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Significance 

Why do amorphous materials 
flow so slowly when temperature 
or density is mildly changed? 
Competing explanations typically 
fall into two pictures, where the 
dynamics is either controlled by 
the static structure of the energy 
landscape or hindered by 
constraints of kinetic origin. This 
debate was recently fueled by the 
observation that modern 
computer algorithms can explore 
the same static landscape at a 
much faster pace. Here, we 
reconcile both viewpoints 
using the concept of time 
reparameterization. We show 
that modern algorithms 
reparameterize the time at which 
glassy dynamics unfolds. As a 
result, kinetic constraints 
determine the choice of 
reparameterization, while the 
static landscape fully determines 
the dynamic bottlenecks. Both 
views thus contain an essential 
element of truth. 

The ultraslow dynamics of glass-formers has been explained by two views often 
considered as mutually exclusive: One invokes locally hindered mobility, and the other 
rests on the complexity of the configuration space. Here, we show that time evolution 
responds strongly to details of the dynamics by changing the speed of time flow: 
It has time-reparameterization softness. This finding reconciles both views: While 
local constraints reparameterize the flow of time, the global landscape determines 
relationships between different correlations at the same times. We show that modern 
algorithms developed to accelerate the relaxation to equilibrium act by changing 
the time reparameterization. Their success thus relies on their ability to exploit 
reparameterization softness. We conjecture that these results extend beyond the realm 
of glasses to the optimization of more general constraint satisfaction problems and to 
broader classes of algorithms. 

glasses | sampling algorithms | time reparameterization 

In contrast to many fields of physics, acceptable microscopic models of glasses are easy 
to construct: Hard spheres are a good example and may be readily simulated or studied 
experimentally (1). Theoretical efforts have instead been mostly directed at finding the 
right questions to ask (2). Phenomenological arguments abound and are constantly being 
refined, while exact analytical results are rare, a recent notable exception being the case 
of particles living in an infinite-dimensional space (3, 4). 

Several ideas have been proposed to capture the origin of the dramatic slowdown of the 
dynamics as density is increased or as temperature is lowered. These have been classified 
into two families. On the one hand, there is a landscape paradigm, where the energy 
function and associated static expectation values encode for the dynamical behavior 
(5–10). A dynamic transition, where the relaxation time diverges at a finite temperature, 
is then only possible if there exists an underlying, thermodynamic and landscape-based, 
one (11–16). On the other hand stands the view that glassiness is dynamical in essence. 
An example is when local rearrangements, and hence flow, are dominated by dynamic 
facilitation (17, 18). This occurs when localized, mobile regions diffusing through the 
system are essentially noninteracting and cannot be born or die except by branching and 
coalescing, a mechanism absent from the high-dimensional solution (19, 20). 

The latter view and the statics-dynamics debate were recently boosted by the develop-
ment of numerical algorithms that drastically accelerate the dynamical evolution (21–23), 
while preserving the Boltzmann distribution. In particular, the outstanding performance 
of the swap Monte Carlo algorithm has been interpreted as indicating that the energy 
landscape paradigm is insufficient to account for glassiness and thus as a sign that real 
glasses behave as models with local kinetic constraints (19, 24, 25). 

Our central finding is that both pictures are simultaneously right. That there is 
no contradiction between them is the consequence of a remarkable property, time 
reparameterization invariance, that is asymptotically exact—i.e., if and when the 
dynamics are slow—in the mean-field theory of aging in disordered systems (26–29). 
For realistic, finite-dimensional models, we are at present far from being able to prove 
analytically that time reparameterization invariance holds. Instead, we may seek whether 
the associated time reparameterization softness (30–34) is observed in them. If true, this 
implies that the flow of time can be modified with weak perturbations, exactly like a film 
being projected using an old hand-cranked projector, where the operator can effortlessly 
modify the speed of the projection but has no control over the film’s content. Physically, 
this implies that local particle rearrangements and short-time relaxation can be different 
depending on the specific dynamics and algorithm employed. Each algorithm yields its 
own collective relaxation time, but they trace the same trajectory in configuration space 
as the system slowly and collectively relaxes. This description echoes earlier attempts to 
remove time from the description of relaxation phenomena (35–38). Overall, our results 
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provide a clear means of sieving out the energy-landscape-
dependent features from purely dynamical ones. 

Our presentation begins with numerical and analytical ob-
servations of parametric plots of correlations in glass-formers 
endowed with vastly different time evolutions but sharing the 
same stationary Boltzmann distribution. The spectacular impact 
of reparameterizations calls for theoretical support that we address 
with an exact solution in mean field and eventually by describing 
a general picture with consequences well beyond the physics of 
glasses. 

The Proof Is in the Pudding 

Parametric Plot of Time Correlations. As glassiness sets in, the 
decay of time correlations follows a two-step scenario beginning 
with a fast relaxation, followed by a slow decay that extends up 
to a characteristic time 𝜏𝛼 . We track the relaxation of the system 
in terms of a real space, collective overlap function Fo, defined by 

Fo(a, t) ≡ 
1
N 

 

i,j 
𝜃 

� 
a − |ri(t) − rj(0) − Δrcom(t)| 

 
, [1] 

where Δrcom(t) is the displacement of the center of mass of the 
system, and 𝜃 is the step function. Physically, the function Fo 
compares the density fields of the system between times 0 and t. 
The angular brackets represent an average over the Boltzmann 
initial state and over time realizations of the dynamics. The 
parameter a, chosen to be smaller than any particle’s diameter, 
selects the scale over which the relaxation is monitored. This is 
better suited than the usual self-intermediate scattering function 
[see SI Appendix, sections 1 and 3] for discussing various 
algorithms on equal footing. In practice, we plot a connected 
and normalized overlap function Qo(a, t) = (Fo − qr)/(1 − qr), 
with qr = 4𝜋 

3 𝜌0a3 in three dimensions, and 𝜌0 the density of the 
system. This function decays to 0 at large times for any value of 
a and is normalized to unity at t = 0. The statements we make 
concern the late stages of the relaxation process near 𝜏𝛼 . 

When the goal is to sample the Boltzmann distribution, the 
algorithm being used does not need to respect actual physical 
constraints. For instance, introducing particle swaps with detailed 
balance, while clearly unphysical, has been shown to drastically 
reduce 𝜏𝛼 . Other proposals rely on irreversible methods that affect 
translation moves and/or particle swaps. The overall two-step 
relaxation shape of Qo(a, t) is also found in these vastly different 
dynamical evolutions. Our central result, sketched in Fig. 1, is 
that all dynamics, fast and slow, encapsulate the same physical 
evolution of the correlations. To test time reparameterization 
softness, we eliminate time in parametric plots of Qo(a, t) for 
two values of a and for various dynamics in different systems 
with glassy behavior. The collapse of the curves then directly 
expresses time-reparameterization invariance. Our conjecture is 
that this collapse occurs whenever both the algorithms display 
slow relaxation, with long lived plateaus of the same height in the 
decay of their dynamical correlation functions. The numerical 
evidence supporting these claims is our main result. 

Irreversible Translation Moves. We begin with a three-
dimensional binary Kob–Andersen mixture (39) evolving 
through an overdamped Langevin process. The convergence 
of this dynamics to the same Boltzmann distribution can be 
accelerated by exerting on every particle an extra force transverse 
to its local energy gradient (40–42). We use the dimensionless 
parameter 𝛾 to quantify the relative strength of transverse to radial 

forces: the larger 𝛾 , the greater the speed-up (see Materials and 
Methods for further details). 

We numerically integrate the dynamics at a low temperature 
T = 0.48, where the relaxation spans several orders of 
magnitude. In Fig. 2 A and B we plot the time evolution of Qo, 
evaluated at two distinct lengths a1, a2. In the presence 
of transverse forces, the relaxation of the system is faster compared 
with the equilibrium dynamics by a factor ≈ 4 for 𝛾 = 4 and by 
a factor ≈ 7 for 𝛾 = 10. Both dynamics exhibit signs of two-step 
relaxation, and in the late part of the relaxation the shape of the 
curves is very similar, even when passing from 𝛾 = 0 to 𝛾 = 10. 
In Fig. 2C , we represent Qo(a1, t) as a function of Qo(a2, t) in 
a parametric plot, for 𝛾 = 0, 4, and 10. Their collapse shows 
that there exists a reparameterization of time such that the slow 
relaxation of the system with transverse forces coincides with 
the slow relaxation of the system under equilibrium dynamics: 
transverse forces speed up the slow dynamics of the system 
by means of a time reparameterization. Recent results (40–42) 
demonstrated that at low temperatures the dynamic pathways 
involve genuine nonequilibrium currents. Yet, these dynamic 
pathways display time reparameterization. 

We have also compared the dynamics of polydisperse hard 
spheres with the equilibrium Metropolis Monte Carlo algorithm 
against the irreversible Event Chain Monte Carlo (43): a protocol 
of driven and collective rejection-free displacements of chains 
of particles which are microscopically very different from the 
local moves of the Metropolis Monte Carlo algorithm. We 
discovered that Event Chain also operates in glassy dynamics by 
reparameterizing the time over which the long-time relaxation 
occurs. The numerical data supporting this statement are shown 
in SI Appendix, section 2. 

Swap Monte Carlo Algorithm. We push our exploration of time 
reparameterization invariance by probing the Swap Monte Carlo 
algorithm (21) (hereafter denoted as “Swap”). Swap implements 
reversible exchanges of diameters between pairs of particles. 
For continuously polydisperse hard-spheres, this allows the 
particle diameters to fluctuate, potentially opening up additional 
relaxation channels (20, 44–46) that can speed up the dynamics 
by several orders of magnitude (22, 47). However, we claim that 
in the region where the dynamics is slow for both Metropolis 
and Swap algorithms, the acceleration achieved by Swap results 
again from a reparameterization of time with respect to the local 
Metropolis dynamics. 

To see this, we compare Metropolis and Swap dynamics in 
a dense system of continuously polydisperse hard spheres. We 
tune the rate of swaps ps to work in a regime where the speedup 
provided by Swap encompasses about four orders of magnitude, 
and track the relaxation by means of the overlap function Qo(a, t). 
In Fig. 3 A–C , we show the time evolution of Qo(a, t) for three 
different values of a. For Metropolis dynamics, the decay of 
Qo covers several orders of magnitude, with signs of a two-step 
relaxation showing up for the lowest value of a. Turning on the 
swap moves, the curves depart from the ones obtained with the 
Metropolis dynamics, and their decay is faster. 

In Fig. 3 D–F , we show parametric plots of Qo(ai, t) as a 
function of Qo(aj, t) for all possible combinations (ai, aj) of 
distinct parameters for the overlap function. All the curves for 
the dynamics with different swap probabilities nearly collapse 
on top of each other, and the four-order of magnitude speed 
up disappears, suggesting that even an algorithm as powerful as 
Swap works by reparameterizing time. We have observed that the 
quality of the collapse improves when density is increased and 
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A B C D 

Fig. 1. Sketch of three algorithms performing dramatically dierent moves on the same system: (A) local equilibrium translations; (B) directed displacement 
of chains of particles; (C) exchange of particle diameters. (D) The eect of these moves can be encapsulated into a change of the pace at which the clock of the 
system is ticking. This is time reparameterization softness. 

all curves display enhanced sign of two-step decay, suggesting 
even better collapse could be observed if we could simulate 
longer timescales. We expect that the time window over which 
data collapse is observed increases when the average relaxation 
becomes larger, an observation that would deserve further work. 

Irreversible versions of Swap have recently been proposed 
(48, 49) that further accelerate the dynamics by performing 
driven, collective exchanges of particle diameters. The results 
are as above, see SI Appendix, sections 5 for data supporting our 
findings. 

Kinetically Constrained Model. We now provide an instance of 
glassy dynamics that does not display time reparameterization 
softness because it is controlled by purely local constraints. We 
study the dynamics of the soft-East kinetically constrained model 
introducing an analog of swap moves, as proposed in ref. 24. 
Without softness, the original East model consists of N binary 
variables ni ∈ {0, 1} on a one-dimensional periodic lattice. Sites 
with ni = 1 are occupied by an excitation. In the spirit of local 
defects in crystal, excitations represent regions where structural 
rearrangement can take place, transitioning from ni = 1 to 
ni = 0. The thermodynamic properties are trivial and are 
governed by the temperature T and the energy cost J of an 
excitation. The relaxation is hindered by kinetic constraints: the 
reversible creation and destruction of an excitation can take place 
only on a site immediately to the right of an excitation, thus 
incorporating dynamical facilitation. 

In the soft version, each site is supplemented with a binary 
softness parameter, which modifies the kinetic constraint, allow-
ing for the birth and death of isolated excitations. Spontaneous 
updates of the softness are controlled by a swap-like process 

with rate rs. When rs = 0, only the softness of already existing 
excitations can change. For rs = 0, the softness of any site can 
be updated (see Materials and Methods for more details). By 
changing rs we can thus speed the dynamics up and investigate 
whether time reparameterization is at work in the system. 

We simulate the dynamics of the soft-East model with swap 
updates. For a fixed temperature we change the softness update 
rate from rs = 0 to large values. We track the relaxation of the 
system using the persistence function P(t), which measures the 
fraction of spins that have not yet flipped up to time t, and 
is thus analogous to the overlap function used for structural 
glasses. The evolution of P(t) with rs is shown in Fig. 4A. The 
persistence function starts from 1 when no spin has flipped and 
decays to 0 when all spins have been updated at least once. The 
behavior of P(t) at short times does not change upon varying rs. 
At later times, the curves for rs = 0 depart from the curve 
obtained for rs = 0, achieving a speedup of almost three orders 
of magnitude for the largest rs. We also looked at the time 
autocorrelation of the spins, Cn(t), see Fig. 4B. For any swap 
rate rs, the decay of Cn(t) is about an order of magnitude faster 
than the decay of the corresponding persistence curve P(t), but 
the overall behavior is very similar. 

The long time decay of P(t) and Cn(t) have different shapes 
when rs changes. In Fig. 4C we show parametric plots of 
Cn(t) against P(t). The different curves do not collapse, even 
for the lowest rs value. Differently from the particle models, 
the correlation functions studied in Fig. 4 are single spin 
functions, as collective correlations vanish for this model. To 
assess whether the access to nonvanishing collective correlations 
on different lengthscales can restore time-reparameterization 
invariance, we investigate in SI Appendix, sections 6 a different 

A B C 

Fig. 2. (A and B) Time evolution of the overlap function Qo(a, t) for a Kob–Andersen mixture under equilibrium overdamped Langevin dynamics (𝛾 = 0) and 
with transverse forces (𝛾 = 4 and 𝛾 = 10), for a1 = 0.2dAA and a2 = 0.3dAA. (C) Time reparameterization invariant plot, obtained representing Qo(a1 , t) as a 
function of Qo(a2 , t). 
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A

D E F

B C

Fig. 3. (A–C) Time evolution of the collective overlap function in continuously polydisperse hard spheres using Metropolis algorithm (ps = 0) and Swap Monte 
Carlo with dierent swap probabilities at fixed packing fraction 𝜙 ≡ 𝜌0 

𝜋
6 d

3 . In each panel, a dierent value of a is used. a1 = 0.15d, a2 = 0.2d, a3 = 0.3d. (D–F ) 
Parametric plots of Qo(ai , t) as a function of Qo(aj , t). 

kinetically constrained model with softness updates where col-
lective correlations can be studied. We do not see a collapse 
in the parametric plots in that system either. The acceleration 
provided by the additional updates of the softness are not simply 
described by reparameterization of time. This also shows that 
the reparameterization-invariant data collapse observed in finite 
dimensional particle models is not trivial. 

Time Reparameterization Softness. Mean-field glass models 
provide a tractable case (or limit, in the case of large dimen-
sionality) where there is analytic support to the concept of time 
reparameterization. We first describe how time reparameteriza-
tion softness generally arises in mean-field frameworks, and then 
tackle analytically a specific mean-field model. 

Glasses primarily respond to external perturbations by chang-
ing the pace of their evolution, like the same movie projected 
at various speeds. Consider a correlation function obtained by 
measuring a quantity at two times and repeating the experiment 
many times under statistically equal conditions, CA(t, t ) = 
A(t)A(t ). (Averages are over independent experiments). 
Alternatively, we may apply an infinitesimal pulse field changing 
the Hamiltonian to H (t) → H + hA𝛿(t − t ) at time t  
and measure the change in the expectation at time t at linear 

order, RA(t, t ) = 𝛿A(t) 
𝛿h . In equilibrium, the response and 

correlation functions are linearly related by the fluctuation– 
dissipation theorem, TRA(t − t ) = −∂t CA(t − t ), with T 
the temperature of the system. 

In mean-field models, given a set of observables A𝛼 , it is 
possible to write closed exact equations for pairs of response-
correlation functions CA𝛼 and RA𝛼 , valid in and out of equilib-
rium, which do not have any explicit time dependence. If the 
relaxation of the system is very slow, one may neglect the time-
derivatives and solve for all the CA𝛼 , RA𝛼 . The solution holds 
however up to a time reparameterization: if {RA𝛼 (t, t ), CA𝛼 (t, t )} 
is a solution, then {RA𝛼 (h(t), h(t )) 

dh
dt  , CA𝛼 (h(t), h(t ))} is also 

a solution. The function h(t) is smooth and increasing, and it 
encodes the adopted reparameterization of time. 

The true solution, where the time derivative is not neglected, 
is unique, and hence only one of the h(t) constitutes the “good” 
parameterization. However, other reparameterizations can be 
selected, for instance in the presence of an applied shear (50), 
or during jump events (34) between distant configurations at 
low energy, and can be made visible when looking at fluctuations 
of the correlation-response curves (27–29). 

By making a parametric plot of any one of the 
{RA𝛼 (t, t ), CA𝛼 (t, t )} in terms of a single, reference correlation 

A B C

Fig. 4. Dynamics of a soft-East kinetically constrained model with softness updates, using dierent values of the softness updated rate rs . (A) persistence 
function as a function of time for dierent swap rates. (B) Time decay of the spin–spin autocorrelation function Cn. (C) Parametric plot of Cn against P. The 
absence of collapse in (C) reveals the lack of time reparameterization invariance. 
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Co(t, t ), we obtain a single master curve independent of the 
chosen time reparameterization (51). In this representation, we 
are measuring everything in terms of a “clock” Co(t, t ), which 
determines the “material time” (35, 36, 38, 52). 

The concept of time reparameterization first arose in the 
context of dynamic mean-field theory of aging systems (53). As 
discussed here and in the specific mean-field model solved below, 
it generalizes to mean-field models in a wide range of situations, 
and it appears as a generic property of mean-field glasses in 
a slow dynamical regime. The numerical results provided in 
this work demonstrate that its domain of applicability is not 
restricted to mean-field models, but is an observed property of 
realistic, finite dimensional glass models. This is reminiscent 
of the idea of an effective temperature (54) that first emerged 
from the analytic solution of the aging dynamics of a mean-field 
spin glass model (53). Along the years, the existence of effective 
temperatures was then demonstrated in a much wider range of 
finite dimensional situations (55). 

A Solvable Model. The above general discussion can be illustrated 
on an explicit example. We consider the mean-field p-spin glass 
model, which is driven out of equilibrium while respecting 
the Boltzmann distribution. To do so, we couple two copies 
of the system by means of a nonreciprocal force chosen to 
preserve the factorized Boltzmann distributions for the two 
systems (56). As for transverse forces, a dimensionless parameter 
𝛾 controls the relative strength of the antisymmetric coupling. 
While the nonreciprocal coupling accelerates the dynamics, we 
can establish that time reparameterization holds exactly and is 
entirely governed by the equilibrium free energy landscape. 

Below a critical temperature Td , the ergodicity of the system is 
broken. Here, we investigate the role of time reparameterization 
invariance by considering the dynamics of the coupled systems at 
a temperature slightly above or slightly below Td , starting from an 
initial configuration at infinite temperature. The fully connected 
nature of the model allows us to study its full time evolution in 
terms of spin-responses and spin–spin correlations R𝛼𝛽 (t, t ) and 
C𝛼𝛽 (t, t ), for 𝛼, 𝛽 = 1, 2. Our analysis [details in SI Appendix, 
sections 7] shows that the slow evolution of R𝛼𝛽 (t, t ) and 
C𝛼𝛽 (t, t ) is fully determined by two scalar quantities C(t, t ), R(t, t ), which satisfy integral equations of the form: 

F [C(t, t ), R(t, t )] = 0 
G[C(t, t ), R(t, t )] = 0, 

[2] 

with F and G functionals of C(t, t ), R(t, t ) which do not depend 
on 𝛾 . They are the same functionals found using equilibrium 
dynamics at 𝛾 = 0 (50, 53). Eq. 2 determinesR(t, t ) and C(t, t ) 
up to a reparameterization of time (27, 50). The choice of the 
specific solution of Eq. 2 is done by matching asymptotically 
the slow terms with the fast decaying part, whose evolution 
does depend on 𝛾 . The impact of 𝛾 on the slow decay of the 
correlations and response functions thus amounts to a time 
reparameterization. 

The Big Picture: Franz Parisi Potential and 
Quasi-Dynamics 

The stimulating picture emerging from our results is that both 
the energy landscape and the specifics of the dynamics matter. 
The former determines the form of the relaxation, while the 
latter controls the speed at which the configuration space is 
explored. We now provide a broader physical interpretation of 

the presence of time-reparameterization invariance, inspired by 
mean-field results. 

In a given system, we introduce a notion of correlation between 
two configurations x and y, such as 

Fo(a, x, y) = 
1
N 

 

i,j 
𝜃 

� 
a − |xi − yj| 

 
, [3] 

where x is drawn from the Boltzmann distribution. We further 
consider the Boltzmann distribution of y at fixed x, restricted 
to the surface Fo(a, x, y) = q, where q measures correlations 
between the two configurations. The corresponding q-dependent 
free energy V (q) is the Franz–Parisi potential (57). A sketch of 
V (q) for different temperatures is shown in Fig. 5 A–C . Within 
mean field, the potential is monotonic in the liquid phase and 
develops, at the dynamic transition point, a secondary minimum, 
whose location defines the Edwards-Anderson parameter qEA. 
This minimum decreases until it becomes degenerate with the 
one at q = 0 at the equilibrium transition to the glass phase. 

In Fig. 5 D–F we sketch what would happen if we fixed two 
distances. Clearly, integrating one constraint away gives back the 
original one-dimensional potential. The assumption behind this 
picture is that, apart from the minimum at the origin, there is 
at most only another minimum in this potential at the position 
(q1 

EA, q
2 
EA). 

Starting from here, we can make a “quasidynamic” con-
struction step by step, as sketched in Fig. 5G. Very surpris-
ingly, this construction gives, within mean field, the correct 
reparameterization-invariant equations for the dynamics (58, 59), 
just by interpreting the links in the chain as times. From this 

A B C 

D E F 

G 

Fig. 5. Sketch of the Franz–Parisi construction in mean field: (A) above 
the dynamic transition temperature Td . (B) Between the dynamic transition 
temperature and the static transition temperature TK . (C) Below the static 
transition. (D–F ) Sketch of the contour plots of a two-dimensional Franz– 
Parisi potential, with two “distances” q1 and q2 imposed. (G) Quasidynamics 
construction (58): at each step we choose a new configuration, represented by 
the gray circles, subject to one or more constraints, keeping all the preceding 
links frozen. 
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construction, the chain is independent of the choice of correlation 
used for the links. Thus, we have found a relation between 
correlations that is a result of a purely equilibrium calculation, 
as no allusion was made to an actual dynamical process. As a 
corollary, our numerical results in finite dimension support the 
existence of quasi-dynamics robust with respect to time evolution. 
For transverse forces and Event Chain Monte Carlo algorithm, 
recent analytical and numerical results substantiate the quasi-
dynamics picture (40, 48): in transverse forces, odd transport 
significantly enhances local motion on short time-scales, but the 
particles eventually need to confront cage escape. In Event Chain 
Monte Carlo, maps of dynamical heterogeneities over long time 
scales have been shown to be very similar to the ones obtained 
with Metropolis Monte Carlo. 

What we have argued in this paper is that clever algorithms 
work by efficiently exploiting the softness implied by time 
reparameterization invariance to drastically accelerate the time 
evolution. Numerically probing, in finite-dimensional systems, 
the “quasi-dynamics” picture of time-reparameterization put 
forth in our work is perhaps within reach, e.g. by building upon 
previous efforts along this direction (60–62). 

Let us emphasize that the conclusion here is that the fact that 
different dynamical procedures leading to the same equilibrium 
may drastically stretch the timescales—the ‘reparameterization 
softness’—is an observed property, one that any glass theory is 
required to reproduce. Even though it arises naturally in mean-
field theory, it may perhaps be explained within other scenarios. 
It is an interesting question to understand, for instance, how this 
may arise, as it should, in a theory based on local elasticity. 

More broadly, reparameterization softness has recently been 
identified as the mechanism leading to the emergence of gravity 
as a low-energy limit of simple quantum (SYK) models (33). 
Hints of time reparameterization softness have been also found 
in the learning dynamics of wide and deep neural networks (63). 
In the context of supercooled liquids, the very same mecha-
nism underlies the drastic time-rescaling with temperature (as 
described by the time-temperature superposition principle), as 
well as under shear, aging, and barrier-crossing processes, with 
experimental consequences that are starting to be explored (35). 
We hope that the present work incentivizes the use of para-
metric plots as a tool to probe time reparameterization in a 
variety of experimental settings. In this work, we demonstrate 
that reparameterization softness also resolves the longstanding 
dichotomy between dynamical and landscape views on glasses: 
the latter determines reparameterization-invariant characteristics, 
while the former governs the actual time parameterization. 

Materials and Methods 

Kob–Andersen Mixture with Transverse Forces. The Kob Andersen poten-
tial is defined as (39) 

Vab(r) = 4𝜖ab 

 
dab 
r 

12 
− 

 
dab 
r 

6 
 

+ C [4] 

for rab < 2.5dab, and 0 otherwise. The constant C ensures that 
Vab(2.5dab) = 0. The interaction diameters dab are d11 = 1 (which sets 
the units of length of the system), d12 = d21 = 0.8, d22 = 0.88, while 
the interaction energies 𝜖ab are 𝜖11 = 1 (which sets the units of energy), 
𝜖12 = 𝜖21 = 1.5, 𝜖22 = 0.5. 

The overdamped Langevin dynamics for this system is (40) 

ṙ a i = −(1 + 𝛾A) 

j =i 

2 

b=1 
∇a 

i Vab(|r 
a 
i − rb 

j |) + 
√ 

2T𝝃 a(t) 
i , [5] 

where ra i is the position of particle i of species a, with a = 1, 2. 𝝃 ai (t) is a 
Gaussian white noise with zero mean and correlations 𝝃ai (t) ⊗ 𝝃 bj (t) = 
1𝛿(t − t )𝛿ij𝛿ab. The temperature T is measured in units of 𝜖11/kB, with kB 

the Boltzmann constant. The transverse forces are implemented by means of an 

antisymmetric matrix

⎡
0 −1 0 

 A = ⎣1 0 0⎦ 
0 0 0 

⎤ 

and of a dimensionless number 𝛾 

that controls the amplitude of the nonequilibrium drive. When 𝛾 = 0, Eq. 5 
is an out of equilibrium dynamics, with a steady state given by the Boltzmann 
distribution for the Kob–Andersen mixture. The relaxation to the stationary state 
for 𝛾 = 0 is guaranteed to be shorter than or equal to the one of equilibrium 
dynamics. 

Simulations are performed in the NVT ensemble, using a box of side L = 
9.4d11 and a total number of particles N1 + N2 = 1,000, so that the number 
density of the system 𝜌0 = NV is 𝜌0  1.204. The equations of motion given 
by Eq. 5 are integrated by means of the Euler–Heun algorithm using a time 
step Δt = 10−4 . The data shown are obtained from the steady-state dynamics 
equilibrated samples, obtained using the overdamped Langevin dynamics (Eq.5 
with 𝛾 = 4) for 108 time steps. The results shown in Fig. 2 of the main text are 
obtained by studying the stationary dynamics of 45 independent configurations. 

Polydisperse Hard Spheres. The model consists of N polydisperse hard 
spheres in three dimensions (47). The diameters d are drawn from a power 
law distribution 𝜋(d) ∝ d−3 . The boundaries of the distribution are chosen 

so that the polydispersity Δ ≡ 

 
d2−d

2 

d 
is Δ ≈ 23%, with . . . denoting an 

average over the diameter distribution. The average diameter d sets the units 
of length. The hard sphere potential between two particles i and j separated 

d +d
by a distance rij is defined as V(rij) i j = +∞ if rij < , and V(r2 ij) = 0 
otherwise. The simulations are done in a cubic box of linear size L with periodic 
boundary conditions. We explore the dynamics of the system at high packing 
fractions N 𝜙 ≡ 𝜋6 L3 d3 . 

Metropolis Algorithm. In a single timestep of the Metropolis algorithm, N 
Metropolis moves are performed. During a Metropolis move, a sphere is selected 
uniformly at random, and a displacement is proposed within a cubic box of side𝛿, 
centered around the sphere. If the displacement does not generate any overlap 
between the sphere and its neighbors, the move is accepted. In our simulations, 
we chose 𝛿 = 0.115. 

Event-Chain Monte Carlo. We implement the original, so called “straight” 
version of the Event Chain Monte Carlo algorithm (43). In the Event-Chain Monte 
Carlo algorithm, an activity label is assigned to a particle i chosen uniformly at 
random, together with a direction of motion v ∈ {ex, ey}. The active particle is 
displaced along the direction v until a collision with another particle j occurs. 
After the collision, the activity label passes from particle i to particle j. The latter 
starts then to move along the direction v. The iteration of this procedure produces 
a driven, collective displacement of a chain of particles. When the sum of the 
displacements of all the particles involved in the chain add up to a value , the 
activity label and direction of self-propulsion are uniformly resampled, initiating 
a new chain. One time step of the algorithm corresponds to one collision among 
the hard spheres, or to the random resampling of the activity label and self-
propulsion direction v. We studied the Event Chain Monte Carlo dynamics for a 
system of N = 1,000 polydisperse hard spheres at 𝜙 = 0.604. Following (49), 
we chose  = 0.2L, with L the linear size of the box. The relaxation curves and the 
time reparameterization invariant plots for Event Chain Monte Carlo, shown in 
SI Appendix, sections 2 have been obtained by averaging over 50 independent 
realizations of the dynamics of the system in the steady state. 

Swap Monte Carlo. In the Swap algorithm, one alternates between a set of N 
Metropolis moves and N swap moves. A set of N Swap moves is performed with 
probability pSwap. During a swap move, a pair of particles is selected uniformly at 
random and an exchange of the particle diameters is proposed. If the exchange 
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does not generate overlaps with the neighbors, the move is accepted. The 
relaxation curves displayed in Fig. 3 of the main text and in SI Appendix, Fig. S4 
have been obtained by averaging over 35 independent realizations of the Swap 
dynamics in the equilibrium state. 

Collective Swap. The collective Swap algorithm implementation for a three-
dimensional system of polydisperse hard spheres is described in ref. 49. We 
alternate randomly between a set of N Metropolis moves and a set of N/2 
collective Swap moves. The latter set occurs with probability pcSwap = 0.2. 
We studied the collective Swap dynamics for s system of N = 1,000 
polydisperse hard spheres at 𝜙 = 0.648. The relaxation curves and the time 
reparameterization invariant plots, shown inSIAppendix, Fig. S6 are obtained by 
averaging over 25 independent realizations of the dynamics in the steady state. 

East Model with Soft Kinetic Constraints and “Swap” Softness Updates. 
We consider N sites on a one dimensional, periodic lattice. Each site i has a spin 
value ni ∈ {0, 1} and a softness value si ∈ {0, 1}. The Hamiltonian H of the 
system is the one of 2N noninteracting spins 

H = J 
 

i 
ni + B 

 

i 
si. [6] 

The kinetic constraints of the model are implemented by means of a constraint 
function Ci for each site: 

Ci = ni−1 + si, [7] 
which controls the rate at which a spin in site i flips. A spin ni flips from state 1 
to state 0 with rate Ci, and from state 0 to state 1 with rate e−J/T . 

The softness parameter si can be updated in two ways (24): by means of 
spontaneous fluctuations or by means of “swaps” (s-updates). Spontaneous 
softness fluctuations take place only on site with ni = 1, with rate rx = e−J/T . 
When a spontaneous softness fluctuation occurs at site i the value of si becomes 1 
or 0 with probability (1 + eB/T )−1 or (1 + e−B/T )−1 , respectively. s-updates, 
on the other hand can occur on any site, independently from the value of ni, with 
rate rs, which is a parameter of the model and, when nonzero, is proportional 
to e−J/T . This ensures that the s-updates dynamics takes place on a similar 
timescale as for the creation of excitations. During an s-update, the value of the 
softness is updated using the same probabilities as for the spontaneous softness 
fluctuations. 

Following (24), we fix the energy scale of the softness to B/T = 2. This 
ensures that the introduction of s-updates yields substantial speedup to the 
dynamics. In fact, for values of B/T too low or too big the softness and the 
excitation dynamics decouple, making s-updates less effective. 

Since the thermodynamics of the system is the one for a system of 
noninteracting spins, equilibrium initial condition at a given temperature can 
be directly generated. The dynamics of the system is instead simulated using 
the Botz–Kalos–Lebowitz algorithm (64), or continuous time Monte-Carlo. In 
a nutshell, this is a rejection-free method that relies on computing the time 
that the system spends in a given configuration before transitioning to a new 
one, instead of proposing moves toward new configurations that are prone to 
rejection. At each step of the algorithm, we 

1. We start from the current configuration C of the system at time t, given by 
an assignment of the spins ni and softness si to the N sites. 

2. Enumerate the M configurations C1, . . . , CM = C that the system can 
evolve into, starting from C, and compute the rate 𝜔k at which the transition 
C → Ck can happen. 

3. We compute the cumulative sum S ≡ 
M

k=1 𝜔k . 
4. We draw a configuration C ∗ from the set of M possible configurations. The 

probability weight of a configuration k is 𝜔k/S. 
5. We update the configuration C to the new configuration C ∗ , and we 

increment the time by an amount Δt = log 1/r 
S , with r a random number 

uniformly distributed in the interval (0, 1]. 
6. We update C ∗ 

→ C, t + Δt → t and we start back from step 1. 

The data presented in the main text in Fig. 4 are the results of an average 
over 50 independent runs for a system of N = 512 sites. 

p-Spin with Ichiki–Ohzeki Dynamics. A p-spin spherical glass consists of N 
continuous spins 𝜎i on a fully connected lattice, interacting through a p-body 
Hamiltonian H(𝜎). A quench disorder is introduced by means of random, 
coupling constants among the spins. 

H(𝜎) ≡ 
 

i1<...<ip 

Ji1...ip 𝜎i1 . . . 𝜎ip . [8] 

The coupling constants Ji1...ip are independent Gaussian random variable 

encoding the quenched disorder of the system, with variance 
 
Ji1...ip 

2 
= 

p! 
2Np−1 . The equilibrium overdamped Langevin dynamics for this model reads 

𝜎̇i = F(𝜎i , t) + 
√ 

2T𝜉i(t), [9] 

where 𝜉i(t) is a Gaussian white noise with correlations 𝜉i(t)𝜉j(t ) = 
2T𝛿(t − t ). The force Fi(𝜎i , t) = − ∂H

∂𝜎i 
contains a contribution coming 

from the gradient of the Hamiltonian and a harmonic restoring force, which 
ensures that the spherical constraint 


i𝜎i(t)

2
 = N is satisfied at all times. 

The fully connected nature of the model allows to study its dynamics by means 
of correlations and response functions C(t, t ), R(t, t ), defined respectively as 

R(t, t ) = 
1
N 

 

i 

 
∂𝜎i(t) 
∂hi(t) 

   
hi=0 

 

C(t, t ) = 
1 
N 


i 

 
𝜎i(t)𝜎i(t) 

 
. 

[10] 

To illustrate the concept of time reparameterization invariance, we consider 
an alternative dynamics for the p-spin. It exploits the possibility of injecting a 
nonequilibrium drive in the system which is specifically tailored to ensure that 
the steady state of the system follows the Boltzmann distribution. The use of 
these kinds of dynamics can be rewarded by faster convergence (65). In practice, 
the irreversible drift is implemented by means of the so-called Ichiki–Ohzeki 
dynamics (66). 

The nonreciprocal coupling is obtained considering two p-spin models, 
each having N spins 𝜎(𝛼) 

i with independent quenched disorders and a 
total Hamiltonian given by the sum of the Hamiltonians of the two systems, 
Htot(𝜎(1), 𝜎(2)) = H(𝜎(1))+H(𝜎(2)). The two systems evolve according to 
an overdamped Langevin dynamics, which contains an antisymmetric coupling 
between the two copies: ⎡ ⎣𝜎̇(1) 

i (t)

𝜎̇(2) 
i (t) 

⎤ ⎦ = 
 

1 −𝛾 
𝛾 1 

 ⎡ ⎣ F
(1)(𝜎(1) 

i , t)

F(2)(𝜎(2) 
i , t) 

⎤ ⎦ + 

⎡ ⎣√ 
2T𝜉(1) 

i (t)
√ 

2T𝜉(2) 
i (t) 

⎤ ⎦ . [11] 

The realization of the Gaussian noises 𝜉 (𝛼)i (t) are independent from one system 
to the other. The parameter 𝛾 encodes the strength of the nonreciprocal forces 
exerted between the two copies. For 𝛾 = 0, we fall back to the case of two 
independent p-spin models evolving through an equilibrium dynamics. When 
𝛾 = 0, the dynamics becomes out of equilibrium, but it admits the Boltzmann 
distribution 𝜌B ∝ e−𝛽Htot in its steady state, which is reached with a shorter 
relaxation time compared to the equilibrium case (56). 

The steady-state dynamics of Eq. 11 has been studied previously (56), 
quantifying the acceleration of the system in an ergodic region above Td , the 
dynamical transition temperature below ergodicity is broken. Td is the same 
as in equilibrium. Below a critical temperature Td , the ergodicity of the system 
is broken. Here, we investigate the role of time reparameterization invariance 
by considering the dynamics of the coupled systems at temperature slightly 
above or slightly below Td , starting from an initial configuration at infinite 
temperature. We consider a generalization of Eq. 10 to encode responses and 
correlations internal to each copy and among each copy of the system in two 
2 × 2 matrices R𝛼𝛽 (t, t ) and C𝛼𝛽 (t, t ). From this quantities, which encode 
the full time evolution of the system, we isolate a slow contributionC𝛼𝛽 (t, t ), 
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R𝛼𝛽 (t, t ), for which ∂t C𝛼𝛽 (t, t ) ≈ ∂t R𝛼𝛽 (t, t ) ≈ 0. Imposing the ansatz 
C𝛼𝛽 = 𝛿𝛼𝛽 C(t, t ), R𝛼𝛽 = 1 

1+𝛾 2 
R(t, t  )(𝛿𝛼𝛽 + 𝛾 𝜖𝛼𝛽 ), with 𝜖𝛼𝛽 the Levi-

Civita tensor, we obtain the pair of integral equations 

0 = 
 
− 

T 
1 − q 

+ 
p(p − 1) 

2T 
(1 − q)C(t, t )p−2 

 R(t, t ) 

+ 
p(p − 1) 

2 

 t 

t 
d𝜏C(t, 𝜏 )p−2R(t, 𝜏 )R(𝜏 , t ) 

0 = 
 
− 

T 
1 − q 

+ 
p 

2T 
(1 − q)C(t, t )p−2 

 C(t, t ) 

+ 
p 
2 

 t 

t 
d𝜏C(t, t )p−1R(𝜏 , t ) 

+ 
p(p − 1) 

2 

 t 

0 
d𝜏C(t, 𝜏 )p−2R(t, 𝜏 )C(𝜏 , t ). [12] 

If T > Td , the quantity q is the height of the transient, long-lived plateau crossed 
by the correlation function during the relaxation process. If T ≤ Td , q is the 
Edwards-Anderson order parameter (67), which can be determined from the 

thermodynamics of the system. More details about the derivation can be found 
in SI Appendix, sections 7. These equations define explicitly the functionals F 
and G introduced in Eq. 2. 

Data, Materials, and Software Availability. The data used to produce the 
figures in this paper are publicly available in a Github repository (68). 
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