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The ultraslow dynamics of glass-formers has been explained by two views often
considered as mutually exclusive: One invokes locally hindered mobility, and the other
rests on the complexity of the configuration space. Here, we show that time evolution
responds strongly to details of the dynamics by changing the speed of time flow:
It has time-reparameterization softness. This finding reconciles both views: While
local constraints reparameterize the flow of time, the global landscape determines
relationships between different correlations at the same times. We show that modern
algorithms developed to accelerate the relaxation to equilibrium act by changing
the time reparameterization. Their success thus relies on their ability to exploit
reparameterization softness. We conjecture that these results extend beyond the realm
of glasses to the optimization of more general constraint satisfaction problems and to
broader classes of algorithms.

glasses | sampling algorithms | time reparameterization

In contrast to many fields of physics, acceptable microscopic models of glasses are easy
to construct: Hard spheres are a good example and may be readily simulated or studied
experimentally (1). Theoretical efforts have instead been mostly directed at finding the
right questions to ask (2). Phenomenological arguments abound and are constantly being
refined, while exact analytical results are rare, a recent notable exception being the case
of particles living in an infinite-dimensional space (3, 4).

Several ideas have been proposed to capture the origin of the dramatic slowdown of the
dynamics as density is increased or as temperature is lowered. These have been classified
into two families. On the one hand, there is a landscape paradigm, where the energy
function and associated static expectation values encode for the dynamical behavior
(5-10). A dynamic transition, where the relaxation time diverges at a finite temperature,
is then only possible if there exists an underlying, thermodynamic and landscape-based,
one (11-16). On the other hand stands the view that glassiness is dynamical in essence.
An example is when local rearrangements, and hence flow, are dominated by dynamic
facilitation (17, 18). This occurs when localized, mobile regions diffusing through the
system are essentially noninteracting and cannot be born or die except by branching and
coalescing, a mechanism absent from the high-dimensional solution (19, 20).

The latter view and the statics-dynamics debate were recently boosted by the develop-
ment of numerical algorithms that drastically accelerate the dynamical evolution (21-23),
while preserving the Boltzmann distribution. In particular, the outstanding performance
of the swap Monte Carlo algorithm has been interpreted as indicating that the energy
landscape paradigm is insufficient to account for glassiness and thus as a sign that real
glasses behave as models with local kinetic constraints (19, 24, 25).

Our central finding is that both pictures are simultaneously right. That there is
no contradiction between them is the consequence of a remarkable property, time
reparameterization invariance, that is asymptotically exact—i.e., if and when the
dynamics are slow—in the mean-field theory of aging in disordered systems (26-29).
For realistic, finite-dimensional models, we are at present far from being able to prove
analytically that time reparameterization invariance holds. Instead, we may seek whether
the associated time reparameterization softness (30—34) is observed in them. If true, this
implies that the flow of time can be modified with weak perturbations, exactly like a film
being projected using an old hand-cranked projector, where the operator can effortlessly
modify the speed of the projection but has no control over the film’s content. Physically,
this implies that local particle rearrangements and short-time relaxation can be different
depending on the specific dynamics and algorithm employed. Each algorithm yields its
own collective relaxation time, but they trace the same trajectory in configuration space
as the system slowly and collectively relaxes. This description echoes eatlier attempts to
remove time from the description of relaxation phenomena (35-38). Overall, our results
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provide a clear means of sieving out the energy-landscape-
dependent features from purely dynamical ones.

Our presentation begins with numerical and analytical ob-
servations of parametric plots of correlations in glass-formers
endowed with vastly different time evolutions but sharing the
same stationary Boltzmann distribution. The spectacular impact
of reparameterizations calls for theoretical support that we address
with an exact solution in mean field and eventually by describing
a general picture with consequences well beyond the physics of
glasses.

The Proof Is in the Pudding

Parametric Plot of Time Correlations. As glassiness sets in, the
decay of time correlations follows a two-step scenario beginning
with a fast relaxation, followed by a slow decay that extends up
to a characteristic time 7,. We track the relaxation of the system
in terms of a real space, collective overlap function F,, defined by

Fy(at) = % > (0 (a— I5i(2) — 55(0) — Areom(2)1)),  [1]
Lj

where Arcom () is the displacement of the center of mass of the
system, and 6 is the step function. Physically, the function 7,
compares the density fields of the system between times 0 and z.
The angular brackets represent an average over the Boltzmann
initial state and over time realizations of the dynamics. The
parameter 4, chosen to be smaller than any particle’s diameter,
selects the scale over which the relaxation is monitored. This is
better suited than the usual self-intermediate scattering function
[see SI Appendix, sections 1 and 3] for discussing various
algorithms on equal footing. In practice, we plot a connected
and normalized overlap function Q,(a, t) = (£, —g,)/(1 — g;),
with ¢, = %”poa3 in three dimensions, and pg the density of the
system. This function decays to 0 at large times for any value of
a and is normalized to unity at # = 0. The statements we make
concern the late stages of the relaxation process near 7.

When the goal is to sample the Boltzmann distribution, the
algorithm being used does not need to respect actual physical
constraints. For instance, introducing particle swaps with detailed
balance, while clearly unphysical, has been shown to drastically
reduce 7. Other proposals rely on irreversible methods that affect
translation moves and/or particle swaps. The overall two-step
relaxation shape of Q, (4, ¢) is also found in these vastly different
dynamical evolutions. Our central result, sketched in Fig. 1, is
that all dynamics, fast and slow, encapsulate the same physical
evolution of the correlations. To test time reparameterization
softness, we eliminate time in parametric plots of Q,(4, ¢) for
two values of 2 and for various dynamics in different systems
with glassy behavior. The collapse of the curves then directly
expresses time-reparameterization invariance. Our conjecture is
that this collapse occurs whenever both the algorithms display
slow relaxation, with long lived plateaus of the same height in the
decay of their dynamical correlation functions. The numerical
evidence supporting these claims is our main result.

Irreversible Translation Moves. We begin with a three-
dimensional binary Kob-Andersen mixture (39) evolving
through an overdamped Langevin process. The convergence
of this dynamics to the same Boltzmann distribution can be
accelerated by exerting on every particle an extra force transverse
to its local energy gradient (40-42). We use the dimensionless
parameter y to quantify the relative strength of transverse to radial
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forces: the larger y, the greater the speed-up (see Materials and
Methods for further details).

We numerically integrate the dynamics at a low temperature
T = 0.48, where the relaxation spans several orders of
magnitude. In Fig. 2 4 and B we plot the time evolution of Q,,
evaluated at two distinct lengths a1, 3. In the presence
of transverse forces, the relaxation of the system is faster compared
with the equilibrium dynamics by a factor &~ 4 for y = 4 and by
afactor & 7 for y = 10. Both dynamics exhibit signs of two-step
relaxation, and in the late part of the relaxation the shape of the
curves is very similar, even when passing fromy = 0 to y = 10.
In Fig. 2C, we represent Q,(a1, ¢) as a function of Q,(a, t) in
a parametric plot, for y = 0,4, and 10. Their collapse shows
that there exists a reparameterization of time such that the slow
relaxation of the system with transverse forces coincides with
the slow relaxation of the system under equilibrium dynamics:
transverse forces speed up the slow dynamics of the system
by means of a time reparameterization. Recent results (40-42)
demonstrated that at low temperatures the dynamic pathways
involve genuine nonequilibrium currents. Yet, these dynamic
pathways display time reparameterization.

We have also compared the dynamics of polydisperse hard
spheres with the equilibrium Metropolis Monte Carlo algorithm
against the irreversible Event Chain Monte Carlo (43): a protocol
of driven and collective rejection-free displacements of chains
of particles which are microscopically very different from the
local moves of the Metropolis Monte Carlo algorithm. We
discovered that Event Chain also operates in glassy dynamics by
reparameterizing the time over which the long-time relaxation
occurs. The numerical data supporting this statement are shown
in SI Appendix, section 2.

Swap Monte Carlo Algorithm. We push our exploration of time
reparameterization invariance by probing the Swap Monte Carlo
algorithm (21) (hereafter denoted as “Swap”). Swap implements
reversible exchanges of diameters between pairs of particles.
For continuously polydisperse hard-spheres, this allows the
particle diameters to fluctuate, potentially opening up additional
relaxation channels (20, 44-46) that can speed up the dynamics
by several orders of magnitude (22, 47). However, we claim that
in the region where the dynamics is slow for both Metropolis
and Swap algorithms, the acceleration achieved by Swap results
again from a reparameterization of time with respect to the local
Metropolis dynamics.

To see this, we compare Metropolis and Swap dynamics in
a dense system of continuously polydisperse hard spheres. We
tune the rate of swaps p; to work in a regime where the speedup
provided by Swap encompasses about four orders of magnitude,
and track the relaxation by means of the overlap function Q,(4, #).
In Fig. 3 A-C, we show the time evolution of Q,(4, ¢) for three
different values of 4. For Metropolis dynamics, the decay of
Q, covers several orders of magnitude, with signs of a two-step
relaxation showing up for the lowest value of 2. Turning on the
swap moves, the curves depart from the ones obtained with the
Metropolis dynamics, and their decay is faster.

In Fig. 3 D-F, we show parametric plots of Q,(a; ¢) as a
function of Q,(aj, #) for all possible combinations (4, 4;) of
distinct parameters for the overlap function. All the curves for
the dynamics with different swap probabilities nearly collapse
on top of each other, and the four-order of magnitude speed
up disappears, suggesting that even an algorithm as powerful as
Swap works by reparameterizing time. We have observed that the
quality of the collapse improves when density is increased and
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Fig. 1. Sketch of three algorithms performing dramatically different moves on the same system: (A) local equilibrium translations; (B) directed displacement
of chains of particles; (C) exchange of particle diameters. (D) The effect of these moves can be encapsulated into a change of the pace at which the clock of the
system is ticking. This is time reparameterization softness.

all curves display enhanced sign of two-step decay, suggesting
even better collapse could be observed if we could simulate
longer timescales. We expect that the time window over which
data collapse is observed increases when the average relaxation
becomes larger, an observation that would deserve further work.

Irreversible versions of Swap have recently been proposed
(48, 49) that further accelerate the dynamics by performing
driven, collective exchanges of particle diameters. The results
are as above, see ST Appendix, sections 5 for data supporting our

findings.

Kinetically Constrained Model. We now provide an instance of
glassy dynamics that does not display time reparameterization
softness because it is controlled by purely local constraints. We
study the dynamics of the soft-East kinetically constrained model
introducing an analog of swap moves, as proposed in ref. 24.
Without softness, the original East model consists of /V binary
variables #; € {0, 1} on a one-dimensional periodic lattice. Sites
with 7; = 1 are occupied by an excitation. In the spirit of local
defects in crystal, excitations represent regions where structural
rearrangement can take place, transitioning from 7; = 1 to
n; = 0. The thermodynamic properties are trivial and are
governed by the temperature 7 and the energy cost / of an
excitation. The relaxation is hindered by kinetic constraints: the
reversible creation and destruction of an excitation can take place
only on a site immediately to the right of an excitation, thus
incorporating dynamical facilitation.

In the soft version, each site is supplemented with a binary
softness parameter, which modifies the kinetic constraint, allow-
ing for the birth and death of isolated excitations. Spontaneous
updates of the softness are controlled by a swap-like process

with rate 7;. When 7, = 0, only the softness of already existing
excitations can change. For r; # 0, the softness of any site can
be updated (see Materials and Methods for more details). By
changing 7, we can thus speed the dynamics up and investigate
whether time reparameterization is at work in the system.

We simulate the dynamics of the soft-East model with swap
updates. For a fixed temperature we change the softness update
rate from 7; = 0 to large values. We track the relaxation of the
system using the persistence function P(¢), which measures the
fraction of spins that have not yet flipped up to time 7, and
is thus analogous to the overlap function used for structural
glasses. The evolution of P(¢) with 7, is shown in Fig. 44. The
persistence function starts from 1 when no spin has flipped and
decays to 0 when all spins have been updated at least once. The
behavior of P(#) at short times does not change upon varying 7.
At later times, the curves for ; # 0 depart from the curve
obtained for 7, = 0, achieving a speedup of almost three orders
of magnitude for the largest . We also looked at the time
autocorrelation of the spins, C,(¢), see Fig. 4B. For any swap
rate 7;, the decay of C,(¢) is about an order of magnitude faster
than the decay of the corresponding persistence curve P(t), but
the overall behavior is very similar.

The long time decay of P(¢) and C,(¢) have different shapes
when 7, changes. In Fig. 4C we show parametric plots of
C,(2) against P(¢). The different curves do not collapse, even
for the lowest 7; value. Differently from the particle models,
the correlation functions studied in Fig. 4 are single spin
functions, as collective correlations vanish for this model. To
assess whether the access to nonvanishing collective correlations
on different lengthscales can restore time-reparameterization
invariance, we investigate in S/ Appendix, sections 6 a different
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(A and B) Time evolution of the overlap function Qo (a, t) for a Kob-Andersen mixture under equilibrium overdamped Langevin dynamics (y = 0) and

with transverse forces (y = 4 and y = 10), for a; = 0.2ds4 and a, = 0.3da4. (C) Time reparameterization invariant plot, obtained representing Qo (aq,t) as a

function of Qo (a3, t).
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(A-C) Time evolution of the collective overlap function in continuously polydisperse hard spheres using Metropolis algorithm (ps = 0) and Swap Monte
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Carlo with different swap probabilities at fixed packing fraction ¢ = pg Zd3. In each panel, a different value of ais used. @ = 0.15d, a, = 0.2d, a3 = 0.3d. (D-F)

Parametric plots of Qo(a;, t) as a function of Qo(a, t).

kinetically constrained model with softness updates where col-
lective correlations can be studied. We do not see a collapse
in the parametric plots in that system either. The acceleration
provided by the additional updates of the softness are not simply
described by reparameterization of time. This also shows that
the reparameterization-invariant data collapse observed in finite
dimensional particle models is not trivial.

Time Reparameterization Softness. Mean-field glass models
provide a tractable case (or limit, in the case of large dimen-
sionality) where there is analytic support to the concept of time
reparameterization. We first describe how time reparameteriza-
tion softness generally arises in mean-field frameworks, and then
tackle analytically a specific mean-field model.

Glasses primarily respond to external perturbations by chang-
ing the pace of their evolution, like the same movie projected
at various speeds. Consider a correlation function obtained by
measuring a quantity at two times and repeating the experiment
many times under statistically equal conditions, Cy(%¢) =
(A(£)A(?')). (Averages are over independent experiments).
Alternatively, we may apply an infinitesimal pulse field changing
the Hamiltonian to H(¢t) — H + hAS(+ — ¢') at time ¢
and measure the change in the expectation at time ¢ at linear

order, Ry(t,¢) = %Sf)). In equilibrium, the response and
correlation functions are linearly related by the fluctuation—
dissipation theorem, TR4(zr — ') = —9,Cy(r — ¢'), with T

the temperature of the system.

In mean-field models, given a set of observables Ag, it is
possible to write closed exact equations for pairs of response-
correlation functions Cy, and Ry, , valid in and out of equilib-
rium, which do not have any explicit time dependence. If the
relaxation of the system is very slow, one may neglect the time-
derivatives and solve for all the Cy4,, R4,. The solution holds
however up to a time reparameterization: if {Ry, (4 ¢’), Ca, (% ')}
is a solution, then {Ry, (h(r), h(¢')) 5, Cy, (h(2), h(¢'))} is also
a solution. The function A(#) is smooth and increasing, and it
encodes the adopted reparameterization of time.

The true solution, where the time derivative is not neglected,
is unique, and hence only one of the 4(¢) constitutes the “good”
parameterization. However, other reparameterizations can be
selected, for instance in the presence of an applied shear (50),
or during jump events (34) between distant configurations at
low energy, and can be made visible when looking at fluctuations
of the correlation-response curves (27-29).

By making a parametric plot of any one of the
{Ra, (,¢), Ca,(¢)} in terms of a single, reference correlation
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Fig. 4. Dynamics of a soft-East kinetically constrained model with softness updates, using different values of the softness updated rate rs. (A) persistence
function as a function of time for different swap rates. (B) Time decay of the spin-spin autocorrelation function Cp. (C) Parametric plot of C against P. The
absence of collapse in (C) reveals the lack of time reparameterization invariance.
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C,(% ¢'), we obtain a single master curve independent of the
chosen time reparameterization (51). In this representation, we
are measuring everything in terms of a “clock” C,(# #'), which
determines the “material time” (35, 36, 38, 52).

The concept of time reparameterization first arose in the
context of dynamic mean-field theory of aging systems (53). As
discussed here and in the specific mean-field model solved below,
it generalizes to mean-field models in a wide range of situations,
and it appears as a generic property of mean-field glasses in
a slow dynamical regime. The numerical results provided in
this work demonstrate that its domain of applicability is not
restricted to mean-field models, but is an observed property of
realistic, finite dimensional glass models. This is reminiscent
of the idea of an effective temperature (54) that first emerged
from the analytic solution of the aging dynamics of a mean-field
spin glass model (53). Along the years, the existence of effective
temperatures was then demonstrated in a much wider range of
finite dimensional situations (55).

ASolvable Model. The above general discussion can be illustrated
on an explicit example. We consider the mean-field p-spin glass
model, which is driven out of equilibrium while respecting
the Boltzmann distribution. To do so, we couple two copies
of the system by means of a nonreciprocal force chosen to
preserve the factorized Boltzmann distributions for the two
systems (56). As for transverse forces, a dimensionless parameter
7 controls the relative strength of the antisymmetric coupling.
While the nonreciprocal coupling accelerates the dynamics, we
can establish that time reparameterization holds exactly and is
entirely governed by the equilibrium free energy landscape.
Below a critical temperature 7, the ergodicity of the system is
broken. Here, we investigate the role of time reparameterization
invariance by considering the dynamics of the coupled systems at
atemperature slightly above or slightly below 7/, starting from an
initial configuration at infinite temperature. The fully connected
nature of the model allows us to study its full time evolution in
terms of spin-responses and spin—spin correlations Ryp(% #') and
Cop(t,¢'), for a, p = 1, 2. Our analysis [details in S/ Appendix,
sections 7] shows that the slow evolution of Ryp(#) and
Cap(t,7') is fully determined by two scalar quantities C(z, ),

R(t,¢'), which satisfy integral equations of the form:

~

FlCe) R5t)) =

0
GlC(¢), Rt )] =0, 2}
with F and G functionals of C(z, #'), R(#, #') which do not depend
on y. They are the same functionals found using equilibrium
dynamicsaty = 0 (50, 53). Eq. 2 determines R(# ') and C (% ¢')
up to a reparameterization of time (27, 50). The choice of the
specific solution of Eq. 2 is done by matching asymptotically
the slow terms with the fast decaying part, whose evolution
does depend on y. The impact of y on the slow decay of the
correlations and response functions thus amounts to a time
reparameterization.

The Big Picture: Franz Parisi Potential and
Quasi-Dynamics

The stimulating picture emerging from our results is that both
the energy landscape and the specifics of the dynamics matter.
The former determines the form of the relaxation, while the
latter controls the speed at which the configuration space is
explored. We now provide a broader physical interpretation of

PNAS 2026 Vol. 123 No.4 2520818123

the presence of time-reparameterization invariance, inspired by
mean-field results.

In a given system, we introduce a notion of correlation between
two configurations x and y, such as

1
Foaxy) =23 {0 (a— xi = yI)) [3]
ij

where x is drawn from the Boltzmann distribution. We further
consider the Boltzmann distribution of y at fixed x, restricted
to the surface F,(2,x,y) = ¢, where g measures correlations
between the two configurations. The corresponding g-dependent
free energy V(g) is the Franz—Parisi potential (57). A sketch of
V(gq) for different temperatures is shown in Fig. 5 A-C. Within
mean field, the potential is monotonic in the liquid phase and
develops, at the dynamic transition point, a secondary minimum,
whose location defines the Edwards-Anderson parameter gz4.
This minimum decreases until it becomes degenerate with the
one at ¢ = 0 at the equilibrium transition to the glass phase.

In Fig. 5 D—F we sketch what would happen if we fixed zwo
distances. Clearly, integrating one constraint away gives back the
original one-dimensional potential. The assumption behind this
picture is that, apart from the minimum at the origin, there is
at most only another minimum in this potential at the position
(k0 TEa)-

Starting from here, we can make a “quasidynamic” con-
struction step by step, as sketched in Fig. 5G. Very surpris-
ingly, this construction gives, within mean field, the correct
reparameterization-invariant equations for the dynamics (58, 59),
just by interpreting the links in the chain as times. From this

V(q) A B C
T>Td TK<T<:Td T<TK
q
q2 D
q1
3 G
o 4 6
) O YO
® 5
Q@
2

Fig. 5. Sketch of the Franz-Parisi construction in mean field: (A) above
the dynamic transition temperature 7. (B) Between the dynamic transition
temperature and the static transition temperature Tg. (C) Below the static
transition. (D-F) Sketch of the contour plots of a two-dimensional Franz-
Parisi potential, with two “distances” g1 and q, imposed. (G) Quasidynamics
construction (58): at each step we choose a new configuration, represented by
the gray circles, subject to one or more constraints, keeping all the preceding
links frozen.
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construction, the chain is independent of the choice of correlation
used for the links. Thus, we have found a relation between
correlations that is a result of a purely equilibrium calculation,
as no allusion was made to an actual dynamical process. As a
corollary, our numerical results in finite dimension support the
existence of quasi-dynamics robust with respect to time evolution.
For transverse forces and Event Chain Monte Carlo algorithm,
recent analytical and numerical results substantiate the quasi-
dynamics picture (40, 48): in transverse forces, odd transport
significantly enhances local motion on short time-scales, but the
particles eventually need to confront cage escape. In Event Chain
Monte Carlo, maps of dynamical heterogeneities over long time
scales have been shown to be very similar to the ones obtained
with Metropolis Monte Carlo.

What we have argued in this paper is that clever algorithms
work by efficiently exploiting the softness implied by time
reparameterization invariance to drastically accelerate the time
evolution. Numerically probing, in finite-dimensional systems,
the “quasi-dynamics” picture of time-reparameterization put
forth in our work is perhaps within reach, e.g. by building upon
previous efforts along this direction (60-62).

Let us emphasize that the conclusion here is that the fact that
different dynamical procedures leading to the same equilibrium
may drastically stretch the timescales—the ‘reparameterization
softness’—is an observed property, one that any glass theory is
required to reproduce. Even though it arises naturally in mean-
field theory, it may perhaps be explained within other scenarios.
It is an interesting question to understand, for instance, how this
may arise, as it should, in a theory based on local elasticity.

More broadly, reparameterization softness has recently been
identified as the mechanism leading to the emergence of gravity
as a low-energy limit of simple quantum (SYK) models (33).
Hints of time reparameterization softness have been also found
in the learning dynamics of wide and deep neural networks (63).
In the context of supercooled liquids, the very same mecha-
nism underlies the drastic time-rescaling with temperature (as
described by the time-temperature superposition principle), as
well as under shear, aging, and barrier-crossing processes, with
experimental consequences that are starting to be explored (35).
We hope that the present work incentivizes the use of para-
metric plots as a tool to probe time reparameterization in a
variety of experimental settings. In this work, we demonstrate
that reparameterization softness also resolves the longstanding
dichotomy between dynamical and landscape views on glasses:
the latter determines reparameterization-invariant characteristics,
while the former governs the actual time parameterization.

Materials and Methods

Kob-Andersen Mixture with Transverse Forces. The Kob Andersen poten-
tial is defined as (39)

12 d 6
Vab(f) = 4€ab |:(darb) - (%) i| +C [4]

for ryy < 2.5d,, and 0 otherwise. The constant C ensures that
V,p(2.5d,,) = 0. The interaction diameters d,p, are dqq = 1 (which sets
the units of length of the system), dy = dyq = 0.8, dyy = 0.88, while
the interaction energies e,y are €9 = 1 (which sets the units of energy),
€12 = €21 = 1.5,e99 = 0.5.

The overdamped Langevin dynamics for this system is (40)

2
= -1+ M) Y Y V7 - )+ Vg, s)
j#i b=1
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where 1/ is the position of particle i of species a, with a = 1,2. £7(t) is a
Gaussian white noise with zero mean and correlations (£7(t) ® 5}’(0) =

16(t — 1)5;6,p. The temperature T is measured in units of eq1/ks, with kg
the Boltzmann constant. The transverse forces are implemented by means of an

0 -1 0
antisymmetricmatrixA= |1 0 0| and of a dimensionless number y
0 0 0

that controls the amplitude of the nonequilibrium drive. When y # 0, Eq. 5
is an out of equilibrium dynamics, with a steady state given by the Boltzmann
distribution for the Kob-Andersen mixture. The relaxation to the stationary state
fory # 0is guaranteed to be shorter than or equal to the one of equilibrium
dynamics.

Simulations are performed in the NVT ensemble, using a box of side L =
9.4d11 and a total number of particles Ny + Ny = 1,000, so that the number
density of the system py = % is pp = 1.204. The equations of motion given
by Eq. 5 are integrated by means of the Euler-Heun algorithm using a time
step At = 10~%. The data shown are obtained from the steady-state dynamics
equilibrated samples, obtained using the overdamped Langevin dynamics(Eq. 5
with y = 4)for 108 time steps. The results shown in Fig. 2 of the main text are
obtained by studying the stationary dynamics of 45 independent configurations.

Polydisperse Hard Spheres. The model consists of N polydisperse hard
spheres in three dimensions (47). The diameters d are drawn from a power
law distribution 7z(d) o d—3. The boundaries of the distribution are chosen

”728782 is A~

average over the diameter distribution. The average diameter d sets the units
of length. The hard sphere potential between two particles i and j separated

so that the polydispersity A = 23%, with — denoting an

by a distance r;; is defined as V(rj;) = +ooifrj < @ and V(rj) =0
otherwise. The simulations are done in a cubic box of linear size L with periodic
boundary conditions. We explore the dynamics of the system at high packing

fractions ¢ = %%d?

Metropolis Algorithm. In a single timestep of the Metropolis algorithm, N
Metropolis moves are performed. During a Metropolis move, a sphere s selected
uniformlyatrandom, and a displacementis proposed withina cubichox of side 5,
centered around the sphere. If the displacement does not generate any overlap
between the sphere and its neighbors, the move is accepted. In our simulations,
we chose 6 = 0.115.

Event-Chain Monte Carlo. We implement the original, so called “straight"
version of the Event Chain Monte Carlo algorithm (43). In the Event-Chain Monte
Carlo algorithm, an activity label is assigned to a particle i chosen uniformly at
random, together with a direction of motion v € {ey, e,}. The active particle is
displaced along the direction v until a collision with another particle j occurs.
After the collision, the activity label passes from particle i to particle j. The latter
startsthen to move along the direction v. The iteration of this procedure produces
a driven, collective displacement of a chain of particles. When the sum of the
displacements of all the particles involved in the chain add up to a value ¢, the
activity label and direction of self-propulsion are uniformly resampled, initiating
anew chain. One time step of the algorithm corresponds to one collision among
the hard spheres, or to the random resampling of the activity label and self-
propulsion direction v. We studied the Event Chain Monte Carlo dynamics for a
system of N = 1,000 polydisperse hard spheres at p = 0.604. Following (49),
we chose £ = 0.2L, with L the linearsize of the box. The relaxation curves and the
time reparameterization invariant plots for Event Chain Monte Carlo, shown in
Sl Appendix, sections 2 have been obtained by averaging over 50 independent
realizations of the dynamics of the system in the steady state.

Swap Monte Carlo. In the Swap algorithm, one alternates between a set of N
Metropolis moves and N swap moves. A set of N Swap moves is performed with
probability pgyqp- During aswap move, a pairof particles is selected uniformly at
random and an exchange of the particle diameters is proposed. If the exchange
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does not generate overlaps with the neighbors, the move is accepted. The
relaxation curves displayed in Fig. 3 of the main text and in S/ Appendix, Fig. S4
have been obtained by averaging over 35 independent realizations of the Swap
dynamics in the equilibrium state.

Collective Swap. The collective Swap algorithm implementation for a three-
dimensional system of polydisperse hard spheres is described in ref. 49. We
alternate randomly between a set of N Metropolis moves and a set of N/2
collective Swap moves. The latter set occurs with probability pegyap = 0.2.
We studied the collective Swap dynamics for s system of N = 1,000
polydisperse hard spheres at ¢ = 0.648. The relaxation curves and the time
reparameterization invariant plots, shown in SIAppendix, Fig. S6 are obtained by
averaging over 25 independent realizations of the dynamics in the steady state.

East Model with Soft Kinetic Constraints and “Swap” Softness Updates.
We consider N sites on a one dimensional, periodic lattice. Each site i has a spin
value n; € {0, 1} and a softness value s; € {0, 1}. The Hamiltonian H of the
system is the one of 2N noninteracting spins

H=JY n+B) s [6]
i i

Thekinetic constraints ofthe model are implemented by means of a constraint
function C; for each site:

Ci=ni_1+si [71
which controls the rate at which a spin in site i flips. A spin n; flips from state 1
to state 0 with rate C;, and from state 0 to state 1 with rate e =//T.

The softness parameter s; can be updated in two ways (24): by means of
spontaneous fluctuations or by means of “swaps” (s-updates). Spontaneous
softness fluctuations take place only on site with n; = 1, with rate r, = e—//7.
Whena spontaneous softness fluctuation occurs atsite ithe value of s; becomes 1
or O with probability (1+e8/7) =" or (14 e=8/T)=1, respectively. s-updates,
onthe otherhand can occur on any site, independently from the value of n;, with
rate rs, which is a parameter of the model and, when nonzero, is proportional
to e~/ This ensures that the s-updates dynamics takes place on a similar
timescale as for the creation of excitations. During an s-update, the value of the
softness is updated using the same probabilities as for the spontaneous softness
fluctuations.

Following (24), we fix the energy scale of the softness to B/T = 2. This
ensures that the introduction of s-updates yields substantial speedup to the
dynamics. In fact, for values of B/T too low or too big the softness and the
excitation dynamics decouple, making s-updates less effective.

Since the thermodynamics of the system is the one for a system of
noninteracting spins, equilibrium initial condition at a given temperature can
be directly generated. The dynamics of the system is instead simulated using
the Botz-Kalos-Lebowitz algorithm (64), or continuous time Monte-Carlo. In
a nutshell, this is a rejection-free method that relies on computing the time
that the system spends in a given configuration before transitioning to a new
one, instead of proposing moves toward new configurations that are prone to
rejection. At each step of the algorithm, we

1. We start from the current configuration C of the system at time t, given by
an assignment of the spins n; and softness s; to the N sites.

2. Enumerate the M configurations Cy,...,Cy # C that the system can
evolve into, starting from C, and compute the rate w; at which the transition
C — Cj can happen.

3. We compute the cumulative sum § = ZM y.

4. We draw a configuration C* from the set of M possible configurations. The
probability weight of a configuration k is wy, /S.

5. We update the configuration C to the new configuration C*, and we
increment the time by an amount At = Iog;/r
uniformly distributed in the interval (0, 1].

6. We update C* — C, t + At — tand we start back from step 1.

, With r a random number

The data presented in the main text in Fig. 4 are the results of an average
over 50 independent runs for a system of N = 512 sites.
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p-Spin with Ichiki-Ohzeki Dynamics. A p-spin spherical glass consists of N
continuous spins o; on a fully connected lattice, interacting through a p-body
Hamiltonian H(c). A quench disorder is introduced by means of random,
coupling constants among the spins.

Z J/'1.4.ip6i1 Oy [8]

h<...<lp
The coupling constants Jiy...iy are independent Gaussian random variable

2
encoding the quenched disorder of the system, with variance (J4 ,-p) =

2Nﬂ7
6 = F(oj,t) + V2T&(t), [9]

where &(t) is a Gaussian white noise with correlations (&;(t)&(t")) )y =
2Ts(t — t). The force Fi(oj,t) = "H contains a contribution coming
from the gradient of the Hamiltonian and a harmonic restoring force, which
ensures that the spherical constraint Z,-(a,-(t)z) = Nis satisfied at all times.

The fully connected nature ofthe model allows to study its dynamics by means
of correlations and response functions C(t, t'), R(t, t'), defined respectively as

doj(t)
R(tt) =3 Z<

M °> (0]
t') = N Z(Gi(f)ﬁi(f’)>

To illustrate the concept of time reparameterization invariance, we consider
an alternative dynamics for the p-spin. It exploits the possibility of injecting a
nonequilibrium drive in the system which is specifically tailored to ensure that
the steady state of the system follows the Boltzmann distribution. The use of
these kinds of dynamics can be rewarded by faster convergence (65). In practice,
the irreversible drift is implemented by means of the so-called Ichiki-Ohzeki
dynamics (66).

The nonreciprocal coupling is obtained considering two p-spin models,
each having N spins o,(a) with independent quenched disorders and a
total Hamiltonian given by the sum of the Hamiltonians of the two systems,
Htot(ﬂm), 0(2)) = H(a(”)+H(a(2))‘Thetwosystemsevolveaccordingto
an overdamped Langevin dynamics, which contains an antisymmetric coupling
between the two copies:

&i(ﬂ(t) |:'| _y] F(U(a/.(]),t) \/ﬁf,“)(t) [11]

+
v 1 F(z)(a.(2), f) ﬁfl(z)(t)

I

The realization of the Gaussian noises 5,.(“) (t) areindependentfrom one system
to the other. The parameter y encodes the strength of the nonreciprocal forces
exerted between the two copies. For y = 0, we fall back to the case of two
independent p-spin models evolving through an equilibrium dynamics. When
y # 0, the dynamics becomes out of equilibrium, but it admits the Boltzmann
distribution ps o< e PHot in its steady state, which is reached with a shorter
relaxation time compared to the equilibrium case (56).

The steady-state dynamics of Eq. 11 has been studied previously (56),
quantifying the acceleration of the system in an ergodic region above Ty, the
dynamical transition temperature below ergodicity is broken. Ty is the same
as in equilibrium. Below a critical temperature Ty, the ergodicity of the system
is broken. Here, we investigate the role of time reparameterization invariance
by considering the dynamics of the coupled systems at temperature slightly
above or slightly below Ty, starting from an initial configuration at infinite
temperature. We consider a generalization of Eq. 10 to encode responses and
correlations internal to each copy and among each copy of the system in two
2 x 2 matrices Ry (t, t") and Cop(t t'). From this quantities, which encode

the full time evolution of the system, we isolate a slow contribution Eaﬂ(t, t,

https://doi.org/10.1073/pnas.2520818123
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Faﬂ(t, t'), for which 8@,/3(& ) ~ atﬁaﬂ(t, t') ~ 0. Imposing the ansatz

= > 1 3 . .
Cap = 50,/3C(t, t), Rap = WR(L t) (50,!3 + yeaﬂ), with €ap the Levi-
Civita tensor, we obtain the pair of integral equations

N N ) T2 R v
0= i =5 —qCtt) }R(“)
+ P(P27—1) thE(t/ T)P—Z’ﬁ(tl T)’f\;(T, t/)
p
0= _—& + %(1 - o)t t’)”’z] )

e _
+§ dC(t PRz, O)
t/

LPe=1 / "Bt 02K (e 1), [12]
2 0

IfT > T4, the quantity g is the height of the transient, long-lived plateau crossed
by the correlation function during the relaxation process. If T < Ty, g is the
Edwards-Anderson order parameter (67), which can be determined from the
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