches a plateau, indicating the onset of steady-state flow. For a narrow range of intermedi-
ate stress values, 0.14< σ < 0.18, a fraction of trajectories within the ensemble remain stuck
while others yield and attain steady flow [26].

Determining the exact threshold stress, above which the system flows indefinitely, is thus
challenging from the mean strain rate versus time curves alone, as the threshold varies from
sample to sample within this ensemble of finite-size systems. Precise determination requires
careful simulations for each sample (as discussed later). Therefore, we will use an alternative
approach to estimate the threshold stress, as explained below.
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(a)

(b)

(c)

(d)

Figure 1: (a, b, c): Time evolution of ensemble-averaged shear-rate in response to
imposed stresses σ (as marked) for three-dimensional initial amorphous states pre-
pared via quench from Tini = 0.200 (a), Tini = 0.120 (b), and Tini = 0.062 (c).
Filled symbols correspond to cases where steady-state flow is observed in all sam-
ples, whereas open symbols are used for cases where the system remains solid in all
samples. Dashed lines correspond to γ̇(t)∼ t−ν with ν= 0.62 (a), 1.25 (b), and 1.75
(c). (d): Steady-state flow curve, viz. the evolution of the imposed stress with the
steady-state ensemble-averaged shear-rate obtained by gathering data for t →∞ in
(a, b, c), for flowing states. The dashed curve corresponds to the Herschel-Bulkley
law, with σd = 0.144 and n= 0.41.
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We next examine modestly annealed samples, as shown in Fig. 1(b). For these samples,
we observe a power-law time decay of γ̇(t), with eventual termination for σ = 0.18. This in-
dicates that while σ = 0.18 is sufficient to induce steady-state flow in poorly annealed glasses
(Fig.1(a)), this value is no longer sufficient for modestly annealed samples, thus qualitatively
demonstrating the dependence of the threshold yield stress on the degree of annealing. Fur-
thermore, the creep exponent ν = 1.25 is larger than in the poorly annealed samples, in-
dicating another aspect of the stability dependence. When the imposed stress is increased
(σ ≳ 0.22), γ̇(t) exhibits a near power-law decay (with a different exponent) at intermediate
timescales. At longer times, γ̇(t) increases and enters the steady state, resulting again in an
S-shaped curve.

We now turn to ultrastable glasses, where even under a relatively high stress of σ = 0.41,
the mean γ̇(t) exhibits a power-law decay to zero. Additionally, we find that the exponent ν
increases further, reaching ν = 1.75. When a much larger stress is applied (σ ≳ 0.44), γ̇(t)
shows a more pronounced S-shaped curve, eventually reaching steady-state flow. Note that in-
dividual samples display sharp, discontinuous jumps in γ̇(t) after the intermediate creep decay
(as shown in other figures below). However, the mean curve in Fig.1(c) appears smoother be-
cause the discontinuous jumps occur at different times in different samples and the ensemble
average broadens the transition in finite systems. The significantly enhanced threshold stress,
which lies between 0.41 and 0.44, is consistent with the stress overshoot values obtained in
strain-controlled AQS simulations of the same system [12].

The strong and systematic dependence of the threshold stress σc and of the exponent ν on
the degree of annealing is a key finding of this section.

The final plateau value of the strain rate, γ̇ss, depends on the imposed stress but not on
the initial sample stability, resulting in the steady-state flow curve shown in Fig. 1(d). We fit
this data using the Herschel-Bulkley function, σ = σd +Aγ̇n, and estimate the dynamical yield
threshold to be σd = 0.144 and the HB exponent to be n = 0.41. These values are consistent
with those reported from AQS and finite strain rate simulations for the same model [12, 46].
Note that the steady-state strain rate values do not depend upon preparation histories, since
the memory of the initial stability is completely erased after entering the steady-state flowing
regime.

3.2 Timescales and thresholds

One key feature of the flow curves in Figs. 1(a, b, c) is that the time needed to reach steady-
state flow for σ > σc strongly depends on the applied stress. Notably, this timescale appears
to diverge as we approach the threshold stress from above. To quantify this, we define a
fluidization timescale, τss, which quantifies the time it takes for the mean shear rate γ̇(t) to
reach its steady-state value. We note that determining τss becomes increasingly challenging as
the applied stress approaches the threshold stress, because sample-to-sample fluctuations grow
dramatically (data not shown). This difficulty is further enchanced for samples with higher
initial stability. In Fig. 2(a), we show how τss varies with the imposed stress, σ, across the
different initial stabilities we studied. For poorly annealed glasses (Tini = 0.200), τss increases
as σ decreases and seems to diverge at a finite stress (or threshold stress). As the stability
increases, τss appears to diverge at higher stresses, consistent with the larger thresholds for
more annealed glasses seen in Figs. 1 (b, c).

We then apply a widely used empirical fitting function, τss ∼ (σ−σc)−β , shown by dashed
curves in Fig. 2(a). This function helps us estimate the mean yield threshold σc and the
divergence exponent β , listed in Table 1. As expected we observe a systematic variation in
σc from 0.148 (for Tini = 0.200) to 0.425 (for Tini = 0.062), which represent a significant
increase by a factor of about 3. These values are quite similar to the evolution of the height
of the stress overshoot obtained in AQS simulations for these initial stabilities, as reported in
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Ref. [12]. We observe that the divergence exponent β also varies considerably with stability,
ranging from 1.22 (for Tini = 0.062) to 2.04 (for Tini = 0.200). This trend is consistent with
findings from studies on mesoscopic elastoplastic models [27,33].

3.3 Comparisons with scaling theories

Next we discuss our findings in the context of some recent theoretical scaling predictions which
we presented in the introduction.

Popović et al. [36] have developed a scaling theory by extending the steady-state Herschel-
Bulkley law to a time-dependent transient regime, based on the underlying stress versus strain
curve. The theory describes power-law behaviors below, at, and above the threshold stress σc .
Forσ < σc , it predicts creep decay, γ̇(t)∼ t−ν, with ν= 1/(1−n). In our case this would gives
ν≃ 1.69, using our numerically determined HB exponent n= 0.41. Atσ = σc , theory predicts
ν= 2/(2− n)≃ 1.26 for systems with a stress overshoot, while ν= 1 is predicted for systems
without a stress overshoot, such as poorly annealed glasses. Our simulations show ν = 0.62,
1.25, and 1.75 for Tini = 0.200, 0.120, and 0.062, respectively, as seen in Figs. 1(a, b, c).
These values may align with the theoretical predictions, but we lack the numerical resolution
to clearly separate the two scaling regimes, σ < σc and σ = σc . This is because it is difficult
to observe a power-law regime far below σc in our finite-size simulations (N = 96000), and
also hard to very precisely pinpoint σ = σc due to significant sample-to-sample fluctuations
mentioned above. Dedicated computational work is needed to resolve this issue and improve
the comparison with theory, presumably using much larger system sizes to enhance the time
window over which power law decay can be observed.

For σ > σc , the system eventually fluidizes, and the theory predicts τss ∼ (σ − σc)−β

with β = 1/n− 1/2 ≃ 1.96. This value is comparable to our simulations for poorly annealed
glasses (Tini = 0.200) and slightly annealed glasses (Tini = 0.120). However, our data for more
stable glasses deviates systematically from 1.96 as stability increases (or Tini decreases). This
suggests a challenge for scaling theories describing the creep response of stable glasses, like
metallic glasses, which should account for stability. We also note that in Popović et al. [36] the
fluidization timescale is defined by the minimum in the time evolution of the averaged γ̇(t),
rather than the time when steady state is reached. However, even if we use the fluidization
timescale as the minimum in γ̇(t), called τm, the trend is similar to our estimated τss (as shown
by open symbols in Fig. 2(b)). This coincidence between the two timescales is consistent with
the empirical Monkman-Grant relationship that reports a linear correlation between these two
timescales [47,48].

In a separate study, Benzi et al. [35] studied the time evolution of a fluidity model which
includes a gradient term to take care of non-local effects. They measure the timescale for shear
band formation in soft materials like dense emulsions, colloidal gels, microgels, and foams,
and the model is shown to predict τss ∼ (σ −σd)−β with β = 9/(4n) ≃ 5.53. As shown in
Fig. 2(b), this value of the exponent does not adequately capture the divergence observed in
our data, even in the case of the poorly annealed state where σc is close to σd .

4 Spatial analysis of onset of flow

After analyzing the global macroscopic response in the previous Sec. 3, we now focus on how
the response to applied shear stress is spatially organized. Specifically, our objective is to
analyze the spatial signatures characterizing the onset of flow. Previous studies have shown
that in well-annealed states, large-scale flow emerges through the intermediate formation of
shear bands, i.e., spatially heterogeneous dynamic structures [12]. This contrasts with poorly
annealed states, where the onset process is spatially much more homogeneous [49].
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(b)

(a)

Figure 2: (a): Fluidization timescale, τss, as a function of applied shear stress, σ,
for states having different Tini. Dashed curves correspond to a power law fitting,
τss ∼ 1/(σ −σc)β with σc and β are listed in Table 1. (b): Same data shown as a
function of (σ/σc−1), compared to theoretical predictions β = 1/n−1/2 in Ref. [36]
(dashed line) and β = 9/(4n) in Ref. [35] (dotted-dashed line), using our numerical
estimate of n in Fig. 1(d). Open symbols show estimates for the timescale τm, defined
via the minimum of γ̇(t), for Tini = 0.062.

Table 1: List of estimated yield threshold, σc , and exponent β for the different prepa-
ration histories, determined from the divergence of the fluidisation time.

Tini σc β

0.062 0.425 1.22

0.085 0.317 1.47

0.100 0.261 1.49

0.120 0.183 2.15

0.200 0.148 2.04

(b) (c) (d) (e)(a)

0

4

Figure 3: (a): Time evolution of the strain rate for a 3D ultrastable glass sample
(Tini = 0.062) under constant imposed stress σ = 0.42, i.e. just above σc corre-
sponding to this initial state. (b-e): Maps of accumulated plastic events measured
via non-affine displacements D2

min, at t =459.35 (b), 950 (c), 1050 (d), and 1150
(e), marked as square points in (a).
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Here, we primarily investigate the precursors to shear band formation in ultrastable glasses
(for poorly-annealed glasses and slightly annealed glasses, see earlier studies Ref. [26]). To
study the emergence of such spatially heterogeneous flow structures, we create spatial maps
of local plasticity, measured relative to the undeformed amorphous state at t = 0. The local
plasticity at any given time is quantified by measuring the non-affine displacements of each
particle, D2

min, between its position at time t and its initial position before shear stress is ap-
plied, i.e. t = 0. This measure reflects the local deviation of particle displacement from affine
deformation and has been widely used to characterize local plastic responses [5].

4.1 Visualizing failure in three dimensions

In Fig. 3, we present the analysis for an ultrastable 3D glass sample quenched from
Tini = 0.062. The evolution of the strain rate γ̇(t), for the trajectory of this initial state, during
the onset of flow is shown in Fig. 3(a) for the smallest stress (σ = 0.42 > σc), where steady
flow is observed at long times. The strain rate exhibits a prolonged power-law decay followed
by a sudden, nearly discontinuous jump toward fluidization. The snapshots in Figs. 3(b-e)
show a sequence of maps of the local D2

min. The corresponding time frames for these spatial
maps are also marked in Fig. 3(a).

The earliest time point where we can visualize the first precursor of what will eventually
become a shear band is at t = 459.35, just after the minimum in γ̇(t), where the macroscopic
strain rate begins increasing after the initial decrease (see Fig. 3(b)). This increase can be
attributed to the propagation of locally yielded spots. Over time, more damaged spots become
visible in the same plane, which gradually merge to eventually form a shear band, as seen in
Figs. 3(c-e). This merging and growth process occurs rapidly, as indicated by the sharp increase
in strain rate (see Fig. 3(a)) in an avalanche-like manner between these frames. While other
locally yielded spots appear within this resolution of D2

min, the flow process only accelerates
when the relevant spots propagate, leading to the emergence of the macroscopic shear band,
which eventually broadens to fluidize the entire system at much larger times.

4.2 Visualizing failure in two dimensions

For better visualization and to access larger linear sizes of the simulation domains, we now
switch our analysis to 2D systems. In this analysis, we focus again on ultrastable amorphous
states, specifically sampled from Tini = 0.035.

In Figs. 4(b-h), we present a sequence of maps of the local D2
min computed during the

trajectory of an initial state sampled from the Tini = 0.035 ensemble, for the smallest stress
σ = 0.43880 > σc at which steady flow is observed at long times. The corresponding time
evolution of the macroscopic strain rate γ̇(t), measured for this trajectory, is shown in Fig. 4(a),
where the onset of flow is sharply marked by a rapid increase around t ≈ 105, after a prolonged
decrease in the strain rate, similarly to the 3D system.

The maps reveal that, early on at t = 800, a vertical locally yielded spot appears (see
Fig. 4(b)). However, this spot does not contribute to the eventual shear band formation. Much
later, at t = 169000 (Fig. 4(d)), another vertical yielded spot emerges, which acts as the source
of the subsequent cascade of plasticity. The horizontal spots that appear later, at t = 169650
(Fig. 4(e)), result from this cascade and are connected via periodic boundary conditions. These
horizontal spots spread and merge to form a network of plastic events, eventually developing
into a system-spanning horizontal shear band at t = 169800 (Fig. 4(f)). A second shear band
then forms at the top, which connects with the bottom shear band to drive the system into
steady flow (Figs. 4(g) and (h)). The emergence of the second shear band is reasonable since
the typical distance between shear bands, ξ, scales with the strain rate as ξ ∼ γ̇−a, where
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Figure 4: (a): Time evolution of the strain rate for a 2D ultrastable glass sample
(Tini = 0.035) under constant imposed stress σ = 0.43880, i.e., just above σc cor-
responding to this initial state. (b-h): Maps of accumulated plastic events measured
via non-affine displacements D2

min at t = 800 (b), 160000 (c), 169000 (d), 169650
(e), 169800 (f), 169900 (g), and 169950 (h), marked as points in (a). These maps
demonstrates how yielding proceeds via the relevant precursors.

a > 0 is an exponent [46]. This distance may become smaller than the linear box length of
the simulation when the strain rate is large.

All of these events occur within a relatively short time window, as only a time ∆t = 900
separates frames (d) and (h), to be compared to the much longer time t ≈ 105 spent since the
stress was first applied. This rapid sequence of catastrophic events highlights the avalanche-
like nature of the cascading plasticity that leads to the eventual failure and flow.

4.3 Bifurcation near critical stress

Motivated by a previous study [26], we now perform a bifurcation analysis between the ar-
rested state (σ < σc) and the flowing state (σ > σc), varyingσ by a very small amount around
the value of σc that characterizes a given sample. We examine the same initial state discussed
above in Fig. 4, comparing the response to two slightly different applied shear stresses with
a difference of δσ = 10−5, leading to a relative stress difference δσ/σc ≈ 2.2 × 10−5. The
results are shown in Fig. 5.

The time evolution of the macroscopic strain and strain rate is shown in Figs. 5(a) and (b)
for σ = 0.43879 (arrested state) and 0.43880 (flowing state), respectively. For the smaller
stress, the dynamics become arrested at long times, indicated by the asymptotic vanishing
of the strain rate. When the applied stress is only slightly larger (δσ = 10−5), the system
initially follows the same trend as with the smaller stress until around t ≈ 3.4× 104, when a
non-monotonic behavior sets in and γ̇(t) abruptly increases, signaling the rapid onset of flow,
as discussed in detail in Fig. 4.

The snapshots in Figs. 5(c-f) show the corresponding maps of local D2
min in both cases.

Up to t = 34280, near where the two trajectories bifurcate in the γ(t) and γ̇(t) curves in
Figs. 5(a, b), the spatial response is virtually identical, with some yielded spots appearing in
both trajectories. However, as mentioned earlier, these spots do not contribute to the eventual
onset of flow. A second yielded spot appears at a later time for the higher stress but not for
the smaller stress, and this alone determines the final outcome of the two trajectories, either
asymptotic arrest or flow. This analysis highlights that for the eventual failure process to kick
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Figure 5: Comparative response of the same initial state, analyzed in Fig. 4, to im-
posed stresses of σ = 0.43879 and 0.43880, i.e., a difference of 10−5. (a, b): Time
evolution of observed strain (a) and strain-rate (b) responses. (c-f): Sequence of
maps of non-affine displacements D2

min, at the points marked in (a, b), viz. t =800
(c), 34280 (d), 160000 (e), and 169800 (f), for σ = 0.43879 (top) and σ = 0.43880
(bottom).

in, a single significant soft spot may be able to eventually nucleate a macroscopic shear band.
Given how close the two trajectories are up to the minimum of the shear rate, it may appear
vain to try and predict from an early precursor analysis the eventual macrosopic failure of a
particular material in a particular trajectory.

4.4 Failure in solid with soft seed

The spatio-temporal studies in Figs. 3 and 4 have shown that the early soft spots that show up
during the response to an applied stress may not necessarily act as precursors to the eventual
shear band. In the case of strain-controlled yielding, it has been argued that in macroscopic
samples, rare defects (presumably larger than those observed in Figs. 3 and 4) trigger the
formation of the macroscopic shear band. As these defects are exponentially rare in size, they
are virtually impossible to observe in molecular simulations of limited sizes, thus leading to
severe finite size effects in molecular simulations compared to experiments that cannot simply
be handled by increasing the linear size of the system.

To address this limitation, recent simulations have introduced such a defect (or seed) man-
ually into the simulation box. As a result, the effect of rare seeds can be numerically analyzed
without increasing exponentially the linear size of the system. In practice, in Ref. [53], a soft
ellipsoidal region was seeded into a stable amorphous solid, and the subsequent mechanical
response, probed via athermal quasistatic shear, confirmed that the seeded weak region acted
as the embryo of the emerging shear band, leading to the failure of the solid. Furthermore,
it was shown that this localised seeding region could reduce the height of the global stress
overshoot, implying that the static yield stress of the solid decreased due to the presence of a
single localised defect [40]. We now investigate how the presence of a similar seed influences
the response to an applied shear stress.

In Fig. 6, we provide an extensive account of our analysis. Note that, for studying the
response to seeding, we use the same initial state discussed in Fig. 4 (where no seed is em-
ployed), but now with a soft seed placed at the center. Similar to our analysis in Fig. 5, we
determine the lowest shear stress (σ0 = 0.4012) at which steady flow is observed at long
times, and the largest applied stress (σ0 = 0.4010) where no large-scale failure occurs and
the system arrests. These values need to be compared with σc ≈ 0.4388 when no seed is
present.
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Figure 6: Analysis of the influence of a soft seed in ultrastable glass. (A): Time
evolution of the observed strain (a) and strain-rate (b) response for both seeded and
non-seeded states. (B, C, D): Sequence of maps of non-affine displacements, D2

min at
the marked points for imposed stresses of σ = 0.4010 (Column C) and σ = 0.4012
(Columns B and D). The maps correspond to times t = 11.75 (c), 725 (d), 22150
(e), 22250 (f), and 22500 (g), as indicated in (A).
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The corresponding maps of local D2
min are shown in Figs. 6(C) and (D), while the com-

parative time evolution of shear strain and shear rate for these two cases is presented in
Figs. 6(A). The key point to note is that, even though plasticity is observed in the weak zone for
σ = 0.4010, it does not affect the surrounding area. Only when the stress is slightly increased
to σ = 0.4012 does the shear band initiate, leading to a cascade towards failure, as shown in
Fig. 6(D). Therefore, we conclude that the presence of a weak zone alone is not sufficient to
cause the material to yield and a sufficient amount of stress must be applied to trigger plas-
ticity in the zones adjacent to the weak spot, leading to shear band formation. However, the
situation changes in the regime 0.4012≲ σ ≲ 0.4388, where the seeded solid eventually fails
while the pristine glass does not. (This is shown in 6(B) where the original glass sheared at
σ0 = 0.4012 shows very little plasticity.) In this regime therefore, the plasticity observed in
the soft seed serves to nucleate the macroscopic shear band. This directly demonstrates how
a localized soft region can depress the macroscopic yield stress of the material.

Overall, this analysis demonstrates that the manually inserted localised seed, which would
spontaneously appear in a real macroscopic sample, lowers the macroscopic threshold yield
stress and triggers eventual failure by forming a shear band, provided the applied stress is
sufficient enough. This conclusion is the counterpart, for creep flows, of the previous analysis
performed in strain-controlled AQS studies [53].

5 Conclusion and discussion

We performed molecular simulations of athermal amorphous solids under constant stress,
varying the initial stability significantly using the swap Monte Carlo algorithm, ranging from
poorly annealed to ultrastable glasses. This comprehensive study monitored both macroscopic
(strain rate flow curves, fluidization timescales) and microscopic (spatial maps of flow onset)
observables. Our results show that creep responses and fluidization processes strongly depend
on preparation history both qualitatively and quantitatively. Poorly annealed glasses exhibit a
gradual evolution of the strain rate, while ultrastable glasses display sudden, discontinuous-
like jumps in the strain rate, associated with a sharp system-spanning shear band after pro-
longed creep decay. We also computed fluidization timescales, which diverge near the yield
stress, whose strength dependence on glass stability. The associated power laws and exponents
were extracted and compared with recent scaling theory predictions. Lastly, we investigated
the fluidization mechanism in ultrastable glasses in real space, revealing that a weak spot, or
shear band precursor, inserted in the sample grows into a system-spanning shear band and
modifies the macroscopic onset of flow.

Our study covers the creep responses of materials across a wide range of stabilities, includ-
ing poorly annealed glasses like foams and emulsions, slightly annealed glasses like colloids,
and ultrastable glasses like metallic and oxide glasses. Our numerical data for less stable
glasses show some reasonable agreement with the recent scaling theory by Popović et al. [36]
although direct quantitative tests would require dedicated studies including much larger sys-
tems. However, for more stable glasses, clear discrepancies arise between available theoretical
predictions and our data. This highlights the need for a scaling theory that accounts for the
material’s stability more explicitly and can treat brittle materials.

In this paper, we impose a sudden constant stress and observe the time evolution of strain
and strain rate as part of the creep deformation process. Similar phenomena can be seen in
cases where strain is suddenly imposed and the stress response is monitored, leading to a
delayed timescale for material failure [50]. Related physics can also be observed in fatigue
failure under cyclic deformation, where the number of cycles prior to failure depends on factors
such as the degree of annealing [51,52]. It would be interesting to discuss the timescales for
transient responses across different deformation settings from a unified perspective.

14

https://scipost.org
https://scipost.org/SciPostPhys.19.4.092


SciPost Phys. 19, 092 (2025)

Acknowledgments
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