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We show that finite-size scaling techniques can be employed to study the glass transition. Our results
follow from the postulate of a diverging dynamical correlation length at the glass transition whose
physical manifestation is the presence of dynamical heterogeneities. We introduce a parameter B�T; L�
whose temperature, T, and system size, L, dependences permit a precise location of the glass transition.
We discuss the finite-size scaling behavior of a diverging susceptibility ��L; T�. These new techniques
are successfully used to study two lattice models. The analysis straightforwardly applies to any glass-
forming system.
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the three-dimensional Kob-Andersen model [5]. precisely tell how fast a particle is, while (1) measures
Progress in the study of the ‘‘glass transition’’ has been
slow for two main reasons [1]. First, almost by definition,
the dynamics of a liquid supercooled through its melting
transition towards its glass phase becomes so slow that it
is impossible to actually cross a possible phase transition
while staying at equilibrium. One relies therefore on
thermodynamic or kinetic extrapolations which stop at
the glass temperature Tg where the system no longer
equilibrates. As a consequence, the mere existence of a
genuine transition is still questioned, even though experi-
ments now probe more than a decade of decades of re-
laxation times.

Second, the nature of the putative transition remains
largely unknown as compared to more standard phase
transitions. Basically, the situation is such that the for-
mulation of a Ginzburg-Landau type of model is still
impossible, because one does not know what would be
the correct order parameter, its symmetries, dynamics,
correlations, etc. Similarly, at the beginning of the 1990’s,
two papers apparently settled the related question of the
existence of a diverging correlation length at the glass
transition, reporting the absence of such a length scale
[2,3]. These observations explain why modern develop-
ments of statistical mechanics (renormalization and re-
lated concepts) have seldom been used in the present
context [1].

In this Letter, we show that finite-size scaling tech-
niques first derived from renormalization group concepts
in the context of continuous phase transitions are useful to
the study of the glass transition, at variance with the
common belief. This should allow much more powerful
extrapolations to locate a possible transition and a better
characterization of its nature, thus making progress on
the two important points mentioned above.

The Letter is organized as follows. We first describe
the observations underlying our work, before describing
the principles of the analysis. As a first application of the
method, we then consider two well-known models pro-
posed in the context of the glass transition, namely, the
one-dimensional Fredrickson-Andersen model [4] and
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Our work is based upon the recent burst of activity
related to the definition, observation, and characterization
of dynamical heterogeneities in the dynamics of super-
cooled liquids [6]. The underlying physics is that particles
move in a cooperative manner, the more so the nearer the
glass transition. This picture immediately suggests the
existence of a dynamic correlation length associated to
these dynamical domains, reflecting the length scale on
which the particles dynamics have been correlated in a
time interval t at temperature T. We shall define below a
‘‘coherence length’’ ‘�T� by choosing the time interval to
be equal to the mean relaxation time of the liquid trel�T�.
Whether or not ‘�T� is connected to some yet undiscov-
ered structural length scale is an important open problem.
Crucially, however, progress can be made if one postu-
lates that ‘�T� actually diverges at some — possibly
zero — temperature Tc which will thus nonambiguously
define the glass transition temperature one seeks to de-
termine. It should coincide with the temperature at which
trel�T� also diverges.

A measure of ‘�T� in a liquid can be obtained via the
spatial decay of the following correlation function:

C�r; t� � hF�r� r0; t�F�r0; t�i � hF�r� r0; t�ihF�r0; t�i;

(1)

where F�r; t� � 
�r; t� t0�
�r; t0�; 
�r; t� is the density at
time t and position r, r0 and t0 are arbitrary position and
time, respectively; h� � �i is a standard ensemble average.
Alternatively, F�r; t� can be replaced by any two-time
function, F�r; t� � A�r; t� t0�B�r; t0�, where A and B are
physical observables. It is useful to consider C�r; trel�,
defining trel in a standard way from the time decay of
hF�r; t�i. In essence, Eq. (1) is a two-time, two-point
correlation function measuring correlations in trajectory
space [7,8]. Its physical content is similar to most of the
measurements of dynamical heterogeneities which
amount to first distinguishing between ‘‘fast’’ and
‘‘slow’’ particles and then to checking how these are
spatially correlated [6]. Indeed, the correlators F�r; t�
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the corresponding spatial correlations. The use of the
dynamic function F�r; t� makes an arbitrary criterion to
distinguish between particles unnecessary. Variations of
the correlator (1) have been studied. In Refs. [7,9], the
density fluctuations were replaced by an arbitrarily de-
fined overlap between configurations, and by particle
displacements in Refs. [10–12]. Is is found that ‘�T�
decreases with T, although simulations are yet too lim-
ited to confirm a possible divergence at low temperature.
Note last that the commonly discussed ‘‘non-Gaussian
parameter’’ is related to Eq. (1) when A and B refer to the
particle positions, but for r � 0. As such, it contains no
information about ‘�T�.

The observation of a growing coherence length scale
has deep consequences which we start to explore in this
Letter. This indeed suggests that finite-time local dy-
namical functions F�r; t� become long-range correlated
when the glass phase is approached. As such they play a
role similar to that of the order parameter in a standard
continuous phase transition, the novelty being that this
order parameter is a dynamic quantity, as dictated by the
physics of the problem we consider. This statement, which
is central to our approach, has to be distinguished from
the use of the nonergodicity parameter, hF�r; t! 1�i, to
define the glass state [1]. Having identified an ‘‘order
parameter,’’ it becomes a simple task to extend the tools
developed for conventional transitions to study the prob-
lem of the glass transition, starting here with finite-size
scaling techniques.

Define first the parameter B�T; L� as

B�T;L� � 1�
h’4iL�4h’3iLh’iL�6h’2iLh’i2L�3h’i4L

3�h’2i2L�2h’2iLh’i
2
L�h’i4L�

;

(2)

with ’ � ’�trel�T�� 
 L�d
R
ddrF�r; trel�T��, where d is

the space dimensionality. The crucial information is that
the average h� � �iL is performed in a system of finite linear
size L. By construction, B�T; L� � 0 when the fluctua-
tions of ’ are Gaussian, since it is built from the fourth
cumulant of the probability distribution function of ’,
PL�’�. This distribution is Gaussian when L� ‘�T� as a
consequence of the central limit theorem. However,
PL�’� becomes non-Gaussian when L < ‘�T�, and
B�T; L� is therefore nonzero in that case. Moreover, it is
natural to expect that B�T; L� becomes a scaling function
of the variable ‘�T�=L in the regime ‘�T�; L� a, where a
is the microscopic length scale of the problem, e.g., the
particle size in a simple liquid. Also, PL�’� should be
independent of L and ‘�T� in the regime a� L� ‘�T�.
The latter assumption implies, in particular, that B�Tc; L�
is a constant ‘‘universal’’ number since L� ‘�Tc� � 1 is
automatically satisfied at the transition. Therefore, the
curves B�T; L� versus T for various L cross at Tc. The
definition (2) is naturally inspired by the classical paper
[13], where a numerical finite-size scaling analysis of the
Ising model was performed. In that case, ’ was the order
055701-2
parameter of the paramagnetic-ferromagnetic transition,
i.e., the magnetization density.

We also define the susceptibility

��T; L� �
Ld

T
�h’2iL � h’i2L�; (3)

again explicitly retaining itsL dependence. Similarly, one
expects this function to exhibit a scaling behavior for
large L and ‘�T�. When the correlator C�r; t� is itself a
simple function of the ratio r=‘�T�, one gets

��L; T� � Ld ~��
�
‘�T�
L

�
; (4)

where the scaling function ~���x� behaves as ~���x�1��xd

and ~���x�1�� const. The assumption made on the corre-
lator is supported by all known simulation results so far
[7,9,11]. It is satisfied also in the two models studied
below. This point certainly needs further investigation
in realistic supercooled liquids.

The suggested analysis requires extrapolations towards
the glass phase, as all equilibrium measurements in
supercooled liquids do. However, the new quantities
B�T; L� and ��T; L� defined above are much richer than,
say, an average relaxation time since they contain infor-
mation on the full distribution PL�’�, so that new infor-
mations on the location and the nature — divergence of
length and time scales — of the glass transition can be
gained.

We now use the analysis suggested above to study two
lattice models. We start with the one-dimensional version
of the spin facilitated Ising model introduced in Ref. [4].
Spin facilitated models have been introduced as carica-
tures of real supercooled liquids, in the sense that they are
nondisordered spin models displaying glassy dynamics
with only very simple static correlations. We have chosen
this version of the model since it is reasonably well
characterized [4,8,14]. Moreover, as a one-dimensional
lattice model, it is relatively easy to simulate on very large
time and length scales, nicely confirming the expected
scaling behavior. These results thus constitute a very
interesting first application of the methods described
above. The model is defined by the Hamiltonian

H �
XN
i�1

si; (5)

where si � 0; 1 are two-state observables located at the
sites of a chain of size N with periodic boundary condi-
tions. Glassiness originates from the chosen dynamics,
since the static properties of the noninteracting Hamil-
tonian (5) are completely trivial. In a standard Metropolis
algorithm, the transition rates are w�si ! 1� si� �
min�1; e���E�, where �E is the energy change in the
transition si ! 1� si. Here, the rates are given instead
by w0��E� � �si�1 � si�1�w��E� meaning that a spin
can flip only if it has at least one nearest neighbor whose
value is 1. This kinetic constraint implies glassiness. From
(5), one has hsii � �1� e1=T��1, so that the density of
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spin 1 becomes small at low T therefore allowing fewer
and fewer transitions. This leads to an Arrhenius relaxa-
tion time, trel � e3=T . Also, the dynamics becomes more
and more cooperative when approaching the glass tran-
sition at Tc � 0, with a diverging coherence length
‘�T� � e1=T [8,14].

We simulate this model using a continuous time algo-
rithm in the temperature interval T 2 �0:125; 1:0�, ap-
proximately corresponding to 13 decades in relaxation
times. For each temperature, a large system of N � 2�
104 spins is studied, and averages are performed in sub-
systems of finite-size L 2 �2; 1024� for a number of in-
dependent configurations ranging from 200 to 20 000.
Fortunately, more statistics is required at higher tempera-
tures where deviations from Gaussian behavior are
smaller. A natural choice for the dynamic function
F�i; t� in the definition (2) is the persistence of the
spin si at site i. The mean persistence is given by
hF�i; t�iL�1 � exp��

�����������������
t=trel�T�

p
�, which defines the re-

laxation time.
Our results for this model are presented in Figs. 1 and

2. The inset of Fig. 1 shows the variation of B�T; L� as a
function of 1=T for various sizes L. As expected, B�T; L�
crosses over from B�T; L� � 0 at high T to a nonzero
value at low T, the locus of the crossover being L depen-
dent. The various curves clearly cross at Tc � 0 only. One
observes in the main figure an excellent collapse of the
data, showing that B�T; L� satisfies the expected scaling
form B�T; L� � ~BB�‘�T�=L�. Since PL�’� is bimodal when
L� ‘�T�, it is a simple task to compute B�Tc � 0; L� �
~BB�x! 1� � 0:566 . . . . The inset of Fig. 2 presents the
susceptibility ��T; L� as a function of 1=T for various
sizes L. Again, one clearly sees the expected behaviors:
��T;1� diverges when T ! 0 as e1=T � ‘�T�, while for
finite L the divergence is smeared when ‘�T� > L. The
main figure shows the perfect collapse of the data sug-
FIG. 1. Inset: The parameter B�T; L� as a function of the
inverse temperature 1=T for various system sizes L �
2; 4; . . . ; 1024 (top to bottom) cross at the glass transition Tc �
0. Main: The parameter B�T; L� as a function of the scaling
variable ln�‘�T�=L� with ‘�T� � exp�1=T�. Both figures are for
the one-dimensional spin facilitated Ising model.
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gested by Eq. (4) when ��L; T�L�1 is plotted as a function
of ‘�T�=L (remember that d � 1).

As a second application of the techniques described
above, we study the kinetically constrained lattice gas
introduced in Ref. [5]. The model consists of hard spheres
on a cubic lattice of linear size N. In this case, tempera-
ture plays no role, and the relevant control parameter is
the density of particles, 
. This lattice gas is also com-
plemented by kinetic rules which make the dynamics
glassy. In a nonconstrained lattice gas, particles move
to an empty nearest neighbor site with unit rate. In the
present model, particles can move to an empty nearest
neighbor, provided the particle has fewer than four neigh-
bors before and after the move. This kinetic rule aims at
reproducing dynamics of a supercooled liquid, where
particles can hardly escape the cage formed by their
neighbors. As a simple lattice model for the glass tran-
sition, it has been much studied since its introduction.
Simulations have reported a dynamical arrest at a density

c � 0:881 where the relaxation time apparently diverges
as a power law [5]. Very recently, however, a lower bound
for the diffusion constant was analytically derived for
this model, showing that the divergence of the relaxation
time at a finite density found in simulations is only
apparent [15]. The growth of trel�
� with 
 is in fact
extremely abrupt, lnlntrel�
� / �1� 
��1, with an associ-
ated coherence length lnln‘�
� � c=�1� 
�, where c is a
numerical constant. The extremely fast increase of trel can
easily be numerically confused with a true divergence at a
finite density. This more difficult problem represents thus
a highly selective test for the methods described in this
Letter. We now show that finite-size scaling allows one to
distinguish between a true and an apparent divergence of
the relaxation time in this model.

We use again a continuous time Monte Carlo algorithm
to study a model of linear size N � 24 for densities
FIG. 2. Inset: The susceptibility ��T; L� as a function of the
inverse temperature 1=T for the same sizes as Fig. 1 increas-
ing from bottom to top. Main: The rescaled suscepti-
bility ��T; L�L�1 as a function of the scaling variable
ln�‘�T�=L� with ‘�T� � exp�1=T�. Both figures are for the
one-dimensional spin facilitated Ising model.
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FIG. 3. The parameter B�T; L� as a function of the reduced
variable ln�‘�
�=L� with ‘ � �
c � 
�� (top) or ‘ �
expexp�c=�1� 
�� (bottom). A much better collapse is ob-
tained in the bottom part, with one less free parameter.
Systematic deviations are visible in the top part. Both are for
the kinetically constraint lattice glass of Ref. [5].
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2�0:75;0:87�, covering almost 8 decades of relaxation
times. We use F�i; t� � 
�i; t�
�i; 0� as a dynamical quan-
tity, where 
�i; t� is the density at site i and time t. The
averages are performed in subsystems of linear sizes L,
using 104 independent initial conditions at each density.
The correlator (1) is well described by a simple exponen-
tial form, C�r; trel� � e�r=‘�
�. The latter measurements
are also a check against spurious finite-size effects, since
they show that N � ‘�
� for the densities studied here.

We show our results in Fig. 3 where the parameters
B�
; L� are represented as a function of two possible scal-
ing variables ‘=L. The top figure assumes a power law
divergence of the coherence length ‘�
� � �
c � 
�� at
a finite density 
c < 1, while the bottom figure makes use
of the results of Ref. [15], with a divergence at 
c � 1
only. The best collapses obtained in the two cases are
shown, using the values 
c � 0:882,  � 0:59, and c �
0:167. The second scaling is clearly superior, the first one
having systematic deviations either at large or small sizes.
The figure shown here is a compromise between those.
Moreover, the second scaling has one less free parameter.
The same conclusions are drawn from the susceptibility
055701-4
(3). These three arguments thus discriminate both possi-
bilities, and we numerically confirm the absence of a
dynamical arrest at finite density in this model.

To summarize, we have shown that finite-size scaling
techniques can be used to study the glass transition. This
follows from the identification of local two-time ob-
servables F�r; t� as relevant ‘‘order parameters’’ with
interesting fluctuations and correlations. We have defined
two quantities, B�T; L� and ��T; L�, whose scaling behav-
ior allows one to locate the glass transition in a much
more accurate manner than an extrapolation of simpler
observables like the relaxation time. The new method
straightforwardly applies to any glass-forming systems,
including off-lattice models. More generally, our re-
sults raise the hope that more concepts and methods
borrowed from continuous phase transitions studies can
also be used.
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