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Abstract

The physics of the glass transition and amorphous materials continues 
to attract the attention of a wide research community after decades of 
effort. Supercooled liquids and glasses have been studied numerically 
since the advent of molecular dynamics and Monte Carlo simulations, 
and computer studies have greatly enhanced both experimental 
discoveries and theoretical developments. In this Review, we provide 
a modern perspective on this area. We describe the need to go beyond 
canonical methods when studying the glass transition — a problem 
that is notoriously difficult in terms of timescales, length scales and 
physical observables. We summarize recent algorithmic developments 
to achieve enhanced sampling and faster equilibration by using 
replica-exchange methods, cluster and swap Monte Carlo algorithms, 
and other techniques. We then review some major advances afforded 
by these tools regarding the statistical mechanical description of 
the liquid-to-glass transition, and the mechanical, vibrational and 
thermal properties of the glassy solid.
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imposed by the fact that standard approaches require the local motion 
of particles to occur over temporal intervals that are much shorter than 
the time it takes the computer processor to carry them out, creating 
a bandwidth problem for slow dynamics. Thus, simulations of super-
cooled liquids have long been confined to approximately the first five 
decades of dynamical slow-down from the high-temperature liquid. 
This limitation makes it impossible to simulate phenomena close to 
the experimental glass transition temperature Tg (ref. 1) or realistically 
study the glass itself.

In the past several years, rapid progress has been made on new 
algorithms that allow researchers to circumvent this timescale bot-
tleneck and prepare glassy states that are effectively cooled as slowly 
as those prepared in the laboratory11. These techniques may even allow 
simulation of glassy properties that are difficult to measure in real-
world materials (such as growing static12 and dynamical13–15 length 
scales close to the glass transition), provide the ability to study new 
phase transitions in glasses in silico (such as the brittle-to-ductile 
yielding transition16,17) and afford the means to fill in the microscopic 
information absent from long-standing powerful but phenomenologi-
cal theories (such as what actually tunnels in the two-level system model 
of Anderson, Halperin and Varma18 and of Phillips19). In this Review, 
we outline the key methods and the breakthroughs that made them 
possible, as well as the vistas that these techniques have opened on 
the nature of supercooled liquids and glasses.

Computational methods
Basic tools and glass-forming models
Computer simulations of glass-forming liquids use molecular dynamics 
or Monte Carlo techniques both to generate equilibrated configura-
tions under specified thermodynamic conditions and to calculate 
dynamical trajectories from these configurations8,9. Molecular dynam-
ics aims to mimic the true classical microscopic motion of particles 
and is thus inherently local in terms of particle moves. When simulat-
ing realistic dynamics, Monte Carlo is also constrained to be local in 
its exploration of configuration space20, otherwise it is complicated 
or even impossible to assign the timescale associated with particle 
moves21. However, when generating equilibrated configurations, 
Monte Carlo methods have the advantage that non-local and cluster 
moves may be used, with the potential for greatly accelerated explo-
ration of phase space. Monte Carlo methods hence provide a more 
efficient generation of equilibrium configurations at high densities 
or low temperatures22. Both techniques require the specification of 
the form of an interparticle potential-energy function, as discussed 
below. Molecular dynamics simulations then proceed via the calcula-
tion of the force between particles from this function, whereas Monte 
Carlo requires only the potential energy itself, and except in specialized 
approaches such as force-bias Monte Carlo, does not generally require 
the calculation of forces.

Models of classical glass-forming systems can be crudely sepa-
rated into three categories associated with the level of detail of the 
underlying description of the ‘particles’ and the interactions between 
them. The first category is that of realistic, off-lattice models of molecu-
lar glass-forming liquids. In these, the goal is to model the microscopic 
details of the interactions between the most common glass-forming 
substances such as glycerol or silica. The key component of such mod-
els is the form of the interaction potential or force field by which the 
atoms that form the molecules within the glass-forming liquid interact.

Even such models differ in their degree of realism and detail. 
For example, the van Beest–Kramer–van Santen (BKS) model of silica23 

Key points

•• Simulations of glass-forming systems suffer from the rapidly growing 
relaxation times near the glass transition, which historically have 
limited simulations to the regime of very mild supercooling.

•• A variety of methods, including simulated tempering methods and 
cluster Monte Carlo approaches, have been developed to deal with 
issues relating to slow equilibration.

•• More recently, swap Monte Carlo methods, which augment standard 
local moves with swaps between particles that may be physically 
distant, have been shown to enable remarkably efficient equilibration 
in certain models of glass-forming systems.

•• The equilibration speed-up afforded by swap Monte Carlo makes 
it possible to study glassy properties and behaviours that were 
previously out of reach, such as the nature of low-energy excitations 
in well-annealed glasses, and the brittle-to-ductile transition.

•• Swap Monte Carlo has opened new vistas for the study of the 
behaviour of glassy systems, but new approaches for the simulation 
of dynamical behaviour as well as the equilibration of more complex 
glass-formers are still needed.

Introduction
A glass is a solid that is as mechanically stable as many crystals yet is 
completely disordered, bearing none of the structural hallmarks of 
ordered periodic crystals. Glasses are formed when a liquid can be 
rapidly cooled below its melting temperature, which typically leaves 
it in a liquid state. Further cooling of this liquid produces a glass1. The 
cooling of a liquid to a glass spans approximately 15 orders of magni-
tude in relaxation time. This huge slowing of dynamics is accompanied 
by a host of features, such as highly collective and non-exponential 
dynamics referred to as dynamical heterogeneity2, a non-Arrhenius 
temperature dependence of the viscosity, and stark violations of the 
Stokes–Einstein relationship3. The glass state itself differs in many ways 
from its crystalline counterpart, and a microscopic understanding 
of elementary excitations in the amorphous glass remains, perhaps 
surprisingly, an open problem.

The liquid-to-glass transition shares deep analogies with similar 
phenomena in other fields of science, such as those exhibited by some 
magnetic systems (like spin-glasses4), biological systems (in protein 
folding and misfolding5, for example), and in computer science (such as 
satisfiability problems6). Understanding the process of glass formation 
and the factors that imbue disordered solids with their unique proper-
ties is thus justifiably considered one of the outstanding problems of 
condensed matter.

From a computational viewpoint, this task is plagued by major 
obstacles, which include very sluggish dynamics, non-trivial finite-size 
effects, ergodicity breaking, strong sample-to-sample fluctuations 
and self-induced heterogeneity typically shared by other complex 
systems7. Computer simulations provide a powerful means to probe the 
microscopic details of the dynamics, structure and thermodynamics of 
supercooled systems as the glass transition is approached8,9. However, 
such in silico experiments have historically been limited to small system 
sizes and the regime of very mild supercooling10. The latter limitation is 
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is defined by a potential-energy surface that has been parametrized 
from a combination of ab initio and experimental data, and consists of 
Coulomb, Born–Mayer repulsive, and dispersive interactions between 
the Si and O atoms. Conversely, the Lewis and Wahnström model of the 
organic molecular liquid ortho-terphenyl replaces the entirety of each 
of the three benzene rings of the molecular unit with a single site that 
interacts with other sites with a simple Lennard–Jones potential24. The 
latter case clearly involves some degree of atomic coarse-graining 
while retaining the non-spherical, albeit rigid, structure of the 
ortho-terphenyl molecular unit.

For all members of this category, simulating glass-forming behav-
iour is far more intensive than for either of the simpler categories 
described below. This is because the treatment of periodic systems 
composed of units with non-spherical shapes and rotational degrees of 
freedom, long-ranged interactions and other features poses complica-
tions for standard molecular dynamics and Monte Carlo simulations 
that render simulations more time-consuming than for simpler models 
where these features are absent8.

The models in the second category of in silico glass-formers 
describe simple systems of spherical particles interacting with short-
ranged interactions. These systems may have a potential-energy func-
tion that is purely repulsive, such as the hard-sphere potential, or 
somewhat more complex interactions such as those described by 
the Lennard–Jones potential10,25,26. Generally some degree of polydis-
persity and a tuning of the interactions are needed to prevent facile 
crystallization. Although the potential-energy functions for the models 
in this class may be used to describe experimentally relevant glass-
formers, such as colloidal particles or some specific metallic glasses2, 
the standard philosophy for their use is the fact that they demonstrate 
a nearly full range of non-trivial behaviours exhibited by more complex 
molecular glass-formers while being much more efficient to simu-
late numerically. In this sense, systems in this category form a middle 
ground between the complexity of the molecular systems discussed 
above and the fully coarse-grained models described below.

Finally, we come to models in the third category, which are fully 
coarse-grained lattice models. These models place particles on a lattice, 
with simple thermodynamic constraints imposed, such as restrictions 
on the number of neighbours allowed for a given particle type. There 
are no forces acting on particles, and dynamical evolution occurs via 
local Monte Carlo moves27. These models, sometimes known as ‘lattice 
glass models’, generally suffer from a tendency to crystallize readily, 
although progress has been made in designing simple lattice models 
for which crystallization is strongly frustrated28. The main utility of 
lattice glass models resides in the fact that they are simple enough to 
directly apply powerful mathematical techniques such as the replica 
method29 for the calculation of thermodynamic properties to their 
lattice energy functions. They thus form a bridge between theories of 
the glass transition and more complex, off-lattice models.

In this Review, we largely focus on models in the second category. 
These models avoid both the complexity of molecular systems and 
the lack of realism of lattice models. They are realistic enough to be 
viewed as reasonable proxies for the simplest laboratory glass-formers 
such as metallic glasses, and thus we may view their study on the com-
puter as in silico experiments on such systems. In particular, computer 
simulations aim to capture experimental behaviours such as violation 
of the Stokes–Einstein relationship, dramatically growing timescales, 
and the appearance of non-exponential and non-Arrhenius relaxa-
tion, which are shared by diverse molecular laboratory glass-formers 
and computer simulations of supercooled spherical particles with 

short-ranged interactions. It is therefore reasonable to believe that 
little, if anything, of physical importance is being excluded by focusing 
on their study. Of course, properties specific to non-spherical degrees 
of freedom, such as the rotational version of the Stokes–Einstein rela-
tion or realistic modelling of dielectric relaxation, cannot be described 
by these models2, and we do not discuss such properties here.

Equilibration tools in complex systems
A large portion of this Review focuses on simulation techniques used 
to generate equilibrated glassy samples. It is here that some of the 
biggest challenges exist for simulating glassy materials. Using local 
moves to produce equilibrated particle configurations is plagued by 
the timescale issues associated with dynamical slowing down. Increases 
in processor speed, even those afforded by newer architectures such as 
GPUs30, are insufficient to enable the equilibration of samples anywhere 
close to the thermodynamic location of glass transition itself. Thus, 
tailored algorithms making use of non-local Monte Carlo and related 
techniques are necessary. It is also in these algorithms that the greatest 
recent progress has been made. This progress, together with the appli-
cations it has enabled, forms the core of this Review. Because relaxa-
tion timescales controlling particle motion change by many orders 
of magnitude as temperature decreases, an algorithmic speed-up of 
one or two orders of magnitude as often encountered below, although 
welcome, does not offer radical changes to the probed physics.

It is useful to sketch the history of the development of methods 
for equilibrating the Ising model31 and its cousins, such as binary alloys 
and spin-glass models29. This illustrates the introduction of approaches 
to deal with slow equilibration issues, such as the slowing down near a 
critical point, as well as distinctions between the requirements for an 
efficient algorithm in these simpler models and those associated with 
the off-lattice problem of glassy liquids.

Standard single-spin-flip Monte Carlo approaches were first used 
to simulate the thermodynamics of the Ising model in 1953, soon after 
the introduction of the Monte Carlo algorithm32. These approaches 
encountered severe problems near the critical point, where equilibra-
tion times scale as a power of the growing length scale associated with 
emergent ferromagnetic order33. Standard local Monte Carlo was also 
attempted around the same time to study order–disorder phenomena 
in binary alloy models. In 1959, non-local swap moves were introduced 
into the Monte Carlo framework for such systems34,35. Interestingly, this 
approach took more than a decade to find its way into the study of off-
lattice models of liquids, and several decades more to find applications 
in the study of glasses. As we discuss in this Review, a modern version 
of this idea, as embodied in the swap Monte Carlo (SMC) approach, 
has revolutionized the study of models of glass-formers belonging to 
the second class described above. In the next subsection, we discuss 
cluster and swap-based Monte Carlo techniques, but first we discuss 
an alternate route to accelerated equilibration.

In 1986, the replica Monte Carlo method was introduced to study 
the thermodynamics of Ising spin-glasses36. Here, replicas of the sys-
tem at different temperatures are simulated in equilibrium, with a 
partial exchange of configurational information allowed between 
replicas. A related but somewhat distinct and more general approach 
was put forward several years later37,38, in the form of simulated tem-
pering, which was used to investigate the random-field Ising model. 
In simulated tempering, a set of independent systems are simu-
lated in equilibrium, with a Metropolis-like Monte Carlo exchange 
of temperatures between equilibrium configurations that maintains 
equilibrium (Fig. 1b). This class of Monte Carlo approach, also called 
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parallel-tempering or replica-exchange Monte Carlo39, has been of 
tremendous use in simulating complex systems with rough energy 
landscapes in fields from materials science to biology40. For the study 
of bulk glasses, its performance is modest, although we will discuss 
important applications for which it is currently the most efficient 
method available.

Other methods for equilibrating and simulating lattice models 
have been investigated. Some of these methods appear fairly power-
ful. However, the use of these approaches for supercooled liquids has 
been sporadic and the results obtained for glassy systems somewhat 
anecdotal41–44. Although these techniques merit further investigation, 
we do not discuss them further.

Enhanced sampling methods such as replica-exchange and related 
techniques have existed for several decades and have been applied 
successfully to sampling rough energy landscape problems in fields 
that bear some relationship to the glass transition problem, such as 
spin-glasses, the conformational equilibrium of polymers and bio-
molecules, and the screening of low-energy crystal structures40. The 
situation is rather different for the study of glassy systems. To illustrate 
this, we first focus on the application of a molecular dynamics version 
of replica exchange, called replica-exchange molecular dynamics 
(RXMD), to equilibrate off-lattice supercooled liquid configurations45.

RXMD has been explored in the binary Lennard–Jones Kob–
Andersen model, perhaps the most ubiquitous of the second class of 
models as categorized above, following the protocol of ref. 46 in the 
implementation of RXMD. In particular, M non-interacting replicas of 
systems of N particles each were used45, where the Hamiltonian of each 
replica has its potential-energy function scaled by a constant parameter 
that acts as a means of controlling the temperature in the configu-
rational average of the replicas. A constrained molecular dynamics 
simulation was then performed on the entire system comprising all 
replicas. Finally, the exchange of the scaling parameters (effectively an 
exchange of temperatures) between distinct replicas was considered 

on a specified time interval, with acceptance rate governed by the 
standard canonical Metropolis criterion. This scheme is guaranteed to 
lead to canonical equilibrium at the set of temperatures of the replicas, 
and it reverts to standard molecular dynamics when no exchanges are 
attempted.

The efficient use of enhanced sampling techniques requires fine-
tuning the algorithmic parameters. The abovementioned simulations 
used 16 replicas of N = 103 particles in a range in temperature from the 
onset of glassy dynamics to the mode-coupling crossover tempera-
ture Tc, covering approximately four decades of slowing down. The 
mode-coupling temperature marks the border of a regime where glassy 
behaviour becomes difficult to directly simulate in equilibrium via local 
molecular dynamics or Monte Carlo, even for present-day computers. 
As expected, the efficiency of the RXMD algorithm strongly depended 
on the exchange timescale, and was optimal for on the order of 103 
time steps. Physically, this corresponds to the approximate timescale 
of oscillations of a particle trapped by its neighbours. Monitoring the 
effective diffusion constant of the particles showed that RXMD was 
up to 100 times more efficient at exploring phase space in the regimes 
studied, although equilibration below Tc was not attempted.

This approach was revisited in a simpler model of a one-component 
Lennard–Jones liquid with a term added to inhibit crystallization47. The 
effective diffusion constant within replica-exchange-based approaches 
is controlled by the diffusion in the highest-temperature replica and 
carries little or no information on the equilibration rate. One can instead 
focus on the timescale to find the lowest local minimum in the potential-
energy landscape48. Within the purview of this more stringent criterion, 
using RXMD is not more efficient than standard molecular dynamics 
for equilibrating supercooled particle configurations.

Although others have also used variants of replica exchange or 
parallel tempering as a means to accelerate the sampling of equilibrium 
glassy configurations, these studies often combine the approach with 
other sampling techniques, making it difficult to isolate the role played 
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Fig. 1 | Sketch of various equilibration methods. a, Swendsen–Wang cluster 
Monte Carlo for lattice models, illustrated with a random-coupling Ising model 
in 2D. First, bonds are specified between like ‘up’ or ‘down’ spins depending on 
their coupling strength. Doing so defines clusters of spins that may be flipped 
with a Monte Carlo probability to yield an updated spin configuration205. 

b, Parallel-tempering Monte Carlo. Monte Carlo calculations are run at different 
temperatures (six, in this case) and the temperatures or configurations 
exchanged, allowing for a more rapid sampling of phase space. c, A cluster move 
in the Dress–Krauth Monte Carlo algorithm65. d, A swap Monte Carlo move.
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by the replica technique itself42. It is important to note that although 
RXMD, parallel tempering and related techniques do not seem to afford 
great increases in equilibration efficiency for bulk supercooled liquids, 
they do seem to provide the most efficient means of equilibrating 
supercooled liquids in confined geometries and in situations where a 
fraction of the particles are artificially frozen in place. Such situations 
are important for extracting growing static length scales as the glass 
transition is approached. These applications, and the power of replica-
based approaches for studying them, will be discussed in the section 
on statistical mechanics analysis of glass transition.

So far, we have discussed computational tools that are widely used 
in different physical situations to study supercooled liquids. We close 
this section with two approaches that were proposed and developed 
specifically for glassy systems.

In 2007, it was discovered that amorphous films prepared using 
physical vapour deposition in well-chosen conditions had properties 
nearly equivalent to bulk glasses prepared at exceedingly small rates49. 
After 15 years of detailed studies50, it is understood that physical vapour 
deposition represents an experimental approach to accelerate the 
equilibration of supercooled liquids, with a speed-up that can reach 
many orders of magnitude. The physical origin of this observation 
is also understood: molecules arriving at the surface of the film have 
a much larger mobility than those already buried in the bulk. This 
enhanced surface mobility allows them to readily relax at temperatures 
at which the bulk is arrested. Motivated by this discovery, algorithms 
mimicking the deposition process were developed51,52. However, on 
the timescales accessible to computer simulations, surface and bulk 
dynamics differ by at most one to two orders of magnitude, and the 
speed-up afforded by this method is much smaller than in experi-
ments53. In addition, simulating the growth process itself is not straight-
forward, and equilibration is not guaranteed. Therefore, simulating 
vapour deposition is useful to help interpret experimental studies54 but 
is not a promising generic tool to speed up equilibration of computer 
glassy models.

The second method is more theoretically guided. It was initially 
developed to understand the nature of large deviations in the dynamic 
behaviour of glass-formers55 as a way to describe more formally the 
nature of dynamic heterogeneity56. Technically, the idea is to intro-
duce a non-equilibrium sampling technique that biases the system 
towards dynamic trajectories exhibiting statistically rare properties, 
such as lower than average mobility57. An outcome is the production of 
particle configurations that have physical properties that are different 
from the bulk and seem to lie deeper in the potential-energy landscape 
than equilibrium systems at the same temperature58–60. There is ample 
evidence that these configurations represent very stable glassy con-
figurations, but this has not been quantified. In addition, these tools 
do not scale well with system size, and they are currently limited to 
relatively small systems of at most a few hundred particles. However, 
the tools are promising, and their utility and performance remain to 
be more quantitatively established.

Cluster Monte Carlo and swap Monte Carlo
A powerful approach for simulating Ising-type systems close to criti-
cality is the Swendsen and Wang cluster approach61, which involves 
using non-local, but detailed-balance-preserving, Monte Carlo clus-
ter moves (Fig. 1a). This approach was initially illustrated in both the 
2D Ising model and Potts models, where the critical slowing down asso-
ciated with the second-order critical point is greatly mitigated by the 
algorithm’s violation of dynamical universality, rendering a much less 

severe space-time scaling exponent, which translates into a much more 
efficient algorithm when compared with standard single-spin Monte 
Carlo moves. Interestingly, as discussed below, the efficiency of the 
SMC algorithm manifests in a related manner in the simulation of glassy 
liquids. An analogue of the Swendsen and Wang cluster approach for 
simple off-lattice liquids and glasses62 is discussed in more detail below. 
The current limitation of cluster approaches for off-lattice models lies 
in the difficulty of efficiently determining and moving clusters. Doing 
so is a much more challenging task than in the Ising model, where, for 
example, the physics revealed by the knowledge of Fisher clusters63 
and the Fortuin–Kasteleyn64 representation greatly simplifies the 
construction of the algorithm.

The pioneering work on spin models provided an impetus for the 
search for efficient cluster Monte Carlo approaches to accelerate 
the equilibration of particle-based glassy systems. This search led to a 
cluster approach (the Dress and Krauth algorithm) in which a copy of 
a particle configuration is rotated with respect to the original configu-
ration as a means to identify clusters in the joint system via an overlap 
criterion62 (Fig. 1c). Each cluster can then be flipped around a pivot via 
a Metropolis procedure in which spheres belonging to one cluster are 
moved from the rotated copy back to the original configuration while 
those in the original configuration are moved to rotated copy. Such 
moves, in conjunction with simple single-particle Monte Carlo moves, 
satisfy detailed balance and can potentially accelerate the exploration 
of configuration space.

This cluster Monte Carlo approach was later used to study glass 
formation in a polydisperse hard-disk system in 2D65. In this case, cluster 
Monte Carlo is more efficient than local Monte Carlo when judged by 
the reasonable criterion that the cluster approach enables the equili-
bration of configurations well past the mode-coupling density of the 
system, where a power-law fit of the diffusion constant would predict 
vanishing particle diffusivity. The authors65 emphasize that even at 
the highest densities studied, their system displays no evidence of 
a change in thermodynamic quantities such as compressibility that 
could be interpreted as an equilibrium signature of a glass transition. 
However, the putative location of a thermodynamic transition for 
this system is unknown, and so these results merely prove that the 
mode-coupling transition does not correspond to a thermodynamic 
singularity. In any case, even in theories that purport the existence 
of a thermodynamic glass transition, such as the random first-order 
transition (RFOT) theory, such a transition is not expected to exist 
in 2D66. As discussed further below, more recent simulations using 
SMC have provided stronger evidence that no signatures of a thermo-
dynamic transition exist at finite temperature in 2D but that they do 
exist in 3D.

The cluster Monte Carlo algorithm has been used far less exten-
sively than SMC, which we describe next. For simple systems of the 
second class of models, such as hard disks, it can be demonstrated 
that SMC is a more efficient algorithm67. Some of the difference in 
the efficiency of these two approaches probably lies in the relative 
simplicity of the swap approach, which makes optimization substan-
tially easier. In particular, the algorithm defined by Dress and Krauth 
merely defines one possible approach for isolating and exchanging 
clusters. Indeed, there are more general versions of the algorithm of 
Dress and Krauth, which have not yet been applied to glassy systems68. 
It is likely that related algorithms could be devised that would exceed 
the capabilities of the Dress and Krauth approach, and that combin-
ing the cluster algorithm with other new sampling techniques could 
greatly enhance its efficiency. One example of work in this direction is 
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the use of the rejection-free event-chain Monte Carlo approach, which 
demonstrably enhances the sampling ability of cluster Monte Carlo69,70. 
So far, for models of complex glass-forming liquids, the most power-
ful means of achieving deeper supercooling is via direct molecular 
dynamics simulation, making use of high-throughput methods71 or 
using advanced special-purpose hardware architecture such as Anton72. 
Thus, in our opinion, the search for such potential modifications is a 
worthy goal, given the somewhat circumscribed set of systems where 
SMC is extremely useful. Indeed, for extremely simple systems such 
as a monodisperse glass-former, SMC trivially affords no advantage, 
whereas for complex molecular liquids of the first class of models we 
have described, it seems to be fairly difficult to apply.

Above, we have casually compared the cluster Monte Carlo 
approach to the SMC method without formally defining the latter, 
mostly because the approach is nearly self-explanatory. Here, we touch 
upon the history of the approach, some details associated with its 
implementation, and the steps leading to its success as a means of 
generating deeply supercooled liquid configurations.

In the SMC algorithm, standard local Metropolis Monte Carlo 
is augmented with the potentially long-ranged swapping of pairs of 
particles (Fig. 1d). Optimization must be carried out with respect to 
the frequency of swapping trial moves and the range of particle sizes 
and types for which swap moves are attempted, but because all moves 
occur via the Metropolis criterion, the method is extremely simple and 
requires little tuning. In systems in which the approach is efficient, swap 

moves may be rarely accepted, but when they are they can provide an 
enormous boost for equilibration. The degree to which the approach 
is useful depends sensitively on the acceptance rate of swap moves 
compared with local moves, which varies greatly between systems.

A variant of this type of Monte Carlo was used to study binary 
crystalline alloys a mere six years after the invention of the basic Monte 
Carlo algorithm itself34. The first off-lattice use of SMC was in 1978, 
when the approach was used to investigate the structure and thermo-
dynamics of relatively small binary Lennard–Jones clusters73. In 1989, 
SMC was used to investigate the equation of state of non-additive hard-
sphere mixtures74. It thus took a full 30 years from the time of invention 
for the approach to be used to study bulk liquids.

In pioneering work, SMC was used to study the glassy behaviour 
of a 50:50 mixture of soft spheres75. Although no detailed statements 
were made concerning the acceleration of equilibration over standard 
molecular dynamics or Monte Carlo, at high densities or low tem-
peratures (these parameters are equivalent in soft-sphere systems) the 
inclusion of swap moves was found to render the algorithm much more 
efficient at reaching low-energy configurations on the energy land-
scape compared with both standard Monte Carlo and parallel temper-
ing. For the soft-sphere system of 34 spheres, a rather stringent metric 
of equilibration — namely, the agreement between the specific heat as 
calculated from energy fluctuations and the temperature derivative of 
the average energy — holds for temperatures well below the expected 
location of the laboratory glass transition. This small system exhibits 
a broad maximum of the specific heat, which can be interpreted as 
the location of an entropy crisis. Extrapolation indicates a similar but 
sharper behaviour in an 800-particle system, with the location of the 
peak in the specific heat approximately agreeing with the predicted 
Kauzmann temperature as found from RFOT theory66,76.

The status of the SMC approach to equilibrate supercooled parti-
cle configurations after this work remained unclear for several years. 
Here, two important studies stand out. In the same 50:50 soft-sphere 
mixture as studied in ref. 75, SMC was shown to accelerate equilibration 
by approximately two orders of magnitude independently of tempera-
ture, a speed-up which is helpful but far from sufficient to study realisti-
cally annealed samples77. In the polydisperse 2D hard-disk system of 
ref. 65, SMC is more efficient than the pivot-based cluster Monte Carlo 
approach67. However, less encouragingly, SMC was seen to suffer from a 
proclivity to crystallize all other systems under investigation, including 
3D thermal analogues of the hard-disk system.

Perhaps because of these negative results, progress in the use 
of SMC stalled until 201711,78, when it was shown that if the interac-
tion potential and the polydispersity of the sample are carefully 
tuned, amazingly efficient equilibration in large configurations is 
possible without signs of crystallization. The challenge was then to 
develop models for which swap moves are easily accepted, which can 
be achieved using either discrete mixtures in which swaps between 
different particle families can be performed, or continuously poly-
disperse systems. However, because such polydisperse models can 
easily crystallize, particle interactions must be carefully adjusted 
to prevent fractionation or phase separation, using, for instance, 
non-additive pair interactions. When these conditions are met, the 
efficiency of the approach is so high that one can easily reach and 
exceed the degree of annealing found in standard laboratory protocols 
(Fig. 2). In the intervening years, a host of model systems amenable 
to remarkably efficient equilibration via SMC have been devised11,79. 
Recent work has also demonstrated that models of metallic glasses 
such as the venerable Kob–Andersen model80, which mimics the NiP 
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metallic glass-forming system, can be well approximated by a poten-
tial for which SMC can be efficiently carried out. This work has ena-
bled a large number of previously impossible investigations into the 
properties of supercooled liquids and glasses in the second category 
of models as defined above. The remainder of this Review discusses  
this progress.

The performance demonstrated in Fig. 2, which represents a 
speed-up of a factor larger than 1010 at the experimental glass transi-
tion Tg, appears surprising in the context of advanced Monte Carlo 
techniques. In the cases discussed above, a computational bottleneck 
rooted in the physics of the problem was tackled using a technique 
originating from physical intuition. In the case of supercooled liquids, 
intuition suggests that because a rugged energy landscape controls 
the physics, methods such as parallel tempering should be favoured, 
but in fact these do not work well. The real-space view that associates 
slow dynamics to some form of spatial correlation between particles2,12 
would instead suggest the need for collective cluster moves. In this sec-
ond view, the success of SMC which introduces very basic two-particle 
moves is surprising. These considerations have led to several studies 
confronting the speed-up offered by SMC to the physics of super-
cooled liquids81–84. Physically, the key is in the interplay between the 
translational degrees of freedom (particle positions) and the diameter 
dynamics introduced by the swap exchanges11. The idea of augmenting 
the number of degrees of freedom has led to new algorithms that have 
proven useful in the context of the jamming transitions85,86.

Advances in understanding the glass problem
Statistical mechanics analysis of glass transition
The equilibration speed-up afforded by SMC makes it possible to pro-
duce a large number of independent equilibrium configurations of a 
glass-former over a temperature regime that encompasses the experi-
mental glass transition temperature. Doing so naturally provides a 
means to perform ensemble-averaged measurements of any equal-time 
correlation function and, by integration, any thermodynamic quantity 
of physical interest.

Since the landmark work of Kauzmann87, the configurational 
entropy Sconf(T ) of supercooled liquids has played a special role in glass 
studies88. Gathering available experimental data, Kauzmann provided 
estimates for the temperature dependence of Sconf and noticed a steep 
decrease as temperature decreases towards Tg. Extrapolating this 
evolution to temperatures below Tg where no experimental data are 
available, Kauzmann noted the possibility that a critical temperature, 
now known as the Kauzmann temperature TK, could mark an entropy 
crisis with Sconf(T → TK) = 0.

Theoretical developments have since greatly clarified the con-
ceptual, mathematical and physical contents of the configurational 
entropy88. In the mean-field theory of the glass transition describing the 
physics of supercooled liquids in the limit of a large number of spatial 
dimensions, d → ∞, a Kauzmann transition accompanied by a vanishing 
configurational entropy rigorously exists89. In this framework, which 
serves as a basis for the RFOT theory90, Sconf quantifies the complexity 
of a rugged free-energy landscape with a clear mathematical definition 
that does not involve any reference to a crystalline state.

It is not yet known whether a Kauzmman transition can exist in finite 
dimensions, d < ∞, but some key mean-field concepts are known to be 
greatly affected by finite-dimensional effects91. In particular, it is impos-
sible to simply and rigorously define, let alone enumerate, long-lived 
free-energy minima in finite dimensions, and the mean-field definition 
of Sconf must be carefully reconsidered66. Approximately 20 years ago,  

a series of numerical works following older ideas48,92 introduced a 
definition of the configurational entropy based on potential-energy 
(rather than free-energy) minima93,94. Although this was known to be 
an approximation, it permitted the development of explicit compu-
tational methods to obtain an estimate of Sconf(T ) that has been used 
across a wide range of models. A strong limitation to these early efforts 
is the narrow temperature range covered by these measurements, 
which is mostly above the mode-coupling crossover temperature and 
corresponds, within the RFOT theory, to a regime where Sconf cannot 
even be defined.

The situation changed after 2017 when the SMC algorithm opened 
a path to analyse the thermodynamic properties of supercooled liq-
uids at, and even below, Tg. At the methodological level, new methods 
were developed to provide computational estimates of Sconf that are 
conceptually much closer to the rigorous theoretical definition of this 
quantity95,96; in practice, these measurements could now be performed 
in the temperature regime where theory predicts the validity of Sconf and 
experimental estimates exist. This new generation of measurements 
was performed across a range of simple models of spherical particles 
with short-range interactions (the second category described above) 
in both 2D and 3D88.

The first result from these measurements is that the steep decrease 
of Sconf(T ) reported by Kauzmann is recovered in all models97 (Fig. 3). 
This result is not trivial, given the diversity of molecules analysed in 
Kauzmann’s work and the different nature of the quantity he reported. 
It also confirms in particular that no reference to the crystalline state of 
the material is needed to estimate Sconf. More quantitatively, extrapolat-
ing the numerical data to temperatures where even SMC is unable to 
provide equilibrated configurations suggests that a finite Kauzmann 
temperature TK > 0 can exist in 3D models97, whereas a different behav-
iour is found in 2D where extrapolations seem to suggest that TK = 0 
(ref. 98). These findings are in line with RFOT theory, which implies that 
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the Kauzmann transition should be destroyed by finite-dimensional 
fluctuations in d ≲ 2.

These measurements, together with theoretical developments, 
give additional insight into the nature of the putative Kauzmann tran-
sition. Within the mean-field description, the entropy crisis at TK cor-
responds to a first-order change between a metastable glass phase 
above TK and an ‘ideal’ glass phase below TK with vanishing configura-
tional entropy. For T > TK, which is the regime explored in equilibrium 
conditions, the glass phase is metastable with respect to the liquid, 
and the configurational entropy can be interpreted as the free-energy 
difference between the two phases99. This insight has two interesting 
consequences for simulations. First, it provides a computational path95 
to estimate the configurational entropy by using free-energy calcula-
tions of the type developed to analyse conventional phase transitions8. 
Doing so typically requires measuring large deviations in the fluctua-
tions of the order parameter; methods such as umbrella sampling are 
well suited for such tasks, and they can be readily adapted to the case 
of supercooled liquids100.

A second consequence of the glass metastability just above TK 
is the possibility of inducing a discontinuous phase transition towards 
the glass phase by application of a thermodynamic field that favours the 
glass, usually denoted ε (ref. 99). Doing so amounts to adding a new 
dimension to the equilibrium phase diagram of supercooled liquids. 
In this extended phase space (T,ε), the Kauzmann transition signals the 
liquid–glass phase change when ε = 0, but a discontinuous first-order 
transition line ε(T) emerges from the Kauzmann point for tempera-
tures above TK. This line ends at a second-order critical point (Tc,εc), 
which RFOT theory predicts should lie in the same universality class 
as the random-field Ising model91. From an experimental viewpoint, 
these considerations may appear as formal theoretical developments. 
However, they are directly amenable to quantitative numerical tests, a 
programme that was started in the late 1990s101,102. These initial studies 
turned into quantitative tests only after SMC was developed.

A complete exploration of the (T,ε) phase diagram, together with 
finite-size scaling analysis of the corresponding phase transitions, is now 
available103–105. These studies confirm the existence of a first-order tran-
sition line in the regime T > TK for 3D glass-formers, and scaling analysis 
confirms the universality class of the critical end-point104. In 2D models, 
no critical end-point is found, in agreement with studies of the random-
field Ising model itself, and scaling analysis again demonstrates good 
agreement with a zero-temperature Kauzmann transition105.

Overall, these thermodynamic results are strong hints that the 
random first-order transition theory of the glass transition provides 
an accurate description of the static properties and thermodynamic 
fluctuations in supercooled liquids. However, similar fluctuations 
and behaviour can be generically expected in systems displaying 
growing static order, such as multispin plaquette models106, which 
also exhibit constrained phase transitions107 but are devoid of any 
finite-temperature Kauzmann transition.

Because the Kauzmann transition is discontinuous, no critical fluc-
tuations of an order parameter are expected to grow as TK is approached 
from above, even in the mean-field limit. Therefore, the search for 
growing length scales as a sign of emerging order is more complicated 
for glasses than it is for simpler types of phase transformations. Gener-
ally speaking, the length scale that grows in the vicinity of a first-order 
transition is a nucleation length scale, usually defined as the critical size 
that a nucleus of the stable phase must have in order to destabilize the 
metastable one8. In the context of the glass transition, this analogy has 
been used to rigorously define108 the corresponding length scale, now 

called the point-to-set length scale. A practical algorithmic procedure 
was also proposed12 to measure the point-to-set length scale. Since 
the free-energy difference between glass and liquid phases above TK 
is directly related to Sconf, the point-to-set length scale is expected to 
be inversely proportional to this free-energy driving force given by 
Sconf, which would possibly diverge at TK, where the entropy vanishes.

This algorithmic construction works as follows. The positions of 
all particles outside a spherical cavity are frozen in an equilibrium con-
figuration to impose the glass metastable phase outside the cavity. 
Particles inside the cavity instead evolve freely, and can eventually relax 
(thus returning to the liquid phase) when the cavity size becomes larger 
than the critical nucleation radius. By monitoring the typical state of the 
interior of the cavity as a function of the cavity size, a characteristic point-
to-set length scale can be measured numerically109–111. However, in prac-
tice, particles inside the cavity are so strongly constrained by the frozen 
boundaries that it is difficult to probe their thermodynamic properties 
even with SMC. An additional equilibration effort involving parallel tem-
pering is needed to properly measure the point-to-set length scale78. The 
agreement with the temperature evolution of Sconf was confirmed97,112, 
directly demonstrating how a decreasing entropy, a growing point-to-
set length scale and a decreasing free-energy difference between glass 
and liquid all reveal the proximity to a Kauzmann transition and can be 
detected in simulations of bulk equilibrium supercooled liquids.

In the past decade, the idea of freezing the positions of a set of 
particles has been investigated in various geometries113, in addition 
to the closed cavity used to infer the point-to-set length scale. For 
example, freezing the position of particles in a half space creates an 
infinite wall of frozen particles that acts as an interesting geometry to 
detect correlation length scales114–116. Another example is when a finite 
fraction c of particles chosen at random is frozen from an equilibrium 
configuration117. In that case, the system remains globally isotropic and 
spatially homogeneous, but the frozen particles considerably reduce 
the size of the available configuration space. In the mean-field limit, it 
can be rigorously shown that this reduction induces an entropy crisis 
of similar nature to the temperature-driven Kauzmann transition118. As 
for the frozen cavity, the constraint imposed by this random pinning 
procedure makes it difficult to properly estimate thermodynamic 
properties of the remaining free particles, and parallel tempering 
has been used to study this situation. Evidence was provided that a 
sharp change happens as c is increased at constant temperature, which 
seems consistent with an incipient phase transition119, accompanied 
by a steep decrease of the configurational entropy120. In the future, 
lower temperatures should be studied and a rigorous finite-size scaling 
analysis should be conducted to fully establish that this situation truly 
corresponds to an equilibrium Kauzmann transition.

Rheology of amorphous solids
We now turn to the rheological properties of the glass state, which is a 
topic of practical and experimental interest121,122. Computer simulations 
are well suited to analyse the glassy rheology of dense colloidal suspen-
sions because the timescales that can be explored experimentally and 
numerically using conventional numerical methods coincide well. The 
analysis of steady-state flow curves for materials undergoing large 
deformations represents an important research area16.

By contrast, atomic and molecular glass-formers cannot be arbi-
trarily deformed because they break or fracture at large deformations. 
Therefore, one is led to analyse the elasticity of the glass in the linear 
response regime and the initial plasticity of the deformed material, 
which is possibly followed by macroscopic failure, often taking the 
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form of a macroscopic shear band in which the plastic deformation is 
almost entirely localized.

As usual, computer simulations are a priori severely limited in such 
an endeavour123. A first issue is the typical rate at which the material is 
deformed, which is larger by many orders of magnitude in standard 
molecular dynamics than that which can commonly be reached in a real 
mechanical experiment. This problem was solved about 20 years ago 
by the introduction of a tool called athermal quasistatic deformation, 
which alternates incremental deformation steps and global energy 
minimization124–126. In this approach, the effective rate of deformation is 
zero, and this particular timescale issue is completely solved, although 
thermal fluctuations are then neglected.

A more problematic issue is that computer simulations can only 
study the mechanical properties of configurations that are prepared 
numerically via some cooling protocol. Over the past two decades, 
computer simulations have therefore analysed the mechanical prop-
erties of molecular glasses quenched to the glass state with cooling 
rates that are approximately 108 times faster than in conventional 
experiments, resulting in poorly annealed glassy states. Such systems 

can readily support large deformations and very much behave as soft 
colloidal glasses: that is, the yielding of the glass occurs as a smooth 
crossover to a flowing state as a function of deformation. This mode of 
yielding is typical of ductile materials and has been carefully analysed 
in many simulation works127.

The advent of the SMC algorithm radically changed the situation, 
as the preparation of glassy configurations with effective cooling rates 
equivalent to those used for real molecular glasses became possible. 
By using the athermal quasistatic protocol for models of glass-formers 
similar to earlier work, it was shown in 2018128 that increasing the initial 
stability of the glass was sufficient to change the yielding behaviour 
from ductile (as observed in earlier simulations) to a brittle yield-
ing accompanied by a macroscopic failure of the material, as seen in 
experiments. The tendency to localize the plastic deformation more 
strongly in space had been found to increase slowly as the prepa-
ration time of the system increases129. However, for the very stable 
configurations analysed in ref. 128, finite-size scaling analysis shows 
that macroscopic failure happens suddenly in a single deformation 
step, in a way that fluctuates less in larger systems (Fig. 4). This result 
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is compatible with the view that yielding in very stable glassy states 
can be described as a kind of discontinuous non-equilibrium phase 
transition. This finding echoes both theoretical developments, in 
which yielding is treated in the realm of statistical mechanics130,131, 
and experimental results showing that real glasses break abruptly via 
brittle macroscopic failure.

This initial work128 paved the way for several research directions. 
In the initial study, the numerics suggested that the clear discon-
tinuous yielding transition observed for very stable glasses becomes 
less discontinuous and slowly transforms into the smooth crossover 
observed for ductile materials. On the basis of these results, comple-
mented by the analytical solution of a mean-field model for yielding, 
it was suggested that the brittle-to-ductile yielding transition could 
itself be described by a second-order critical point with universal 
properties similar to those of a random-field Ising model128. Further 
work in 2D glasses132 supports this picture, but concerns were later 
raised about possible finite-size effects133,134. Future work using off-
lattice and coarse-grained models135, together with theoretical devel-
opments, will hopefully clarify the nature of the brittle-to-ductile 
transition.

A second line of research concerns variations of the geometry 
and timescale for the deformation. The case of periodic deformation, 
which represents an important class of mechanical tests in industrial 
applications, has been analysed in depth136,137. In addition, the influence 
of a finite rate of deformation on brittle yielding was studied138. Finally, 
having at hand realistic glass samples, there is hope that a platform to 
understand in detail the microscopic nature of the plastic events leading 
to stress relaxation in amorphous solids is now available139,140. Additional 
studies should also address the effect of thermal fluctuations.

Vibrational and thermal properties of glasses
The solid-state properties of glasses hold many mysteries that can now 
be convincingly addressed with the advent of in silico preparation of 
well-equilibrated configurations. These features include the unusual 
properties of the vibrational density of states in a disordered solid1,141–146, 
and the putative role played by localized tunnelling states on the energy 
landscape, which become operative at cryogenic temperatures18,19 
(Fig. 5).

It has long been appreciated that configurational disorder induces 
qualitative changes in the behaviour of the low-energy eigenstates of 
the vibrational Hessian matrix that quantifies quadratic fluctuations 
around a glass minimum145,147,148. In particular, in addition to the plane-
wave phonon modes expected from continuum elasticity, modes 
with localized behaviour, dubbed ‘quasilocalized’ modes, appear in 
the vibrational spectrum (also called the density of states), D(ω). The 
contributions of both extended and quasilocalized modes to D(ω) 
render its behaviour distinct from the Debye spectrum expected for 
simple ordered solids.

As the system size increases, a separation of the modes in the 
low-frequency wing of D(ω) into extended and quasilocalized modes 
becomes gradually apparent149. A focus on the contribution of the 
extended modes to the spectrum reveals an excess peak (the ‘boson 
peak’ visible at some finite frequency when plotting the density 
of states rescaled by the Debye contribution), which then merges 
with the expected Debye behaviour at much lower frequencies, 
namely Dex(ω) ~ ωd−1, as ω → 0 (ref. 150). At sufficiently low tempera-
tures, the quasilocalized contribution to the spectrum surprisingly 
takes a different functional form, Dql(ω) ~ ω4, with the exponent 
independent of dimensionality145,149,150. These observations can be 

rationalized theoretically and are visible, to a lesser extent, in poorly 
annealed samples.

The advent of SMC has made it possible to confirm these features 
in well-equilibrated samples of relevance to real experiments per-
formed on amorphous solids. Perhaps more importantly, the use of 
SMC has pinpointed which features evolve as a function of the anneal-
ing rate. Specifically, the core of quasilocalized modes becomes more 
localized in better annealed configurations149,151. Concomitantly, the 
prefactor of the quartic law associated with the density of states of 
the quasilocalized modes decreases rapidly as the degree of annealing 
increases149. The ultimate fate of these features for even lower quench 
rates remains an open question.

At ultralow temperatures near 1 K, the thermodynamic proper-
ties of glasses markedly and quasi-universally deviate from those of 
crystals. In particular, the specific heat of a glass in this temperature 
range is much larger than in its parent crystal and shows a nearly linear, 
as opposed to cubic, temperature dependence152. Given the vibrational 
properties of amorphous solids discussed above, such behaviour 
seems surprising, because the contribution of quasilocalized modes 
in excess to Debye does not account for the specific heat data. A suc-
cessful explanation for the thermodynamic properties of glasses in this 
regime comes from the phenomenological two-level system theory of 
Anderson, Halperin and Varma18, and of Phillips19. This theory posits 
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that local configurations in glasses can tunnel between two configura-
tions, and the ensemble of these tunnelling defects provides an excess 
set of excitations that explains the glass anomalies.

Attempts to test this theory in silico and thus reveal the micro-
scopic nature of local defect modes in glasses date back to 1993153. In 
small (N = 150) systems with a binary potential-energy function that 
was created to mimic an amorphous mixture of nickel and phospho-
rus154, standard molecular dynamics equilibration techniques revealed 
several hundred pairs of local minima separated by a single barrier153. 
However, only a single such double-well potential had a tunnelling 
splitting of the order of 1 K. This difficulty necessitated the use of an 
indirect extrapolation technique to infer the distribution of tunnel-
ling levels in the range where the two-level system model is expected 
to be operative. Regardless, these early results conform closely to the 
predictions of the two-level system model.

In the decades since this pioneering work, its approach has been 
extended and used to study other glass-forming systems155–159. Unfor-
tunately, limitations in algorithms and hardware have meant that com-
puter simulations have produced an incomplete picture of low-energy 
excitations in glasses. In addition to small system sizes, the lack of an 
approach such as SMC has heretofore meant that amorphous systems 
unrealistically prepared in silico have been studied.

The advent of SMC provided an impetus to revisit the goals of the 
original studies. SMC has been used to investigate the local structure 
of the lowest energy states of the energy landscape of a polydisperse 
soft-sphere glass as a function of the degree of equilibration, ranging 
from poorly annealed systems to those that are as well equilibrated 
as laboratory ultrastable glasses160,161. Efficient protocols can locate 
connected minima and find the lowest-energy pathways between 
them. This approach has enabled the direct extraction of a large 
number of tunnelling systems even under the most well-equilibrated 
conditions. In turn, this has afforded a direct test of the two-level sys-
tem model, revealing that the distribution of tunnelling systems is in 
agreement with that proposed by Anderson, Halperin and Varma, and 
by Phillips. In addition, the density of tunnelling systems decreases 
sharply as the stability of the glass configurations increases, as 
observed in many (but not all) experiments on ultrastable glasses162–164. 
The vast majority of tunnelling systems are associated with local 
defect-like motion, but rare, highly collective, tunnelling motion 
occasionally occurs, especially in more poorly annealed systems 
(Fig. 5c).

Many unanswered questions remain with respect to the non-
phononic excitations discussed above. SMC is limited in the range of 
potential-energy surfaces for which it can provide substantial equi-
libration efficiency gains. Thus, the origin of the intriguing experi-
mentally observed quasi-universality in various ratios of material 
constants associated with two-level systems in starkly different glassy 
systems remains unexplored by computer simulation165. The con-
nection between two-level systems and quasilocalized modes — a 
connection that is central to the phenomenological soft-potential 
model166,167 — demands more attention, despite some recent work along 
these lines168. A rigorous, multidimensional treatment of tunnelling 
on the potential-energy landscape has yet to be carried out169. Finally, 
a precise, quantitative means of calculating the density of tunnelling 
systems in simulated glasses is lacking, because protocols to search the 
energy landscape that are required to gather a statistically significant 
sample of two-level systems differ from the experimental quench 
pathway taking in the laboratory. These and other issues should be 
addressed in future work.

A surprising outcome of the large-d statistical mechanics approach 
to the glass transition is the prediction that the glass phase itself is not 
unique but can undergo a transition between two types of glassy states 
characterized by distinct physical properties170. This Gardner transi-
tion had first been discovered in the context of mean-field spin-glass 
models171, and its prediction in the context of structural glasses has led 
to intense research activity in recent years172. From a computational 
viewpoint, SMC played a pivotal role in this endeavour because the 
predicted transition occurs when adiabatically following very stable 
glassy states that only SMC can achieve. Clear signs of a phase transi-
tion have been reported in 3D hard-sphere glasses173–175; the transition 
becomes a strong crossover in 2D hard disks176. The phase behaviour of 
soft glasses is more subtle177, and the Gardner transition does not seem 
to occur in more conventional glass-formers such as Lennard–Jones 
systems178. This behaviour shows that more work is needed to fully 
assess the problem of the Gardner transition in generic glass-formers.

Outlook
From a fundamental perspective, the glass problem has gone through 
important transformations in recent years, as theoretical, computa-
tional and experimental progress has paved the way towards a better 
understanding of some key issues. We believe that this progress will help 
to organize the field around well-posed questions that can directly be 
addressed analytically or numerically. We close this Review by describ-
ing some research directions that we think will see important progress 
in the coming years.

One nascent direction of research stems from the ongoing revolu-
tion created by the systematic application of deep learning techniques 
to many areas of physical science. The glass transition has also been 
attacked by various machine learning techniques to address various 
questions. One important line of research, which is somewhat periph-
eral to this Review, is the use of machine learning tools to develop 
interaction potentials between glass-forming atoms and molecules 
that have an ab initio level of accuracy179, thus making important pro-
gress towards the development of better models in the first category 
of models described above.

A second line of research involving machine learning pertains to 
the development of methods to detect, in an unsupervised manner, the 
existence of important structural properties in glassy configurations 
that may otherwise appear devoid of structural heterogeneity180,181. 
The goal is to use deep learning techniques to automatically detect, 
with no a priori bias, the geometric motifs that may be relevant to 
understanding the thermodynamic evolution of glass-formers. The 
hope is that machine learning can outperform existing attempts to 
detect relevant structural motifs in supercooled liquids that are based 
on physical intuition182–184.

Finally, a related but distinct investigative thrust is the application 
of machine learning techniques to probe the fundamental question of 
how the structure of a supercooled liquid encodes the heterogeneous 
slow dynamics arising from a given initial configuration. Proposed 
approaches to predict the structural propensity for dynamics on differ-
ent timescales include simple metrics, such as the softness field which 
relies on training local dynamics to local structural pair correlation 
functions185, and more complex approaches such as the use of graph 
neural networks186. Current efforts try to develop the best architec-
ture to improve the quality and the simplicity of predictions, while 
simultaneously improving on the list of structural indicators used as 
inputs187. The overall goal would be both to make extremely accurate 
predictions in order to draw some physical conclusions from them, 
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and to extract from the learned models what the structural descriptors 
are that correlate best with the long-time dynamics. Given the pace 
at which machine learning techniques are propagating throughout 
many computational areas, we expect to see much more activity in 
this area. These approaches have, in particular, great potential to allow 
for a detailed mechanistic understanding of how the structure (such 
as local packing motifs), which appears remarkably similar to that of 
the high-temperature liquid state that it was cooled from, encodes the 
strikingly heterogeneous dynamics that is the hallmark of supercooled 
liquids. Similar questions are being asked in the context of deformed 
glasses where plasticity is typically also very heterogeneous in space 
and time139,188.

There are also a number of open questions that are awaiting the 
development of better simulation techniques. Techniques such as SMC 
work remarkably well for systems that mimic metallic glass-formers, 
but the simulation of glasses composed of the more complex family 
of molecular glass-forming liquids is currently out of reach via any 
Monte Carlo approach. Can generalized versions of cluster Monte 
Carlo methods be invented to simulate such systems? Doing so would 
help to answer the important question of how universal the underlying 
microscopic dynamical motifs are in a diverse class of glass-forming 
systems. The many new results concerning the physical behaviour of 
simple point-particle models near the experimental glass transitions 
have not yet been confirmed in more complicated but experimentally 
more typical models. Although there is hope and there are theoretical 
reasons that a fair degree of universality will eventually be found, it is 
necessary to develop the numerical tools to confirm this hypothesis. 
Doing so would then allow researchers to close the remaining gap 
between simulations and experiments. We believe that extended ver-
sions of the SMC could first be attempted in the simplest known models 
of molecular glasses, such as systems comprised of coarse-grained 
molecules or short polymeric chains.

Progress using computer simulations to directly determine 
the thermodynamic fluctuations and extended phase diagrams 
of supercooled liquids near the glass transition has demonstrated 
that the framework of RFOT theory, which stems from the firm basis 
of the mean-field theory of the glass transition, appears to correctly 
describe the thermodynamics of 2D and 3D glass-formers. However, 
the strong hints of an underlying Kauzmann transition remain sub-
ject to a temperature extrapolation, because it remains impossible 
to equilibrate to temperatures close enough to TK to directly observe 
the transition. It could be that the SMC is too primitive an algorithm 
to approach TK because it represents, after all, only a simple variation 
upon canonical Monte Carlo simulations for fluids. We may surmise 
that the development of smarter Monte Carlo algorithms that possibly 
displace several particles at once, perhaps in conjunction with parallel 
tempering, would be needed to approach the Kauzmann transition 
closely enough to directly observe the entropy crisis and firmly test 
the validity of RFOT theory.

Connected to this question, there is a pressing need to develop 
approaches that may, perhaps in a coarse-grained manner, enable 
simulation of the long-time dynamics of supercooled liquids close to 
the glass transition. Over the past decade, progress has been made 
in creating dynamical strategies189–192, correlation functions14,15 and 
tools193,194 to assess and describe crucial aspects of glass formation, 
such as dynamical heterogeneity and growing dynamical length scales.

Some of these tools are expensive to simulate via molecular 
dynamics even at relatively high temperatures. For example, the 
quantity S4(q,t), which is a four-point function from which growing 

dynamical length scales can be extracted14,15, requires not only a large 
degree of ensemble averaging but also large system sizes to extract 
accurate dynamical exponents195. The advent of techniques such as 
SMC enables the creation of glassy samples that are annealed in a real-
istic manner beyond the capability of local Monte Carlo or molecular 
dynamics. However, simulating the direct long-time dynamics from 
such configurations remains a difficult task for highly annealed systems 
because the dynamics themselves span many orders of magnitude in 
time. The use of advanced Monte Carlo methods to create initial condi-
tions for simulations on dedicated specialized hardware such as Anton 
can only partially overcome this problem72. Although SMC has helped to 
enlarge the time window that can be analysed numerically196–198, future 
effort must be focused on this most crucial of questions.

In our view, a remaining unexplored territory is the dynamics of 
deeply supercooled liquids in the temperature regime pertinent to 
experimental work. Although measured thermodynamic fluctuations 
tend to agree with the RFOT theory description, this gives no guarantee 
that relaxation dynamics directly follows from the thermodynamics 
in the manner envisaged by theory12,66, or, more broadly, that it is con-
trolled by features encoded in the potential-energy landscape199,200. 
There are several indications that dynamics may be controlled by a 
small population of localized defects201,202 and that contributions to 
the long-time dynamics come from purely dynamic relaxation chan-
nels that are not readily described by thermodynamic quantities, such 
as dynamic facilitation198,202–204. We expect that the development of 
new algorithms, together with improvement in molecular dynamics 
implementations, will provide the tools to numerically study the long-
time dynamics of glassy liquids near the experimental glass transition.
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