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Understanding the influence of activity on dense amorphous assemblies is crucial for
biological processes such as wound healing, embryogenesis, or cancer progression.
Here, we study the effect of self-propulsion forces of amplitude fp and persistence time
7, in dense assemblies of soft repulsive particles by simulating a model particle system
that interpolates between particulate active matter and biological tissues. We identify
the fluid and glass phases of the three-dimensional phase diagram obtained by varying
Jo> Tp, and the packing fraction ¢. The morphology of the phase diagram accounts for a
nonmonotonic evolution of the relaxation time with 7,, which is a direct consequence
of the crossover in the dominant relaxation mechanism, from glassy to jamming. A
second major consequence is the evolution of the glassy dynamics from sub-Arrhenius
to super-Arrhenius. We show that this tunable glass fragility extends to active systems
analogous observations reported for passive particles. This analogy allows us to apply
a dynamic scaling analysis proposed for the passive case, in order to account for our
results for active systems. Finally, we discuss similarities and differences between our
results and recent findings in the context of computational models of biological tissues.

active glass | reentrant dynamics | glassy dynamics | dense self-propelled particles | fragility

The effects of active processes on glassy dynamics have fundamental importance in
several biological processes, such as wound healing (1, 2), embryogenesis (3—7), asthma
development (8), or cancer progression (9—15). The collective cellular dynamics during
these processes exhibit a transition from a solid-like to a fluid-like state, although the static
properties remain nearly the same (5, 16-20). The characteristics of the resulting glassy
dynamics are broadly similar to those in equilibrium particulate systems (17-19, 21),
although novel features may arise from the nonequilibrium nature of the systems. Indeed,
cells are active and cellular systems are constantly evolving far from equilibrium (22, 23).
Cells can also change their characteristics during various processes (24, 25), and
they are extended objects for which cellular shapes closely correlate with biological
functions (1, 8, 26-28). Geometric features can also differ from passive systems for
the same reason; epithelial systems, for example, are always confluent, so that the
cells entirely cover the space and the packing fraction may not be the most relevant
parameter (5).

The complexity of active biological systems makes it challenging to gain insights into
the key mechanisms driving their glassy dynamics. Simulation studies of model cellular
systems have been instrumental here, showing a rigidity transition akin to the jamming
transition (8, 29, 30). Furthermore, several computational studies have demonstrated
that these systems exhibit nontrivial glassy behavior, such as sub-Arrhenius relaxation
dynamics (31-33), possibly crossing over to super-Arrhenius behavior as the shape index
(which controls cell shape) varies (32-34). It would be useful to elucidate whether these
features are specific to biological tissues and vertex models, or can be observed in simpler
models of active particles.

Active systems composed of self-propelled particles cannot capture all microscopic
details of biological tissues but may nevertheless provide useful insights into the
competition between crowding and activity. Beyond this they can also reveal what features
are specific to confluent models with many-body interactions, compared to particle
models with pairwise forces. In the latter models, particles self-propel under the influence
of self-propulsion forces of amplitude fy and persistence time 7, (18-20, 22, 23, 35-38).
In fact, several biological systems can be conveniently modeled as dense systems
of self-propelled particles on different lengthscales, such as for example collections
of cells (16, 39), the cytoplasm (40-42), aggregates of organisms (43, 44), and
synthetic active matter (45-48). Several experiments (16, 46, 49, 50) and simulation
studies (51-55) have shown that active systems in their dense regime exhibit many
characteristics similar to glasses (5, 18-20), such as the anomalously slow two-step
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relaxation dynamics (8) and dynamical heterogeneity (56).
Recent numerical studies have also revealed nontrivial effects of
activity on the glassy dynamics, such as a shifted glass transition
point (51, 57, 58), changing fragility (52, 54, 59, 60), and
reentrant relaxation dynamics (54, 55, 61). These active particle
systems thus provide a rich yet still relatively simple framework
for understanding the role of nonequilibrium fluctuations on
glassy dynamics.

There are several variants of active matter models in the
literature (62), sometimes categorized into dry and wet active
matter. In the former, the surrounding fluid is either absent or
treated implicitly within the models. In the latter, the surround-
ing fluid is explicitly taken into account. Since glassy effects
arise in the long-time dynamics, we expect the hydrodynamic
role of the surrounding fluid to be insignificant, as it affects the
physics on much shorter timescales. We thus believe that the dry-
wet distinction is less relevant in the present context (63, 64).
Similarly, dimensionality effects are not expected to play an
important role for the specific questions addressed in our study.

Theories of the equilibrium glass transition, such as the mode-
coupling theory (57, 58, 65-73) and the random first-order
transition approach (33, 34, 59, 74) have been extended to
active glasses to rationalize numerical and experimental results.
In fact, several aspects of activity-driven glassy dynamics remain
equilibrium-like at a suitably defined effective temperature
(52, 59). However, there are also a number of nontrivial aspects
that have been reported, such as reentrant glassy dynamics
(46, 55, 61), change of glass fragility (52, 54, 59, 60), and
emerging velocity correlations (65). Furthermore, the specific
role of 7, on the glassy dynamics has not been elucidated fully.
Crucially, how to extend and connect these results to studies of
more complex biological systems remains unclear.

Toaddress all these issues, we investigate active glassy dynamics
via computer simulations of a system of soft repulsive particles.
This model smoothly connects and unifies distinct physics in
appropriate limits. In the limit of zero activity, the finite-
temperature (7)) glassy behavior is governed by a “glass point”
in the limit of small but nonzero 7, and a jamming transition
at T = 0 itself. One can thus explore both jamming and glassy
physics within the same system (75-79). On the other hand, the
same system in the very dense limit is a good approximation of
confluent cellular systems. Between these two limits the system
describes the active matter physics of particulate systems, where
qualitatively different regimes can be expected as the persistence
time is varied. Therefore, this is a fairly rich model, which as we
will demonstrate exhibits several nontrivial features that have also
been reported in biological tissues. Our goal is, then, to provide a
physical interpretation of the observed behaviors, in the context
of a particle model that is relatively easy to study and understand.
This approach will also be useful to guide and interpret future
studies of biological materials and tissue models, for instance to
disentangle specific effects due to the confluent nature of tissues
or the possible influence of many-body forces.

Our manuscript is organized as follows. In Section 1, we
introduce the model and its control parameters and explain the
various limiting situations it describes. In Section 2, we present
the broad glassy features for a selected set of parameters. In
Section 3, we collect our results to construct the complete three-
dimensional phase diagram of the model delimiting fluid and
glass phases. In Section 4, we show that the location of the glass
transition has a nontrivial dependence on the persistence time at
fixed driving amplitude, leading to reentrant glassy dynamics.
In Section 5, we show that the system displays a crossover
from sub-Arrhenius to super-Arrhenius dynamics as density and
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persistence time are increased. In Section 6, we extend a dynamic
scaling analysis proposed for equilibrium soft spheres to our soft
persistent particles. In Section 7, finally, we discuss our results
and provide some perspectives regarding biological tissues.

1. Model for Soft Active Particles

We consider a three-dimensional 50:50 binary mixture of
particles of two types A and B, interacting via the Weeks-
Chandler-Andersen purely repulsive potential. We expect that
similar results will hold in two dimensions, as the effects of
dimensionality on glassy dynamics are well understood (80).
We assume that thermal fluctuations are not relevant and set
the Brownian temperature to 7 = 0. Instead, the particles
are driven by nonthermal self-propulsion forces, for which we
use the AOUP (active Ornstein—Uhlenbeck particle) activity
model (see ST Appendix, section S1 for further details). Previous
studies have demonstrated that similar physics would be obtained
independently of the specific model chosen for the self-propulsion
or the repulsive pairwise interaction (81).

We use molecular dynamics simulations to evolve the particle
position r; of the ith particle using the following equation of
motion:

=& [F+fl, [1]

where & is the friction coefficient, F; is the interaction force felt
by the ith particle from the other particles, and f; is the active
self-propulsion force. The latter follows an Ornstein—Uhlenbeck
stochastic process

of; = —f; + 1, 2]

with (ni(t)n;(t/)) = 2f716;6(¢ — ¢'), where “T” denotes the
transpose and I the identity matrix. We present results using
.foo'éB/e as the time unit, with opp the diameter of B-type
particles that sets the unit length, and € the energy scale of the
pair potential.

The self-propulsion force f; in Eq. 1 is stochastic with zero
mean and correlator (fi(t)f}-T(O)) = (f/1p) exp[—2/7,)16;. It
thus has a typical amplitude |f;| ~ fy/,/7, and fluctuations that
are correlated over a time of order 7,. In the limit of very small
persistence times, 7, — 0, the propulsion forces thus become
equivalent to a thermal white noise, with £ playing the role of
a temperature. In the opposite limit of large persistence times,
the propulsions become nearly constant random driving forces
of amplitude fy/,/7,.

To smoothly interpolate between these two limits, it is useful
to introduce an effective temperature, 7o (58, 59, 82-85), with

ﬁ)z

1+ 6o 3]

T =

where G is a constant (58). This effective temperature reduces
to To ~ ]%2 for small persistence times and to 7y ~ féz/ 7, for
larger 7,. The expression in Eq. 3 can be analytically justified
by considering the position fluctuations of a single AOUP in a
harmonic potential (86).

The concept of an effective temperature has a long his-
tory in both active and glass matter (82). For active glasses,
an effective temperature naturally emerges in the long-time
dynamics (57, 58, 87). It has even been shown that the
relaxation dynamics for the active system agrees well with
the mode-coupling scaling description using 7.¢. Using this
effective temperature description for the relaxation dynamics and
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comparing it with the mode-coupling theory scaling relations (S/
Appendix, Fig. S5), we estimate G = 0.5 for the current system.
For the present purposes, Tef is a useful quantity as it reduces to
a genuine thermodynamic temperature in the small 7, limit, but
our results do not rely on any thermodynamic interpretation far
from equilibrium.

The three control parameters of the model are the persistence
time 7,, the amplitude f in the noise term in Eq. 2 and the
volume fraction ¢. We will systematically vary them to fully
characterize the part of the phase diagram where the system
becomes glassy. It is first interesting to consider the various
physical limits captured by this model.

Small persistence time, T, — 0. The phase diagram becomes
effectively two-dimensional in the equilibrium limit 7, — 0,
where the system becomes equivalent to a Brownian system with
the two control parameters temperature and density, (7eg ~
f2, @), as usual in equilibrium fluids. The smooth approach to
the Brownian limit makes the AOUP model in Egs. 1 and 2
appealing. In this limit, the physics becomes strictly equivalent
to the one of soft repulsive spheres at thermal equilibrium, as
studied extensively in ref. 76.

Small force amplitude, fo — 0. For finite 7,, another interesting
limit is the one where fy — 0. In this limit, the amplitude of
the self-propulsion force f; in Eq. 1 becomes much smaller than
that of the interaction forces F;, so that particles will no longer
interpenetrate (unless forced to do so by a high volume fraction
@). As a consequence, the system behaves as self-propelled hard
spheres with a finite persistence time 7,. The phase diagram
is again two-dimensional, with (7, ¢) as control parameters.
Such self-propelled hard spheres have been studied in several past
works (51, 88) and undergo a nonequilibrium glass transition,
at a volume fraction ¢,(7,) that depends continuously on the
persistence time. These special “glass points” in the phase diagram
will play a prominent role in our dynamic scaling analysis in
Section 6.

Large persistence time, 7, — 00. The final interesting limit is
that of infinitely persistent particles obtained when 7, — oo.
In that limit, particles are driven by frozen random forces whose
amplitudes |f;| ~ fo/,/7, become vanishingly small compared
to interparticle forces, in the absence of any other source of
fluctuations. By construction, the system undergoes in this limit
a jamming transition at a packing fraction ¢;, between a flowing
fluid and a solid phase. We expect the dynamics in this “jamming”
limit to differ qualitatively from the glassy dynamics observed
near glass transitions (89).

2. Characterizing the Glassy Dynamics

We characterize the glassy dynamics via the self-intermediate
scattering function, F;(k, t), at wavevector k£ and time ¢, defined
as

F;(/@ t) _ %(ieik‘(ri(t—i—m)r,-(to))>) [4]
i=1

and by the mean-squared displacement

N

MSD(r) — (% 3 leite + ) — ri)]?) [s]

i=1

where NV is the total number of particles, r;(#) is the position
of the 7th particle at time #, and (...) denotes an average over
independent configurations and over the time origins #) taken at
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steady state. For convenience, we choose £ as the position of the
first peak of the static structure factor of the passive system at
¢ = 0.65; this first peak position does not change significantly
at other values of ¢ (SI Appendix, Fig. S1). We first ask how
the dynamics varies with fy at constant 7, and then explore the
evolution with 7,.

We show the time dependence of F;(4 ¢) and MSD(#) at
constant ¢ = 0.65 and 7, = 1072 with varying f% in Fig. 1
A and B. The self-intermediate scattering function F;(4, ¢) first
decays toward a nonzero plateau value and at later times to
zero; see Fig. 14. The plateau region of (4, t) corresponds to
subdiffusive motion in the MSD, which only becomes diffusive
at much longer times; see Fig. 1B. As fj increases, the decay
of F;(k, t) and the transition in the MSD from subdiffusive to
diffusive behavior occur at shorter times. Overall the dynamical
characteristics of F;(k t) and MSD with increasing f) are
similar to those of equilibrium supercooled fluids with increasing
temperature 7. For further quantification one can define the
relaxation time 7, as the value of ¢ for which F (4 ¢) decays to
1/e, explicitly F;(k, 74) = 1/e. From Fig. 14, it is then clear that
7, decreases as fj increases. We have explored the dynamics at
several other packing fractions ¢, and the qualitative behavior
remains the same.

We now characterize the liquid-glass phase boundary at
constant 7,. For this purpose, we first obtain 7, for several
values of ¢ at constant f. Fig. 1C shows the state points we
have explored and the corresponding values of 7,. We then use
a logarithmic fit,

Inty = A+ B/(¢d: — ), [6]

using A, B, and ¢, as fit parameters, to obtain the liquid-glass
critical point ¢ (fy*, 7,) for fixed f and 7,. The expression [6]
is formally analogous to the Vogel-Fulcher—Tammann (VFT)
relation describing the relaxation time of molecular liquids, and
implies that the system becomes a glass at the point where 7,
diverges, i.e. for ¢ = @.(f%. 7,). We repeat the above fitting
procedure for a range of fj and use the results to construct the
liquid-glass critical line in the (fy, ¢) plane at fixed 7, as shown
in Fig. 1C for the specific value 7, = 1072, For this small 7,
the critical glass line in the (f, ¢) plane is by construction very
close to the equilibrium glass line obtained for 7, — 0, with 1}
playing the role of temperature (75, 76).

The results in this section are broadly consistent with existing
literature on active glassy systems, where the effects of activity re-
main equilibrium-like at a suitably defined effective temperature
as long as 7, is small (52, 54, 58, 59). In the next sections, we
explore a much broader range of control parameters, which will
allow us to reveal additional effects that are nontrivial.

3. Three-Dimensional Phase Diagram

We now construct the three-dimensional liquid-glass phase dia-
gram in the full control parameter space (fo, 7, ¢) to understand
how the persistence time 7, changes the results set out in Section 2

above. For this purpose, we obtain the critical lines ¢[%2) Tp)
by repeating the fitting procedure shown in Fig. 1C for several
values of 7,,. This numerical exploration of the three-dimensional
space represents a significant computational effort, given that
it requires simulations scanning a range of volume fractions ¢
for each pair of values (fo, 7,). This large computational effort
is useful, as it allows us to recover within a single approach
several results obtained independently in various limits, which we
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Fig. 1. Characterization of the active glassy dynamics. (A) The two-step decay of Fs(k t) becomes faster with increasing fq at constant ¢ = 0.65 and 7p = 1072,
(B) The corresponding MSD has a subdiffusive to diffusive crossover at intermediate times, and particle motion becomes faster with increasing fq. (C) The liquid-
glass (fo, ¢) phase diagram for zp = 10~2. Squares represent the simulated state points with the corresponding z, color-coded and dashed lines representing
iso-7, contours. Stars are the ¢¢ values obtained using Eq. 6, while the solid line connecting them is a fit to Eq. 8.

can rationalize and organize in the scaling approach developed
below. The symbols in Fig. 24 show the resulting critical lines,
bc(fiL 7p) in the (fy, ) plane for several values of 7,. Similar data
were obtained in ref. 55 using the diffusivity, but the detailed
characteristics and consequences were not fully explored.

Several features are immediately apparent from the data in
Fig. 2A. First, gb[(]f)z, 7,) displays a nontrivial evolution with 7.
As 7, increases, the critical lines become more vertical, which
implies that the glass transition line becomes less sensitive to f;*
for larger persistence times. Also, the ¢ (f;* — 0, 7,) values shift
to higher packing fractions and appear to saturate at very large
7. Finally, the evolution of ¢, with 7, exhibits opposite trends
for small and large values of fj, respectively. We will relate these
observations below to the physical behavior of the system.

To proceed, we first propose an analytical description of the
critical surface delimiting fluid and glass phases. It is convenient
to first introduce the notation

ba(7y) = ¢c(ff = 0.7,), [7]

which defines the location of the glass transition in the self-
propelled hard sphere limit. We then fit the critical lines in
Fig. 24 with a power law

1= alo () — dal*’, [8]

where the prefactor 4, the exponent f and the critical density ¢4
are used as fit parameters for each 7, value. The resulting fitted

100

A
f:_c,lo—1
0—2

¢

functions are displayed as lines in Fig. 24. The fits confirm that
¢4(7)) first increases with 7, and then saturates at larger 7, (S/
Appendix, Fig. S4). The prefactor 4(7,) monotonically increases
with increasing 7, (S Appendix, Fig. S3). On the other hand,
the exponent f(7,) has a weak nonmonotonic 7,-dependence
(SI Appendix, Fig. S3). In the SM, we propose empirical fitting
forms to represent the 7,-dependence of these three constants,
which work well (87 Appendix, section $4).

We are finally in a position to collect the above fits of
our simulation data into a liquid-glass surface in the three-
dimensional phase diagram shown in Fig. 2B, using as axes
(}%2, b, Tp). The glass phase is located in the large-¢, low-fj
corner of this parameter space, with nontrivial evolution with
7, and opposite trends at large and small 7, values. In the next
two sections, we explore two major consequences of the shape of
this phase diagram.

4. Reentrant Relaxation Dynamics

We first establish the presence of reentrant glassy dynamics,
where 7, has a nonmonotonic variation with changing 7,
as a consequence of the 7, dependence of the critical surface
constructed in Fig. 2B. We present in Fig. 34 the evolution of 7,
as a function of the persistence time 7, for a range of values of f*.
These data indeed show that 7, has a nontrivial nonmonotonic

Fig. 2. Constructing the three-dimensional phase diagram. (4) The liquid-glass critical lines (symbols) determined via Eq. 6 for different values of zp. These lines
are themselves fitted to a power law form, Eq. 8, shown as lines. The vertical dashed line indicates the limit ¢4 (zp — c0). (B) The three-dimensional liquid-glass
phase diagram can then be reconstructed from the fitted analytical expressions, with the glass phase occurring for large ¢ and low fy, with a nontrivial evolution
with zp. Two iso—fg lines are shown; the one corresponding tofg = 3.5 x 102 is nonmonotonic.
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Fig. 3. Reentrant glassy dynamics. (4) Nonmonotonic behavior of z, as a function of zp at various]‘o2 and ¢ = 0.65. The lines combine Egs. 6 and 8 (S/ Appendix,
Table S1). (B-D) The dependence of ¢c¢ (foz, p) on zp for a small, an intermediate and a large value offoz, showing a change from a monotonically increasing to
a monotonically decreasing trend, with nonmonotonic variation for the intermediate foz. Lines represent the analytical description in Eq. 9. (£) Time decay of
Fs(k t) for ¢ = 0.65 and fg = 0.045 and various 7p. The intermediate time plateau at small zp, i.e. in the glassy regime, disappears at large zp in the jamming

regime.

evolution with the persistence time 7, at fixed values of ¢
and f7.

Qualitatively this behavior arises because of the opposite trends
mentioned above: The critical liquid-glass density increases with
7, at small fy, whereas it decreases at large fy. These contrasting
trends create an intermediate range of f where the critical density
is nonmonotonic in 7,. We show this explicitly in Fig. 3 B-D

where we follow the evolution with 7 of (]5[(}%2, TP) for a
small, intermediate and large value of fj and observe increasing,
nonmonotonic, and decreasing variation with 7,, respectively.
To describe this reentrant behavior more quantitatively, we
start from Eq. 8 and rewrite the equation describing the critical

glass surface ¢ (2, 7p) as

bt 1) = (12 /dP* + ¢u(zy). 9]

This critical density is, by construction, controlled by the second
term when fy — 0, so that ¢, increases with 7, along with
¢,4. For large fo, on the other hand, the first term dominates
and ¢, then decreases with 7, due to the increase of  (recall
SI Appendix, Fig. S3). The lines in Fig. 3 B—D confirm that the
empirical description of the glass surface obtained in Section 3
describes the numerical data, and thus the reentrant dynamics,
very well.

To conclusively establish that the shape of the critical
surface does describe the reentrant behavior, we use Eq. 6.
This expression can be obtained within the random-first-order
transition theory, which constitutes a microscopic theory of
the glass transition (90, 91) that has been extended for active
systems (59, 74). Using ¢, (foz, 7,) in Eq. 6, we obtain 7, as

B
+
c[fita(zp) P2 + dy(zy) — ¢

where we have included the fitting parameter ¢ to account for
the activity-dependence of 4 and B (the value of ¢ is nearly 1;
see SI Appendix, section S8 for further details). The lines in
Fig. 34 are the plots of Eq. 10 with the values of ¢ as given
in 81 Appendix, Table S1. The excellent agreement between the
simulation results and Eq. 10 demonstrates that it is indeed the
critical surface shape that governs the reentrant behavior. Indeed,
neglecting the fit factor ¢ (87 Appendix, section S8), the key first
two terms in the denominator of Eq. 10 just correspond to ¢,.

Int, = A ) [10]

PNAS 2026 Vol. 123 No.4 2516624123

The competition between these terms determines, for given ﬁ)z
and ¢, the location 7 min of the reentrant minimum in 7
(Fig. 34). To understand qualitatively how 7, min varies with
fo, notice from Fig. 3B that, for small fy, ¢, is increasing with T
and hence 7, is decreasing, corresponding to 7 min —> 00. For
large fy the situation is reversed (Fig. 3D) and 7, min — 0. In the
intermediate range of f, where 7, min is finite, it must therefore
decrease with increasing fy consistent with the trend visible in
Fig. 3A.

The reentrant dynamics observed when 7, increases is ac-
companied by a qualitative change in the physical relaxation
process, since the system crosses over from near-equilibrium
glassy relaxation dynamics when 7, — 0 to nonthermal jamming
physics when 7, — 00, as explained in Section 1. This evolution
from glass to jamming physics is captured by the behavior of the
self-intermediate scattering function shown in Fig. 3, which we
show here for constant ¢p = 0.65 andﬁ)2 = 0.045 while varying
T, over a broad range of five orders of magnitude. At small 7
F,(k, t) shows the characteristic two-step relaxation decay typical
of glassy relaxation. However, at very large 7,, F;(4, #) decays in
a single step with no intermediate plateau, as usually observed in
driven systems in the absence of thermal fluctuations (89, 92).
As expected, the MSD also shows a similar change of behavior
with changing 7, (S Appendix, Fig. S6). Beyond these qualitative
changes, the nonmonotonic dependence on 7, of the final decay
time of F;(k, ¢) is also evident from Fig. 3E.

Reentrant behavior appears in a variety of systems, including
colloidal suspensions of sticky hard spheres (93) and fluids
confined within periodic potentials (94, 95). In these equi-
librium colloidal systems, reentrance is typically governed by
large changes in the static structure. By contrast, reentrant
behavior in active systems has been described via changes in
the caging dynamics (61, 63, 68) or via effective attractive
interactions (46, 55). Our work provides a complementary
perspective on the mechanism underlying reentrant behavior in
active systems.

5. Tunable Fragility and Sub-Arrhenius to
Super-Arrhenius Crossover

Several past studies have shown that activity may change the glass
fragility of self-propelled systems (52, 54, 59). A tunable fragility

was also reported in the context of vertex and Voronoi models
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Fig. 4. Evolution of the glass fragility shown using Angell plots. Each panel
represents data obtained at a given packing fraction, ¢ with (A) ¢ = 0.625, (B)
¢ = 0.650, (C) ¢ = 0.693, and (D) ¢ = 0.800, and each panel contains data for a
range of 7p values. The glass fragility decreases systematically with increasing
7p, and increases systematically with increasing ¢. The behavior of z, crosses
over from sub-Arrhenius atlow ¢ and/or large zp to super-Arrhenius for large
¢ and/or small zp.

of biological tissues (31-34, 96). Here, we show that the glass
fragility in our model depends on both 7, and packing fraction
¢, with the physics being again controlled by the evolution of
the glass critical surface constructed in Section3.

In thermal equilibrium, the glass fragility characterizing slow
dynamics is usually determined by following the temperature
evolution of the structural relaxation time, 7,(7’). Systems
that exhibit a simple Arrhenius behavior are strong, whereas a
more pronounced temperature dependence (also called super-
Arrhenius) corresponds to fragile glasses. Fragility is graphically
captured in Angell plots, where the logarithm of 74 is shown as
a function of the inverse temperature so that data points for a
strong glass lie on a straight line.

To investigate fragility in active systems, we generalize this
equilibrium analysis and follow the evolution of the structural
relaxation time 7, as a function of the effective temperature

Teit :f(')z/(l + G7,) defined in Eq. 3. We tune T by varying

' at fixed values of ¢ and 7,. We construct the active analogue of
Angell plots showing the logarithm of 74 as a function of inverse
Tetr. We refine this representation by going to a rescaled version
of the Angell plot, scaling 7¢ by its value ( 7ef), at the computer

glass transition defined as 74 [( Tegr)| = 103. This scaling allows
for a simpler visualization of the evolution of the glass fragility
with control parameters.

We collect the results of this analysis in the four panels of
Fig. 4. Each panel represents an Angell plot constructed for a
given packing fraction from ¢ = 0.625 to ¢ = 0.800, and the
various curves in each panel are obtained for different values of
the persistence time.

These data reveal several intriguing features. In each panel,
we observe that glass fragility decreases when 7, increases at
a fixed density, a trend which holds at all densities. At the
lowest density (Fig. 44), we observe that all systems display sub-
Arrhenius relaxation, that is, the relaxation time grows more
slowly than in an Arrhenius fashion. This is not observed at large
density (Fig. 4D), where all systems now exhibit super-Arrhenius
relaxation, very much like conventional passive molecular glass-
forming materials. Therefore, the glass fragility increases both
when 7, decreases and when ¢ increases, with a peculiar
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sub-Arrhenius regime found at low enough ¢ and large
enough 7).

A qualitatively similar evolution with the density of the
glass fragility was observed previously in the Brownian limit,
7, — 0, for a similar model of soft repulsive spheres (75, 76).
The microscopic explanation is relatively straightforward. When
decreasing 7" at constant ¢, the system ends up in an equilibrium
hard sphere fluid if ¢ < ¢s. As a result, 7,(7 — 0) does
not diverge, and this qualitatively explains the apparent sub-
Arrhenius behavior. Instead, above the critical density ¢, the
system crosses a glass transition ata finite 7, and as a consequence,
the relaxation dynamics appears to diverge at a finite 7, which
gives rise to a super-Arrhenius temperature dependence. In this
view, the glass fragility is changing continuously with density, and
it is primarily controlled by the distance to the critical density ¢
that characterizes the 7 — 0 hard sphere limit. Note that in this
physical explanation of the evolution of fragility, the softness of
the particles plays no role. In Brownian colloidal systems, particle
softness has likewise been shown to play only a limited role
in directly controlling glass fragility (97). In some soft charged
colloids, osmotic deswelling has been shown to produce a large
fragility change (98, 99), but this is unrelated to our observations.

The above qualitative interpretation easily extends to our
observation in active systems, which we rationalize using the
three-dimensional phase diagram in Fig. 4B. When decreasing
Tt (and thus ﬁ)z) at constant 7, the system either ends in a fluid
at ¢ below ¢4, or in a glass at ¢ above ¢,. This explanation is
valid for any value of the persistence time, and it directly explains
the ¢ dependence of the glass fragility reported in Fig. 4. In
addition, since ¢, increases with 7,, the glass fragility observed
at a given ¢ must decrease with 7, because it is mostly controlled
by the distance to ¢,.

6. Dynamic Scaling Near the Hard Sphere
Non-Equilibrium Glass Transition

For the equilibrium glassy dynamics of soft repulsive spheres (75,
76), a dynamic scaling approach has previously been proposed
to rationalize the qualitative variation across the (¢, 7') plane.
This analysis disentangles two aspects in the growth of 74. First,
7o grows at low 7 simply because the thermal velocity of the
system decreases, thus slowing down the relevant microscopic
timescale Ty controlling particle motion. For thermal systems,
Tmic X 1/ /T, and it is thus convenient to rescale 74 by Tmic to
single out the effect of glassiness.

The second, more interesting, cause for slow dynamics is the
emergence of complex and cooperative glassy dynamics. For this
part, the dynamic scaling amounts to first identifying the physical
behavior in the hard sphere limit (77 — 0), and to then assuming
that thermalized soft spheres essentially obey the same physics as
hard spheres, but at an “effective” value ¢ < ¢ of the packing
fraction, so that thermal soft spheres essentially appear as “small”
hard spheres. Mathematically, the first assumption is a statement
about the hard sphere 7" — 0 limit, written as

7o ~ explA/(do — $)°], [11]

which becomes equivalent to Eq. 6 when 6 = 1. The connection
between soft and hard particles then suggests the following scaling

form:
A [po — @I
fo R [lfl)o —gp ( T ﬂ 2l
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Fig. 5. Dynamic scaling analysis collapses the glassy dynamics of active particles. (A) Angell plot using the rescaled relaxation time z,,/Tef as a function
of 1/Tuf. Different symbols are for different ¢, different colors are for different 7. (B) Global data collapse along the two branches describing the ¢ < ¢q
sub-Arrhenius and ¢ > ¢q super-Arrhenius family of curves, as described in Eq. 12. (C) The exponents 6 and u depart weakly from their equilibrium value as zp

increases. (D) The critical hard sphere density ¢q(zp) changes smoothly with zp.

where two scaling functions Fy (x) are introduced to describe
the respective behavior for densities above ¢y, for Fy(x), and
below for F_(x). The hard sphere behavior in Eq. 11 for 7 — 0
imposes F_(x — 00) = 1 and F4(x — 00) = 400. Similarly,
the continuity of the data for ¢ = ¢pp imposes that F_(x) ~
Fy(x) ~ x5/# for x — 0, so that 7, ~ exp(A/ T%/*) exactly at
¢ = oo

The steps needed to extend the dynamic scaling analy-
sis performed in equilibrium to active systems are relatively
straightforward. The first step is to replace 7" with the effective
temperature T in Eq. 3. In a second step, we rescale the
relaxation time 7, with a microscopic timescale Tmic ~ 1/4/ Teff.
In a third step we generalize Eq. 12 by allowing the exponents
6 and p, and the critical packing fraction ¢y, to depend on
the persistence time 7,. The scaling functions F4(x) could in
principle also depend on 7 but we find that this is not necessary
to achieve a good collapse of the data.

We now show how to apply this scaling procedure to our data.
In Fig. 54, we plot how the rescaled relaxation times 7o /Tmic ~
T~/ Teff depend on the effective temperature 7o for multiple
combinations of values of 7 and ¢. In this rescaled form, the
data at ¢ < ¢pg visibly saturate to a finite relaxation time in
the Teg — 0 hard sphere limit, which leads to sub-Arrhenius
temperature evolution. By contrast, the data for ¢ > ¢y do not
show any saturation and their evolution is compatible with a
divergence at a finite effective temperature, which leads to super-
Arrhenius temperature evolution.

We are now in a position to apply Eq. 12 to our data. In
practice, we find that the largest value of the packing fraction,
¢ = 0.8, is too far above the critical density ¢o and does not
provide a good data collapse. Therefore, we did not use these data
for the scaling analysis. The data collapse procedure is somewhat
tedious as it requires the simultaneous identification of the free
parameters 6, y and ¢bg for each 7,. In practice, we initialized the
fitting process with the values obtained in equilibrium (76) and
slowly varied the fit parameters to achieve a satisfactory result for
all 7, values. The outcome of this analysis is shown in Fig. 5B,
showing the data collapse of the relaxation data along the two
branches described by F_ and £, while the fitted parameters are
shown in Fig. 5 C and D. The exponents 6 and y vary weakly with
7, and show only small departures from their equilibrium values
(corresponding to 7, — 0). The critical density ¢ increases
gradually with 7, and saturates at large persistence times. As
expected, it closely mirrors the evolution of ¢, discussed above
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(SI Appendix, Fig. S4), as they both describe the same hard sphere
dynamics using slightly different functional forms, Eqs. 6 and 11.

The quality of the data collapse in Fig. 5B with weak variations
of (6, #) and scaling functions F_(x) and Fi(x) that are
independent of 7, demonstrates that the scaling analysis proposed
for equilibrium soft particles also applies to self-propelled soft
particles. Only one physical quantity varies significantly with
7, in this analysis, the critical density ¢(7,) that describes the
Tee — 0 limit of self-propelled hard spheres. This promotes the
“glass point” ¢hg of ref. 76 to a continuous “glass line” ¢o(z,)
with a dependence on the persistence time. A physical outcome
of the data collapse in Fig. 5 is the demonstration that glass
fragility of active particles is directly controlled by the distance to
the critical density ¢ (7, ), while the functional forms of the two
scaling functions account for the crossover from sub-Arrhenius
to super-Arrhenius.

7. Discussion and Perspectives

We have studied the glassy dynamics in an active system of self-
propelled soft spherical particles. This model system contains
as limit cases thermal soft spheres and persistent self-propelled
hard spheres, while for large f) and 7, it describes self-propelled
soft particles and so connects qualitatively also to the physics
of confluent biological tissues. This broad range of physical
behaviors captured by the model leads to a rich phenomenology,
which we reveal here by performing a full exploration of the
three-dimensional phase diagram (fo, 7, ¢).

The construction and quantitative analysis of the three-
dimensional phase diagram and its various limits allowed us to
account for two nontrivial dynamic features: reentrant glassy
dynamics that emerges when 7, is varied at fixed ¢ and f and
a glass fragility that is tuned by both changing 7, and ¢. Our
analysis generalizes, and provides a simple interpretation for,
related previous reports of anomalous dynamics in self-propelled
particle systems (46, 55, 61). Our central conclusion is that the
effect of activity is very well captured by the known equilibrium
scaling description (76), provided one promotes the hard sphere
glass point ¢y to a hard sphere glass line ¢(7,) that depends
continuously on the persistence time.

Interestingly, along this glass line of the active system one
is effectively moving smoothly from a glass transition for small
persistence times 7, to a jamming transition for large 7, (35-38)
as shown by the disappearance of the intermediate plateau in
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the relaxation functions with increasing 7,. Microscopically, this
behavior can be rationalized by analogy with the physics of
passive glasses subjected to mechanical deformation by steady
shear (89, 92): Here one, also finds a smooth change between
two distinct regimes, controlled by temperature. When thermal
fluctuations are significant, corresponding to our active glasses
at small 7,, relaxation under sufficiently slow shear proceeds by
thermal activation across energy barriers. For times shorter than
the barrier crossing time, particles can only relax partially by
“rattling” in cages formed by their neighbors, causing plateaus in
typical relaxation functions. In the athermal regime, on the other
hand, relaxation is driven by barriers disappearing via saddle-node
bifurcations as the energy landscape is gradually deformed by the
applied shear. For our active systems, this is analogous to the slow
tilting of the energy landscape by active forces (36, 100, 101) in
the large 7, regime; either way, the relaxation has no analog of
particles rattling in cages at early times, and relaxation functions
therefore do not show plateaus.

An interesting perspective for future research is to connect the
behavior of soft active particles we have studied here to the physics
revealed by studies of model systems for confluent epithelial
tissues. In these models, the packing fraction ¢ does not control
the physics as in soft particles as it is effectively fixed to unity.
Instead there is a structural parameter governing the behavior of
the system, the so-called target perimeter py (5, 18, 30, 33).
This drives the system from fluid-like states at large po to
solid-like behavior at low pg, in a manner analogous to 1/¢
in particle systems. In spite of these important differences, the
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parameters pg and ¢ play similar roles insofar as they control
the transition from fluid to solid response, in the absence of
thermal fluctuations and active forces. Intriguingly, there are
several reports of sub-Arrhenius to super-Arrhenius crossover in
the literature as pg is varied (31-34), suggesting a possible analogy
with soft particles. Reentrant dynamics also exists in variants of
these model systems (102). Future work should explore whether
the analogy can be made more quantitative, and whether the
analysis carried out here can also be useful to rationalize the
characteristics of the glassy dynamics of biological tissues and its
interplay with jamming physics, thus hopefully illuminating the
role of many-body forces and confluence in the physics of tissue
models.
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