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Significance 

Dense active materials such as 
tissues made up of tightly packed 
cells have gained attention in 
the physics community because 
of the competition between slow, 
glass-like dynamics arising from 
crowding, and fluidization by 
active forces. We show by numer-

ical simulations of a dense system 
of self-propelled particles that 
active forces can have nontrivial 
eects on the glassy behavior: 
As self-propulsion becomes more 
persistent in time, the transition 
from a liquid to a solid state 
changes from a glass transition 
(conventionally generated 
by rapid cooling) to a jamming 
transition (normally occurring 
upon athermal compression). 
We rationalize and organize 
these remarkable dynamical 
behaviors by constructing and 
analyzing the features of a critical 
liquid–solid surface that emerges 
from a dynamical scaling analysis. 
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Understanding the influence of activity on dense amorphous assemblies is crucial for 
biological processes such as wound healing, embryogenesis, or cancer progression. 
Here, we study the effect of self-propulsion forces of amplitude f0 and persistence time 
�p in dense assemblies of soft repulsive particles by simulating a model particle system 
that interpolates between particulate active matter and biological tissues. We identify 
the fluid and glass phases of the three-dimensional phase diagram obtained by varying 
f0, �p, and the packing fraction �. The morphology of the phase diagram accounts for a 
nonmonotonic evolution of the relaxation time with �p, which is a direct consequence 
of the crossover in the dominant relaxation mechanism, from glassy to jamming. A 
second major consequence is the evolution of the glassy dynamics from sub-Arrhenius 
to super-Arrhenius. We show that this tunable glass fragility extends to active systems 
analogous observations reported for passive particles. This analogy allows us to apply 
a dynamic scaling analysis proposed for the passive case, in order to account for our 
results for active systems. Finally, we discuss similarities and differences between our 
results and recent findings in the context of computational models of biological tissues. 

active glass | reentrant dynamics | glassy dynamics | dense self-propelled particles | fragility 

The effects of active processes on glassy dynamics have fundamental importance in 
several biological processes, such as wound healing (1, 2), embryogenesis (3–7), asthma 
development (8), or cancer progression (9–15). The collective cellular dynamics during 
these processes exhibit a transition from a solid-like to a fluid-like state, although the static 
properties remain nearly the same (5, 16–20). The characteristics of the resulting glassy 
dynamics are broadly similar to those in equilibrium particulate systems (17–19, 21), 
although novel features may arise from the nonequilibrium nature of the systems. Indeed, 
cells are active and cellular systems are constantly evolving far from equilibrium (22, 23). 
Cells can also change their characteristics during various processes (24, 25), and 
they are extended objects for which cellular shapes closely correlate with biological 
functions (1, 8, 26–28). Geometric features can also differ from passive systems for 
the same reason; epithelial systems, for example, are always confluent, so that the 
cells entirely cover the space and the packing fraction may not be the most relevant 
parameter (5). 

The complexity of active biological systems makes it challenging to gain insights into 
the key mechanisms driving their glassy dynamics. Simulation studies of model cellular 
systems have been instrumental here, showing a rigidity transition akin to the jamming 
transition (8, 29, 30). Furthermore, several computational studies have demonstrated 
that these systems exhibit nontrivial glassy behavior, such as sub-Arrhenius relaxation 
dynamics (31–33), possibly crossing over to super-Arrhenius behavior as the shape index 
(which controls cell shape) varies (32–34). It would be useful to elucidate whether these 
features are specific to biological tissues and vertex models, or can be observed in simpler 
models of active particles. 
Active systems composed of self-propelled particles cannot capture all microscopic 

details of biological tissues but may nevertheless provide useful insights into the 
competition between crowding and activity. Beyond this they can also reveal what features 
are specific to confluent models with many-body interactions, compared to particle 
models with pairwise forces. In the latter models, particles self-propel under the influence 
of self-propulsion forces of amplitude f0 and persistence time �p (18–20, 22, 23, 35–38). 
In fact, several biological systems can be conveniently modeled as dense systems 
of self-propelled particles on different lengthscales, such as for example collections 
of cells (16, 39), the cytoplasm (40–42), aggregates of organisms (43, 44), and 
synthetic active matter (45–48). Several experiments (16, 46, 49, 50) and simulation 
studies (51–55) have shown that active systems in their dense regime exhibit many 
characteristics similar to glasses (5, 18–20), such as the anomalously slow two-step 
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relaxation dynamics (8) and dynamical heterogeneity (56). 
Recent numerical studies have also revealed nontrivial effects of 
activity on the glassy dynamics, such as a shifted glass transition 
point (51, 57, 58), changing fragility (52, 54, 59, 60), and 
reentrant relaxation dynamics (54, 55, 61). These active particle 
systems thus provide a rich yet still relatively simple framework 
for understanding the role of nonequilibrium fluctuations on 
glassy dynamics. 
There are several variants of active matter models in the 

literature (62), sometimes categorized into dry and wet active 
matter. In the former, the surrounding fluid is either absent or 
treated implicitly within the models. In the latter, the surround-
ing fluid is explicitly taken into account. Since glassy effects 
arise in the long-time dynamics, we expect the hydrodynamic 
role of the surrounding fluid to be insignificant, as it affects the 
physics on much shorter timescales. We thus believe that the dry-
wet distinction is less relevant in the present context (63, 64). 
Similarly, dimensionality effects are not expected to play an 
important role for the specific questions addressed in our study. 
Theories of the equilibrium glass transition, such as the mode-

coupling theory (57, 58, 65–73) and the random first-order 
transition approach (33, 34, 59, 74) have been extended to 
active glasses to rationalize numerical and experimental results. 
In fact, several aspects of activity-driven glassy dynamics remain 
equilibrium-like at a suitably defined effective temperature 
(52, 59). However, there are also a number of nontrivial aspects 
that have been reported, such as reentrant glassy dynamics 
(46, 55, 61), change of glass fragility (52, 54, 59, 60), and 
emerging velocity correlations (65). Furthermore, the specific 
role of �p on the glassy dynamics has not been elucidated fully. 
Crucially, how to extend and connect these results to studies of 
more complex biological systems remains unclear. 
To address all these issues, we investigate active glassy dynamics 

via computer simulations of a system of soft repulsive particles. 
This model smoothly connects and unifies distinct physics in 
appropriate limits. In the limit of zero activity, the finite-
temperature (T ) glassy behavior is governed by a “glass point” 
in the limit of small but nonzero T , and a jamming transition 
at T = 0 itself. One can thus explore both jamming and glassy 
physics within the same system (75–79). On the other hand, the 
same system in the very dense limit is a good approximation of 
confluent cellular systems. Between these two limits the system 
describes the active matter physics of particulate systems, where 
qualitatively different regimes can be expected as the persistence 
time is varied. Therefore, this is a fairly rich model, which as we 
will demonstrate exhibits several nontrivial features that have also 
been reported in biological tissues. Our goal is, then, to provide a 
physical interpretation of the observed behaviors, in the context 
of a particle model that is relatively easy to study and understand. 
This approach will also be useful to guide and interpret future 
studies of biological materials and tissue models, for instance to 
disentangle specific effects due to the confluent nature of tissues 
or the possible influence of many-body forces. 
Our manuscript is organized as follows. In Section 1, we 

introduce the model and its control parameters and explain the 
various limiting situations it describes. In Section 2, we present 
the broad glassy features for a selected set of parameters. In 
Section 3, we collect our results to construct the complete three-
dimensional phase diagram of the model delimiting fluid and 
glass phases. In Section 4, we show that the location of the glass 
transition has a nontrivial dependence on the persistence time at 
fixed driving amplitude, leading to reentrant glassy dynamics. 
In Section 5, we show that the system displays a crossover 
from sub-Arrhenius to super-Arrhenius dynamics as density and 

persistence time are increased. In Section 6, we extend a dynamic 
scaling analysis proposed for equilibrium soft spheres to our soft 
persistent particles. In Section 7, finally, we discuss our results 
and provide some perspectives regarding biological tissues. 

1. Model for Soft Active Particles 

We consider a three-dimensional 50:50 binary mixture of 
particles of two types A and B, interacting via the Weeks-
Chandler-Andersen purely repulsive potential. We expect that 
similar results will hold in two dimensions, as the effects of 
dimensionality on glassy dynamics are well understood (80). 
We assume that thermal fluctuations are not relevant and set 
the Brownian temperature to T = 0. Instead, the particles 
are driven by nonthermal self-propulsion forces, for which we 
use the AOUP (active Ornstein–Uhlenbeck particle) activity 
model (see SI Appendix, section S1 for further details). Previous 
studies have demonstrated that similar physics would be obtained 
independently of the specific model chosen for the self-propulsion 
or the repulsive pairwise interaction (81). 
We use molecular dynamics simulations to evolve the particle 

position ri of the ith particle using the following equation of 
motion: 

ṙi = ��1 
0 [Fi + fi] , [1] 

where �0 is the friction coefficient, Fi is the interaction force felt 
by the ith particle from the other particles, and fi is the active 
self-propulsion force. The latter follows an Ornstein–Uhlenbeck 
stochastic process 

�p ̇fi = �fi + �i, [2] 

with �i(t)�Tj (t ) = 2f 2 
0 I�ij�(t � t ), where “T” denotes the 

transpose and I the identity matrix. We present results using 
�0�

2 
BB/� as the time unit, with �BB the diameter of B-type

particles that sets the unit length, and � the energy scale of the 
pair potential. 
The self-propulsion force fi in Eq. 1 is stochastic with zero 

mean and correlator fi(t)fT 
j (0) = (f 2 

0 /�p) exp[�t/�p]I�ij. It 
thus has a typical amplitude |fi| ∼ f0/

√
�p and fluctuations that 

are correlated over a time of order �p. In the limit of very small 
persistence times, �p → 0, the propulsion forces thus become 
equivalent to a thermal white noise, with f 2 

0 playing the role of 
a temperature. In the opposite limit of large persistence times, 
the propulsions become nearly constant random driving forces 
of amplitude f0/

√
�p. 

To smoothly interpolate between these two limits, it is useful 
to introduce an effective temperature, Teff (58, 59, 82–85), with 

Teff = 
f 2 
0 

1 + G�p 
, [3] 

where G is a constant (58). This effective temperature reduces 
to Teff ∼ f 2 

0 for small persistence times and to Teff ∼ f 20 /�p for 
larger �p. The expression in Eq. 3 can be analytically justified 
by considering the position fluctuations of a single AOUP in a 
harmonic potential (86). 
The concept of an effective temperature has a long his-

tory in both active and glass matter (82). For active glasses, 
an effective temperature naturally emerges in the long-time 
dynamics (57, 58, 87). It has even been shown that the 
relaxation dynamics for the active system agrees well with 
the mode-coupling scaling description using Teff. Using this 
effective temperature description for the relaxation dynamics and 
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comparing it with the mode-coupling theory scaling relations (SI 
Appendix, Fig. S5), we estimate G  0.5 for the current system. 
For the present purposes, Teff is a useful quantity as it reduces to 
a genuine thermodynamic temperature in the small �p limit, but 
our results do not rely on any thermodynamic interpretation far 
from equilibrium. 
The three control parameters of the model are the persistence 

time �p, the amplitude f0 in the noise term in Eq. 2 and the 
volume fraction �. We will systematically vary them to fully 
characterize the part of the phase diagram where the system 
becomes glassy. It is first interesting to consider the various 
physical limits captured by this model. 

Small persistence time, �p → 0. The phase diagram becomes 
effectively two-dimensional in the equilibrium limit �p → 0, 
where the system becomes equivalent to a Brownian system with 
the two control parameters temperature and density, (Teff ∼ 
f 2 
0 , �), as usual in equilibrium fluids. The smooth approach to 
the Brownian limit makes the AOUP model in Eqs. 1 and 2 
appealing. In this limit, the physics becomes strictly equivalent 
to the one of soft repulsive spheres at thermal equilibrium, as 
studied extensively in ref. 76. 
Small force amplitude, f0 → 0. For finite �p, another interesting 

limit is the one where f0 → 0. In this limit, the amplitude of 
the self-propulsion force fi in Eq. 1 becomes much smaller than 
that of the interaction forces Fi, so that particles will no longer 
interpenetrate (unless forced to do so by a high volume fraction 
�). As a consequence, the system behaves as self-propelled hard 
spheres with a finite persistence time �p. The phase diagram 
is again two-dimensional, with (�p, �) as control parameters. 
Such self-propelled hard spheres have been studied in several past 
works (51, 88) and undergo a nonequilibrium glass transition, 
at a volume fraction �d (�p) that depends continuously on the 
persistence time. These special “glass points” in the phase diagram 
will play a prominent role in our dynamic scaling analysis in 
Section 6. 
Large persistence time, �p → ∞. The final interesting limit is 

that of infinitely persistent particles obtained when �p → ∞. 
In that limit, particles are driven by frozen random forces whose 
amplitudes |fi| ∼ f0/

√
�p become vanishingly small compared 

to interparticle forces, in the absence of any other source of 
fluctuations. By construction, the system undergoes in this limit 
a jamming transition at a packing fraction �J , between a flowing 
fluid and a solid phase. We expect the dynamics in this “jamming” 
limit to differ qualitatively from the glassy dynamics observed 
near glass transitions (89). 

2. Characterizing the Glassy Dynamics 

We characterize the glassy dynamics via the self-intermediate 
scattering function, Fs(k, t), at wavevector k and time t, defined 
as 

Fs(k, t) = 
1 
N 



N
 

i=1 
e ̇�k·(ri(t+t0)�ri(t0)) 

 
, [4] 

and by the mean-squared displacement 

MSD(t) = 
 1 
N 

N
 

i=1 
[ri(t + t0) � ri(t0)]2 

 
, [5] 

where N is the total number of particles, ri(t) is the position 
of the ith particle at time t, and . . . denotes an average over 
independent configurations and over the time origins t0 taken at 

steady state. For convenience, we choose k as the position of the 
first peak of the static structure factor of the passive system at 
� = 0.65; this first peak position does not change significantly 
at other values of � (SI Appendix, Fig. S1). We first ask how 
the dynamics varies with f0 at constant �p, and then explore the 
evolution with �p. 

We show the time dependence of Fs(k, t) and MSD(t) at 
constant � = 0.65 and �p = 10�2 with varying f 2 

0 in Fig. 1 
A and B. The self-intermediate scattering function Fs(k, t) first 
decays toward a nonzero plateau value and at later times to 
zero; see Fig. 1A. The plateau region of Fs(k, t) corresponds to 
subdiffusive motion in the MSD, which only becomes diffusive 
at much longer times; see Fig. 1B. As f0 increases, the decay 
of Fs(k, t) and the transition in the MSD from subdiffusive to 
diffusive behavior occur at shorter times. Overall the dynamical 
characteristics of Fs(k, t) and MSD with increasing f0 are 
similar to those of equilibrium supercooled fluids with increasing 
temperature T . For further quantification one can define the 
relaxation time �� as the value of t for which Fs(k, t) decays to 
1/e, explicitly Fs(k, �� ) = 1/e. From Fig. 1A, it is then clear that 
�� decreases as f0 increases. We have explored the dynamics at 
several other packing fractions �, and the qualitative behavior 
remains the same. 
We now characterize the liquid-glass phase boundary at 

constant �p. For this purpose, we first obtain �� for several 
values of � at constant f0. Fig. 1C shows the state points we 
have explored and the corresponding values of �� . We then use 
a logarithmic fit, 

ln �� = A + B/(�c � �), [6] 

using A, B, and �c as fit parameters, to obtain the liquid-glass 
critical point �c(f

2 
0 , �p) for fixed f0 and �p. The expression [6] 

is formally analogous to the Vogel–Fulcher–Tammann (VFT) 
relation describing the relaxation time of molecular liquids, and 
implies that the system becomes a glass at the point where �� 
diverges, i.e. for � = �c(f

2 
0 , �p). We repeat the above fitting 

procedure for a range of f0 and use the results to construct the 
liquid-glass critical line in the (f0, �) plane at fixed �p, as shown 
in Fig. 1C for the specific value �p = 10�2 . For this small �p, 
the critical glass line in the (f0, �) plane is by construction very 
close to the equilibrium glass line obtained for �p → 0, with f 2 

0
playing the role of temperature (75, 76). 

The results in this section are broadly consistent with existing 
literature on active glassy systems, where the effects of activity re-
main equilibrium-like at a suitably defined effective temperature 
as long as �p is small (52, 54, 58, 59). In the next sections, we 
explore a much broader range of control parameters, which will 
allow us to reveal additional effects that are nontrivial. 

3. Three-Dimensional Phase Diagram 

We now construct the three-dimensional liquid-glass phase dia-
gram in the full control parameter space (f0, �p, �) to understand 
how the persistence time �p changes the results set out in Section 2 
above. For this purpose, we obtain the critical lines �c(f

2 
0 , �p) 

by repeating the fitting procedure shown in Fig. 1C for several 
values of �p. This numerical exploration of the three-dimensional 
space represents a significant computational effort, given that 
it requires simulations scanning a range of volume fractions � 
for each pair of values (f0, �p). This large computational effort 
is useful, as it allows us to recover within a single approach 
several results obtained independently in various limits, which we 
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Fig. 1. Characterization of the active glassy dynamics. (A) The two-step decay of Fs(k, t) becomes faster with increasing f0 at constant � = 0.65 and �p = 10�2 . 
(B) The corresponding MSD has a subdiusive to diusive crossover at intermediate times, and particle motion becomes faster with increasing f0. (C) The liquid-
glass (f0 , �) phase diagram for �p = 10�2 . Squares represent the simulated state points with the corresponding �� color-coded and dashed lines representing 
iso-�� contours. Stars are the �c values obtained using Eq. 6, while the solid line connecting them is a fit to Eq. 8. 

can rationalize and organize in the scaling approach developed 
below. The symbols in Fig. 2A show the resulting critical lines, 
�c(f

2 
0 , �p) in the (f0, �) plane for several values of �p. Similar data 

were obtained in ref. 55 using the diffusivity, but the detailed 
characteristics and consequences were not fully explored. 

Several features are immediately apparent from the data in 
Fig. 2A. First, �c(f

2 
0 , �p) displays a nontrivial evolution with �p. 

As �p increases, the critical lines become more vertical, which 
implies that the glass transition line becomes less sensitive to f 2 

0

for larger persistence times. Also, the �c(f
2 
0 → 0, �p) values shift 

to higher packing fractions and appear to saturate at very large 
�p. Finally, the evolution of �c with �p exhibits opposite trends 
for small and large values of f0, respectively. We will relate these 
observations below to the physical behavior of the system. 
To proceed, we first propose an analytical description of the 

critical surface delimiting fluid and glass phases. It is convenient 
to first introduce the notation 

�d (�p) ≡ �c(f 2 
0 → 0, �p), [7] 

which defines the location of the glass transition in the self-
propelled hard sphere limit. We then fit the critical lines in 
Fig. 2A with a power law 

f 2 
0 = a[�c(f 2 

0 , �p) � �d ]
2/� , [8] 

where the prefactor a, the exponent � and the critical density �d 
are used as fit parameters for each �p value. The resulting fitted 

functions are displayed as lines in Fig. 2A. The fits confirm that 
�d (�p) first increases with �p and then saturates at larger �p (SI 
Appendix, Fig. S4). The prefactor a(�p) monotonically increases 
with increasing �p (SI Appendix, Fig. S3). On the other hand, 
the exponent � (�p) has a weak nonmonotonic �p-dependence 
(SI Appendix, Fig. S3). In the SM, we propose empirical fitting 
forms to represent the �p-dependence of these three constants, 
which work well (SI Appendix, section S4). 

We are finally in a position to collect the above fits of 
our simulation data into a liquid-glass surface in the three-
dimensional phase diagram shown in Fig. 2B, using as axes 
(f 2 
0 , �, �p). The glass phase is located in the large-�, low-f0 

corner of this parameter space, with nontrivial evolution with 
�p and opposite trends at large and small �p values. In the next 
two sections, we explore two major consequences of the shape of 
this phase diagram. 

4. Reentrant Relaxation Dynamics 

We first establish the presence of reentrant glassy dynamics, 
where �� has a nonmonotonic variation with changing �p, 
as a consequence of the �p dependence of the critical surface 
constructed in Fig. 2B. We present in Fig. 3A the evolution of �� 
as a function of the persistence time �p for a range of values of f 2 

0 . 
These data indeed show that �� has a nontrivial nonmonotonic 

A B 

Fig. 2. Constructing the three-dimensional phase diagram. (A) The liquid-glass critical lines (symbols) determined via Eq. 6 for dierent values of �p. These lines 
are themselves fitted to a power law form, Eq. 8, shown as lines. The vertical dashed line indicates the limit �d (�p → ∞). (B) The three-dimensional liquid-glass 
phase diagram can then be reconstructed from the fitted analytical expressions, with the glass phase occurring for large � and low f0, with a nontrivial evolution 
with �p. Two iso-f 2 

0
lines are shown; the one corresponding to f 2 

0
= 3.5 × 10�2 is nonmonotonic. 
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A 

B 

C 

D 

E 

Fig. 3. Reentrant glassy dynamics. (A) Nonmonotonic behavior of �� as a function of �p at various f 2 
0
and � = 0.65. The lines combine Eqs. 6 and 8 (SI Appendix, 

Table S1). (B–D) The dependence of �c (f 2 
0
, �p) on �p for a small, an intermediate and a large value of f 2 

0
, showing a change from a monotonically increasing to 

a monotonically decreasing trend, with nonmonotonic variation for the intermediate f 2 
0
. Lines represent the analytical description in Eq. 9. (E) Time decay of 

Fs(k, t) for � = 0.65 and f 2 
0

= 0.045 and various �p. The intermediate time plateau at small �p, i.e. in the glassy regime, disappears at large �p in the jamming 
regime. 

evolution with the persistence time �p at fixed values of � 
and f 2 

0 . 
Qualitatively this behavior arises because of the opposite trends 

mentioned above: The critical liquid-glass density increases with 
�p at small f0, whereas it decreases at large f0. These contrasting 
trends create an intermediate range of f0 where the critical density 
is nonmonotonic in �p. We show this explicitly in Fig. 3 B–D 
where we follow the evolution with �p of �c(f

2 
0 , �p) for a 

small, intermediate and large value of f0 and observe increasing, 
nonmonotonic, and decreasing variation with �p, respectively. 
To describe this reentrant behavior more quantitatively, we 

start from Eq. 8 and rewrite the equation describing the critical 
glass surface �c(f

2 
0 , �p) as 

�c(f 2 
0 , �p) = [f 2 

0 /a]
�/2 + �d (�p). [9] 

This critical density is, by construction, controlled by the second 
term when f0 → 0, so that �c increases with �p along with 
�d . For large f0, on the other hand, the first term dominates 
and �c then decreases with �p due to the increase of a (recall 
SI Appendix, Fig. S3). The lines in Fig. 3 B–D confirm that the 
empirical description of the glass surface obtained in Section 3 
describes the numerical data, and thus the reentrant dynamics, 
very well. 
To conclusively establish that the shape of the critical 

surface does describe the reentrant behavior, we use Eq. 6. 
This expression can be obtained within the random-first-order 
transition theory, which constitutes a microscopic theory of 
the glass transition (90, 91) that has been extended for active 
systems (59, 74). Using �c(f

2 
0 , �p) in Eq. 6, we obtain �� as 

ln �� = A + 
B 

c[f 2 
0 /a(�p)]

�(� p)/2 + �d (�p) � � 
, [10] 

where we have included the fitting parameter c to account for 
the activity-dependence of A and B (the value of c is nearly 1; 
see SI Appendix, section S8 for further details). The lines in 
Fig. 3A are the plots of Eq. 10 with the values of c as given 
in SI Appendix, Table S1. The excellent agreement between the 
simulation results and Eq. 10 demonstrates that it is indeed the 
critical surface shape that governs the reentrant behavior. Indeed, 
neglecting the fit factor c (SI Appendix, section S8), the key first 
two terms in the denominator of Eq. 10 just correspond to �c . 

The competition between these terms determines, for given f 2 
0

and �, the location �p,min of the reentrant minimum in �� 
(Fig. 3A). To understand qualitatively how �p,min varies with 
f0, notice from Fig. 3B that, for small f0, �c is increasing with �p 
and hence �� is decreasing, corresponding to �p,min → ∞. For 
large f0 the situation is reversed (Fig. 3D) and �p,min → 0. In the 
intermediate range of f0, where �p,min is finite, it must therefore 
decrease with increasing f0 consistent with the trend visible in 
Fig. 3A. 

The reentrant dynamics observed when �p increases is ac-
companied by a qualitative change in the physical relaxation 
process, since the system crosses over from near-equilibrium 
glassy relaxation dynamics when �p → 0 to nonthermal jamming 
physics when �p → ∞, as explained in Section 1. This evolution 
from glass to jamming physics is captured by the behavior of the 
self-intermediate scattering function shown in Fig. 3E , which we 
show here for constant � = 0.65 and f 2 

0 = 0.045 while varying 
�p over a broad range of five orders of magnitude. At small �p, 
Fs(k, t) shows the characteristic two-step relaxation decay typical 
of glassy relaxation. However, at very large �p, Fs(k, t) decays in 
a single step with no intermediate plateau, as usually observed in 
driven systems in the absence of thermal fluctuations (89, 92). 
As expected, the MSD also shows a similar change of behavior 
with changing �p (SI Appendix, Fig. S6). Beyond these qualitative 
changes, the nonmonotonic dependence on �p of the final decay 
time of Fs(k, t) is also evident from Fig. 3E . 
Reentrant behavior appears in a variety of systems, including 

colloidal suspensions of sticky hard spheres (93) and fluids 
confined within periodic potentials (94, 95). In these equi-
librium colloidal systems, reentrance is typically governed by 
large changes in the static structure. By contrast, reentrant 
behavior in active systems has been described via changes in 
the caging dynamics (61, 63, 68) or via effective attractive 
interactions (46, 55). Our work provides a complementary 
perspective on the mechanism underlying reentrant behavior in 
active systems. 

5. Tunable Fragility and Sub-Arrhenius to 
Super-Arrhenius Crossover 

Several past studies have shown that activity may change the glass 
fragility of self-propelled systems (52, 54, 59). A tunable fragility 
was also reported in the context of vertex and Voronoi models 
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A

C D

B

Fig. 4. Evolution of the glass fragility shown using Angell plots. Each panel 
represents data obtained at a given packing fraction, � with (A) � = 0.625, (B) 
� = 0.650, (C) � = 0.693, and (D) � = 0.800, and each panel contains data for a 
range of �p values. The glass fragility decreases systematically with increasing 
�p, and increases systematically with increasing �. The behavior of �� crosses 
over from sub-Arrhenius at low � and/or large �p to super-Arrhenius for large 
� and/or small �p. 

of biological tissues (31–34, 96). Here, we show that the glass 
fragility in our model depends on both �p and packing fraction 
�, with the physics being again controlled by the evolution of 
the glass critical surface constructed in Section3. 
In thermal equilibrium, the glass fragility characterizing slow 

dynamics is usually determined by following the temperature 
evolution of the structural relaxation time, �� (T ). Systems 
that exhibit a simple Arrhenius behavior are strong, whereas a 
more pronounced temperature dependence (also called super-
Arrhenius) corresponds to fragile glasses. Fragility is graphically 
captured in Angell plots, where the logarithm of �� is shown as 
a function of the inverse temperature so that data points for a 
strong glass lie on a straight line. 
To investigate fragility in active systems, we generalize this 

equilibrium analysis and follow the evolution of the structural 
relaxation time �� as a function of the effective temperature 
Teff = f 20 /(1 + G�p) defined in Eq. 3. We tune Teff by varying 
f 2 
0 , at fixed values of � and �p. We construct the active analogue of 
Angell plots showing the logarithm of �� as a function of inverse 
Teff. We refine this representation by going to a rescaled version 
of the Angell plot, scaling Teff by its value (Teff)g at the computer 
glass transition defined as �� [(Teff)g ] = 103 . This scaling allows 
for a simpler visualization of the evolution of the glass fragility 
with control parameters. 
We collect the results of this analysis in the four panels of 

Fig. 4. Each panel represents an Angell plot constructed for a 
given packing fraction from � = 0.625 to � = 0.800, and the 
various curves in each panel are obtained for different values of 
the persistence time. 
These data reveal several intriguing features. In each panel, 

we observe that glass fragility decreases when �p increases at 
a fixed density, a trend which holds at all densities. At the 
lowest density (Fig. 4A), we observe that all systems display sub-
Arrhenius relaxation, that is, the relaxation time grows more 
slowly than in an Arrhenius fashion. This is not observed at large 
density (Fig. 4D), where all systems now exhibit super-Arrhenius 
relaxation, very much like conventional passive molecular glass-
forming materials. Therefore, the glass fragility increases both 
when �p decreases and when � increases, with a peculiar 

sub-Arrhenius regime found at low enough � and large 
enough �p. 

A qualitatively similar evolution with the density of the 
glass fragility was observed previously in the Brownian limit, 
�p → 0, for a similar model of soft repulsive spheres (75, 76). 
The microscopic explanation is relatively straightforward. When 
decreasing T at constant �, the system ends up in an equilibrium 
hard sphere fluid if � < �d . As a result, �� (T → 0) does 
not diverge, and this qualitatively explains the apparent sub-
Arrhenius behavior. Instead, above the critical density �d , the 
system crosses a glass transition at a finite T , and as a consequence, 
the relaxation dynamics appears to diverge at a finite T , which 
gives rise to a super-Arrhenius temperature dependence. In this 
view, the glass fragility is changing continuously with density, and 
it is primarily controlled by the distance to the critical density �d 
that characterizes the T → 0 hard sphere limit. Note that in this 
physical explanation of the evolution of fragility, the softness of 
the particles plays no role. In Brownian colloidal systems, particle 
softness has likewise been shown to play only a limited role 
in directly controlling glass fragility (97). In some soft charged 
colloids, osmotic deswelling has been shown to produce a large 
fragility change (98, 99), but this is unrelated to our observations. 
The above qualitative interpretation easily extends to our 

observation in active systems, which we rationalize using the 
three-dimensional phase diagram in Fig. 4B. When decreasing 
Teff (and thus f 20 ) at constant �p the system either ends in a fluid 
at � below �d , or in a glass at � above �d . This explanation is 
valid for any value of the persistence time, and it directly explains 
the � dependence of the glass fragility reported in Fig. 4. In 
addition, since �d increases with �p, the glass fragility observed 
at a given � must decrease with �p because it is mostly controlled 
by the distance to �d . 

6. Dynamic Scaling Near the Hard Sphere 
Non-Equilibrium Glass Transition 

For the equilibrium glassy dynamics of soft repulsive spheres (75, 
76), a dynamic scaling approach has previously been proposed 
to rationalize the qualitative variation across the (�, T ) plane. 
This analysis disentangles two aspects in the growth of �� . First, 
�� grows at low T simply because the thermal velocity of the 
system decreases, thus slowing down the relevant microscopic 
timescale �mic controlling particle motion. For thermal systems, 
�mic ∝ 1/ 

√
T , and it is thus convenient to rescale �� by �mic to 

single out the effect of glassiness. 
The second, more interesting, cause for slow dynamics is the 

emergence of complex and cooperative glassy dynamics. For this 
part, the dynamic scaling amounts to first identifying the physical 
behavior in the hard sphere limit (T → 0), and to then assuming 
that thermalized soft spheres essentially obey the same physics as 
hard spheres, but at an “effective” value �eff < � of the packing 
fraction, so that thermal soft spheres essentially appear as “small” 
hard spheres. Mathematically, the first assumption is a statement 
about the hard sphere T → 0 limit, written as 

�� ∼ exp[A/(�0 � �)� ], [11] 

which becomes equivalent to Eq. 6 when � = 1. The connection 
between soft and hard particles then suggests the following scaling 
form: 

�� ∼ exp 
 

A 
|�0 � �|� F± 

 
|�0 � �|� 

T 

 
, [12] 
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A

B
C

D

Fig. 5. Dynamic scaling analysis collapses the glassy dynamics of active particles. (A) Angell plot using the rescaled relaxation time �� 
 
Te as a function 

of 1/Te . Dierent symbols are for dierent �, dierent colors are for dierent �p. (B) Global data collapse along the two branches describing the � < �0 
sub-Arrhenius and � > �0 super-Arrhenius family of curves, as described in Eq. 12. (C) The exponents � and � depart weakly from their equilibrium value as �p 
increases. (D) The critical hard sphere density �0(�p) changes smoothly with �p. 

where two scaling functions F±(x) are introduced to describe 
the respective behavior for densities above �0, for F+(x), and 
below for F�(x). The hard sphere behavior in Eq. 11 for T → 0 
imposes F�(x → ∞) = 1 and F+(x → ∞) = +∞. Similarly, 
the continuity of the data for � = �0 imposes that F�(x) ∼ 
F+(x) ∼ x�/� for x → 0, so that �� ∼ exp(A/T �/�) exactly at 
� = �0. 
The steps needed to extend the dynamic scaling analy-

sis performed in equilibrium to active systems are relatively 
straightforward. The first step is to replace T with the effective 
temperature Teff in Eq. 3. In a second step, we rescale the 
relaxation time �� with a microscopic timescale �mic ∼ 1/ 

√ 
Teff. 

In a third step we generalize Eq. 12 by allowing the exponents 
� and �, and the critical packing fraction �0, to depend on 
the persistence time �p. The scaling functions F±(x) could in 
principle also depend on �p, but we find that this is not necessary 
to achieve a good collapse of the data. 
We now show how to apply this scaling procedure to our data. 

In Fig. 5A, we plot how the rescaled relaxation times �� /�mic ∼ 
�� 

√
Teff depend on the effective temperature Teff for multiple 

combinations of values of �p and �. In this rescaled form, the 
data at � < �0 visibly saturate to a finite relaxation time in 
the Teff → 0 hard sphere limit, which leads to sub-Arrhenius 
temperature evolution. By contrast, the data for � > �0 do not 
show any saturation and their evolution is compatible with a 
divergence at a finite effective temperature, which leads to super-
Arrhenius temperature evolution. 
We are now in a position to apply Eq. 12 to our data. In 

practice, we find that the largest value of the packing fraction, 
� = 0.8, is too far above the critical density �0 and does not 
provide a good data collapse. Therefore, we did not use these data 
for the scaling analysis. The data collapse procedure is somewhat 
tedious as it requires the simultaneous identification of the free 
parameters �, � and �0 for each �p. In practice, we initialized the 
fitting process with the values obtained in equilibrium (76) and 
slowly varied the fit parameters to achieve a satisfactory result for 
all �p values. The outcome of this analysis is shown in Fig. 5B, 
showing the data collapse of the relaxation data along the two 
branches described by F� and F+, while the fitted parameters are 
shown in Fig. 5 C and D. The exponents � and � vary weakly with 
�p and show only small departures from their equilibrium values 
(corresponding to �p → 0). The critical density �0 increases 
gradually with �p and saturates at large persistence times. As 
expected, it closely mirrors the evolution of �d discussed above 

(SI Appendix, Fig. S4), as they both describe the same hard sphere 
dynamics using slightly different functional forms, Eqs. 6 and 11. 

The quality of the data collapse in Fig. 5B with weak variations 
of (�, �) and scaling functions F�(x) and F+(x) that are 
independent of �p demonstrates that the scaling analysis proposed 
for equilibrium soft particles also applies to self-propelled soft 
particles. Only one physical quantity varies significantly with 
�p in this analysis, the critical density �0(�p) that describes the 
Teff → 0 limit of self-propelled hard spheres. This promotes the 
“glass point” �0 of ref. 76 to a continuous “glass line” �0(�p) 
with a dependence on the persistence time. A physical outcome 
of the data collapse in Fig. 5 is the demonstration that glass 
fragility of active particles is directly controlled by the distance to 
the critical density �0(�p), while the functional forms of the two 
scaling functions account for the crossover from sub-Arrhenius 
to super-Arrhenius. 

7. Discussion and Perspectives 

We have studied the glassy dynamics in an active system of self-
propelled soft spherical particles. This model system contains 
as limit cases thermal soft spheres and persistent self-propelled 
hard spheres, while for large f0 and �p it describes self-propelled 
soft particles and so connects qualitatively also to the physics 
of confluent biological tissues. This broad range of physical 
behaviors captured by the model leads to a rich phenomenology, 
which we reveal here by performing a full exploration of the 
three-dimensional phase diagram (f0, �p, �). 

The construction and quantitative analysis of the three-
dimensional phase diagram and its various limits allowed us to 
account for two nontrivial dynamic features: reentrant glassy 
dynamics that emerges when �p is varied at fixed � and f0 and 
a glass fragility that is tuned by both changing �p and �. Our 
analysis generalizes, and provides a simple interpretation for, 
related previous reports of anomalous dynamics in self-propelled 
particle systems (46, 55, 61). Our central conclusion is that the 
effect of activity is very well captured by the known equilibrium 
scaling description (76), provided one promotes the hard sphere 
glass point �0 to a hard sphere glass line �0(�p) that depends 
continuously on the persistence time. 
Interestingly, along this glass line of the active system one 

is effectively moving smoothly from a glass transition for small 
persistence times �p to a jamming transition for large �p (35–38) 
as shown by the disappearance of the intermediate plateau in 
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the relaxation functions with increasing �p. Microscopically, this 
behavior can be rationalized by analogy with the physics of 
passive glasses subjected to mechanical deformation by steady 
shear (89, 92): Here one, also finds a smooth change between 
two distinct regimes, controlled by temperature. When thermal 
fluctuations are significant, corresponding to our active glasses 
at small �p, relaxation under sufficiently slow shear proceeds by 
thermal activation across energy barriers. For times shorter than 
the barrier crossing time, particles can only relax partially by 
“rattling” in cages formed by their neighbors, causing plateaus in 
typical relaxation functions. In the athermal regime, on the other 
hand, relaxation is driven by barriers disappearing via saddle-node 
bifurcations as the energy landscape is gradually deformed by the 
applied shear. For our active systems, this is analogous to the slow 
tilting of the energy landscape by active forces (36, 100, 101) in 
the large �p regime; either way, the relaxation has no analog of 
particles rattling in cages at early times, and relaxation functions 
therefore do not show plateaus. 
An interesting perspective for future research is to connect the 

behavior of soft active particles we have studied here to the physics 
revealed by studies of model systems for confluent epithelial 
tissues. In these models, the packing fraction � does not control 
the physics as in soft particles as it is effectively fixed to unity. 
Instead there is a structural parameter governing the behavior of 
the system, the so-called target perimeter p0 (5, 18, 30, 33). 
This drives the system from fluid-like states at large p0 to 
solid-like behavior at low p0, in a manner analogous to 1/� 
in particle systems. In spite of these important differences, the 

parameters p0 and � play similar roles insofar as they control 
the transition from fluid to solid response, in the absence of 
thermal fluctuations and active forces. Intriguingly, there are 
several reports of sub-Arrhenius to super-Arrhenius crossover in 
the literature as p0 is varied (31–34), suggesting a possible analogy 
with soft particles. Reentrant dynamics also exists in variants of 
these model systems (102). Future work should explore whether 
the analogy can be made more quantitative, and whether the 
analysis carried out here can also be useful to rationalize the 
characteristics of the glassy dynamics of biological tissues and its 
interplay with jamming physics, thus hopefully illuminating the 
role of many-body forces and confluence in the physics of tissue 
models. 

Data, Materials, and Software Availability. All study data are included in 
the article and/or SI Appendix. 
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