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Abstract

Unravelling the connections between microscopic structure, emergent 
physical properties and slow dynamics has long been a challenge when 
studying the glass transition. The absence of clear visible structural 
order in amorphous configurations complicates the identification of the 
key physical mechanisms underpinning slow dynamics. The difficulty 
in sampling equilibrated configurations at low temperatures hampers 
thorough numerical and theoretical investigations. We explore the 
potential of machine learning (ML) techniques to face these challenges, 
building on the algorithms that have revolutionized computer vision 
and image recognition. We present both successful ML applications and 
open problems for the future, such as transferability and interpretability 
of ML approaches. To foster a collaborative community effort, we also 
highlight the ‘GlassBench’ dataset, which provides simulation data 
and benchmarks for both 2D and 3D glass formers. We compare the 
performance of emerging ML methodologies, in line with benchmarking 
practices in image and text recognition. Our goal is to provide guidelines 
for the development of ML techniques in systems displaying slow 
dynamics and inspire new directions to improve our theoretical 
understanding of glassy liquids.
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in particular owing to the progress in unsupervised learning. Several 
approaches are being developed towards this goal9–12.

Another long-standing challenge has been understanding and 
characterizing the fundamental mechanisms underpinning slow 
and glassy dynamics, which are responsible for the glass transition. 
To this aim, there has been a substantial effort to identify the micro-
scopic properties that lead to dynamical relaxation. Given a snapshot 
(an equilibrium configuration), several local properties have been 
proposed to pinpoint the regions that have higher tendency to relax 
within a window of, say, some fraction of the relaxation time. Examples 
include the local Debye–Waller factor, eigenvectors of the Hessian of 
inherent structures, and so on13,14. There is no consensus on what is the 
best predictor of future dynamics. Moreover, the best choice could 
change with temperature or be system-specific, according to several 
theories of the glass transition15. Owing to the advances in numerical 
simulations of glass-forming liquids, it is now possible to produce 
large datasets of initial configurations and subsequent dynamical 
trajectories. This provides a natural playground to apply supervised 
learning techniques in order to identify the local predictors of 
dynamical relaxation. Several researchers have taken up this challenge 
and developed ML methods to predict where local relaxations have 
higher tendency to take place given an initial snapshot16–27.

Finally, the ultimate goal of the research efforts devoted to 
the theory of glassy dynamics would be to combine the solutions 
of the previous problems to develop an effective theory of the glass 
transition. Until now, this challenge has been tackled starting from 
some theoretical assumptions driven by experimental and simulation 
results15. ML methods can also make a difference in this challenge; they 
can assist in this quest by providing a complementary identification of 
the mechanisms inducing relaxation28.

The time is ripe to investigate the ability of ML methods to advance 
the fundamental understanding of glass-forming liquids. In this 
Technical Review, focusing on the three main goals described above, 
we present the recent contributions in this endeavour, discussing 
the main difficulties ahead and possible paths to circumvent them. 
In Fig. 1, we give a visual overview over the different ML concepts that 
will be discussed within the individual sections. We then describe a 
framework ‘GlassBench’29 intended to enable, encourage and structure 
a broader community effort to further develop such ML approaches. 
GlassBench consists of a dataset including simulation data for a 2D27 
and a 3D glass former22,30, benchmarks on different tasks associated 
to predicting local dynamics from a given initial configuration, and an 
assessment of the state of the art. Our purpose is to fuel and organize 
new developments of advanced ML techniques, as done in the field of 
image and text recognition, as well as generative modelling. (See, for 
example, benchmarks in the fields of computer vision, natural language 
processing, time series analysis and much more.) Finally, we discuss 
future directions for research.

Machine learning locally favoured structures
Although glass-forming liquids and glasses lack long-range order, close 
inspection of their atomic structure reveals particle arrangements that 
are more regular, symmetric and of lower (free) energy than the aver-
age. Icosahedral local structures are the best known example of such 
favourable arrangements, and they are found in several metallic alloys, 
colloidal suspensions and computer models of glassy liquids5. Such 
locally favoured structures (LFSs), distinct from the bulk of the particle 
arrangements and yet incompatible with crystalline order, are also key 
ingredients of some theoretical approaches to glass formation15,31.

Key points

 • Systematic characterization of amorphous glassy structures can 
be addressed by unsupervised learning, which requires an adequate 
choice of structural descriptors.

 • Finding structure–dynamics relationships in glassy liquids is a task 
that has many analogies with image recognition and can be tackled 
using supervised learning with various neural network architectures 
already successful in image recognition.

 • Major challenges and potential breakthroughs await in transferring 
trained models to extremely low temperatures, using them to create 
ultrastable glasses and design new phenomenological glass models.

 • Future directions also encompass generative modelling of 
low-temperature equilibrium configurations and development 
of self-supervised and reinforcement learning approaches.

 • Publicly available datasets and unified benchmarks that are 
fundamental to stimulate further development of ML techniques 
in condensed matter physics are provided.

Introduction
When supercooled liquids undergo a glass transition, a dramatic slow-
down of transport properties is observed and the resulting material 
dynamically resembles a crystalline solid, yet one of the main character-
istic of glasses is that they maintain their amorphous liquid structure1. 
Despite several decades of research involving experiments, theory 
and computer simulations, many fundamental mechanisms remain 
to be elucidated, such as macroscopic mechanical properties, highly 
cooperative stress relaxation in glasses, and the statistical mechanics 
nature of the glass transition itself2.

 The rise of deep learning in the past decade3 was initially driven 
by applications in computer vision, in particular image recognition 
and feature detection, fields in which deep learning soon outper-
formed traditional techniques4. These original breakthroughs are now 
starting to revolutionize several other areas in technology and science. 
Our aim in this Technical Review is to address the potential of ML 
methods to boost research on fundamental aspects of glassy dynamics, 
in particular the ones that have an important role in advancing theories 
of the glass transition.

In this Technical Review, we identify three challenges in develop-
ing a fundamental microscopic theory of glasses. One challenge is the 
absence of any simple and visible structural order. Crystalline defects 
in otherwise well-ordered structures are easily detectable, but finding 
analogous structural features in amorphous materials remains an 
open problem. Over the years, many different proposals for ‘defects’ 
or locally favoured structures have been proposed and developed5–8. 
This variety of proposals seems to indicate that even in amorphous 
configurations, it could be possible to detect the emergence of some 
kind of short-range and medium-range order. However, these identifi-
cations usually only apply to specific systems, and they are often only 
weakly correlated with local dynamical relaxations. There is, therefore, 
a clear need for new and more powerful system-independent ways to 
systematically find preferred structures in amorphous configurations. 
This is a challenge for which new ML methods could be a great asset, 
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Despite the importance of structural analysis in glassy materials5,6, 
there is at present no generally accepted operational definition of 
LFS. Standard approaches — such as Voronoi tessellation32, topologi-
cal cluster classification33 and other related methods34,35 — provide a 
detailed classification of the possible local geometric arrangements. 
These methods may indicate which local arrangements are the most 
abundant or most stable, but they are sensitive to thermal fluctuations 
and tend to provide a too fine-grained classification, which is difficult 
to exploit in a theoretical setting. Bond-order parameters (BOPs)36 
provide yet another way to characterize the local structure of dense 
particle systems6. Although this approach offers in principle a system-
atic description of the local arrangements, the choice of the relevant 
BOP has traditionally been guided by physical intuition6, which requires 
specific and system-dependent a priori knowledge about the relevant 
symmetries of the local arrangements.

Unsupervised learning methods offer natural system-independent 
ways to tackle the above issues37–40. Along with automated identification 
of phase transitions41–43, one of the key applications of unsupervised 
learning in condensed matter physics is characterization of the 
properties of complex materials from high-dimensional datasets38. 
The general idea is to first characterize a faithful, high-dimensional 
representation of the particle local environment based, for instance, 
on a systematic bond-order expansion of the local density44 (see ref. 45 
for a review on structural descriptors). Unsupervised ML methods are 
then used to identify a small number of collective coordinates, X~i, that 
account for the relevant fluctuations of the local structure, thereby 
reducing the dimensionality of the descriptors.

Dimensionality reduction techniques range from simple principal 
component analysis (PCA), or its kernel variant, to more sophisticated 
statistical learning methods, such as neural network auto-encoders 
(AEs)37. These methods may in future be combined with more 
advanced approaches, such as self-supervised learning or pre-training 
(as discussed in the section ‘Self-supervised, semi-supervised and 
reinforcement learning’), possibly exploiting the intrinsic symmetries 
of the system46. Once the reduced structural representation of the 
material structure is obtained, clustering methods can be applied to 
pinpoint its heterogeneity38.

The studies highlighted in ref. 38 focus mostly on ordered mate-
rials or disordered systems with covalent or hydrogen bonding, such 
as amorphous carbon47 or liquid water48, in which the preferred geo-
metrical order is readily identified owing to low coordination numbers. 
Dense amorphous systems are characterized instead by close-packed 
arrangements, which provide a challenging benchmark for this kind 
of structural analysis. In a series of papers9,10,49–51, dimensionality 
reduction and clustering were applied to models of closed-packed 
glass-forming liquids. In particular, BOPs, Gaussian mixture models and 
a neural network AE have been used to reveal9 a significant structural 
heterogeneity in glassy binary mixtures, suggesting that in these sys-
tems, one can distinguish fluctuating regions that display two different 
types of local disorder. The spatial heterogeneity of these regions is 
also correlated with the dynamic structural relaxation in the system. 
Such structure–dynamics correlations are further discussed in the 
next section.

A related study in ref. 10 has addressed the issue of clustering of 
local structural arrangements using a different, information-theoretic 
approach. At a qualitative level, the results of the analysis in refs. 9 
and 10 appear consistent with one another. However, a more recent 
investigation49 revealed a notable system-dependence of structural 
heterogeneity in glassy liquids. The gist of these findings is illustrated 
in Fig. 2, which shows representative PCA maps obtained from a smooth 
bond-order (SBO) descriptor (more details are given in the Supplemen-
tary information). The distribution of the first two principal compo-
nents is bimodal for an embedded-atom model of Cu64Zr36, which has 
a well-defined icosahedral LFS, whereas it is less hetero geneous for the 
canonical Kob–Andersen (KA) mixture (which will be benchmarked 
in the section ‘Performance metrics and benchmarking’), whose local 
arrangements display a homogeneous distribution of geometrical 
states. Although these differences question the universality of the 
concept of LFS, the first few principal component projections always 
correlate with physically motivated structural measures49.

We expect that more information could be harvested by looking 
at chemically resolved descriptors52 and on larger length scales 
(medium-range order). Moreover, computing the intrinsic dimen-
sion of structural datasets43,53 may provide additional insight into the 
nature of structural order and its system dependence.

A striking observation reported in ref. 49 is that neural network 
AE and PCA yield identical reductions of the BOP descriptors. This 
finding suggests at least two possible scenarios. The first possibility is 
that the local structure in dense glassy mixtures is simple: it displays 
a broad continuous spectrum of geometrical arrangements, possibly 
decorated by features such as LFS, crystallites or structural defects. 
The second possibility is that the current identification of LFS is missing 
some crucial ingredient. The outcome of PCA is also straightforward to 
interpret because the principal component directions provide direct 
insight into the dominant structural parameters. In the presence of 
agnostic, high-dimensional structural descriptors, such as the smooth 
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Fig. 1 | Visual summary of the scope of this Technical Review. The individual 
sections at the centre are connected to the big questions in the field of glass 
physics. They are surrounded by the various machine learning concepts used to 
answer them.
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atomic overlap parameters44, interpretation always occurs a posteriori, 
by searching for correlations between some of the reduced structural 
and physically motivated structural measures38.

On the one hand, these results question the utility of complex 
deep learning methods in studying glass structure. On the other 
hand, the descriptors used in refs. 9,10,49 do not exhaust all forms of 
structural heterogeneity, and some may be affected by some deeper 
shortcomings54. Development of structural descriptors remains 
active55,56, and these advances wait for applications in the context of 
glassy materials. Addressing the above issues may become crucial in 
future studies of more demanding benchmarks for structural char-
acterization, such as compositional order in polydisperse glassy 
models57,58, medium-range order in oxides or metallic glasses59,60, 
and orientational order in glassy water61,62. Computational studies of 
these complex systems represent opportunities to gain insight into 
the nature and role of local structure in glassy materials and to provide 
solid grounds for predictive theoretical approaches based on structure.

Another research line wherein structure-based ML approaches 
are making progress aims at predicting macroscopic properties 
of glasses relevant for applications, such as oxides or chalcogenide 
glasses, over a wide range of chemical compositions63,64. Work on 
sodium-silicate glasses shows that physics-informed machine learning 
models can reliably interpolate and extrapolate these properties based 
on structural information only65. These findings indicate that, despite 
the apparent complexity of the feature space, the relationship between 
local structure and macroscopic glass properties is often linear, which 
makes it simple for machine learning models to generalize outside their 
training set (see ref. 66 for a roadmap on this topic).

Having characterized amorphous structure, a crucial question 
is whether the structural descriptors are connected to emergent 
relaxation dynamics in the glass-forming liquid13,67–69. As will be clear 
in the section ‘Performance metrics and benchmarking’, present-day 

unsupervised methods provide only limited insights into the 
heterogeneity of the dynamics, except in specific systems dominated 
by strong icosahedral order9,10,49. Whether this is a technical limitation 
of the unsupervised methods used to date, or is an intrinsic feature of 
supercooled dynamics, remains to be clarified.

Prediction of structural relaxation  
and dynamic heterogeneities
One of the central challenges for both computational and theoretical 
studies of glass-forming liquids is to use an initial snapshot to predict 
the future dynamics of a configuration. Note that one is not interested 
in predicting the whole future evolution but only the dynamical pro-
cesses leading to microscopic irreversible motion. Supervised ML 
provides a natural tool to perform such prediction, essentially by fitting 
high-dimensional structural input to the relaxation dynamics, similar 
in spirit to classification in image recognition. In general, three choices 
need to be made to design a model: which structural descriptors to use 
to characterize the input configuration, which labels to use to quantify 
structural microscopic relaxation, and what model and ML algorithm 
to use to fit the input to the labels. Varied techniques have already been 
introduced to tackle this problem, ranging from ridge regression using 
complex and coarse-grained structural descriptors to graph neural 
networks using raw particle positions (Fig. 3).

Support vector classifiers (SVCs) have been used to classify soft 
spots relaxing fast against slowly relaxing regions in glasses17. (Note that 
in ref. 17, the term support vector machine was used, but here we use 
the term support vector classifier to stress the fact that the procedure 
corresponds to a classification and not a regression.) Here, soft spots 
are defined as regions that have a high likelihood of rearranging within 
a short timescale. As input to this algorithm, each particle is assigned a 
vector of local structural descriptors that captures the local density and 
angular structure within shells at different distances from its centre. 
From the trained SVC, a quantity called softness, S, can be extracted, 
which correlates with the likelihood for the particle to rearrange in 
the near future. Softness has been used to gain insight into a variety 
of glass problems that encompass many types of glassy liquids and 
disordered solids, ranging from strong to fragile and ductile to brittle, 
with constituent particles ranging from atomic to granular, studied 
in bulk and in thin films16,70–78. Furthermore, this approach also led to 
a series of papers28,79,80 aiming at constructing an effective model for 
the dynamics in glassy fluids built around the evolution of the softness 
field, which will be discussed in more detail in the next section.
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in two representative systems. a, SBO parameter around Cu atoms in glassy 
Cu64Zr36. b, SBO parameter around small particles in the Kob–Andersen (KA) 
binary mixture around its mode-coupling temperature49. Note the contrast 
between the bimodal structure in part a owing to icosahedral local structures49 
and the homogeneous distribution of the projections in part b. The bottom panels 
show the marginal distribution of the first principal component projection.
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Fig. 3 | Typical supervised machine learning (ML) procedure in condensed 
matter. The raw input is encoded using structural descriptors or graphs. A model 
is trained using labels that describe structural relaxation obtained from, for 
example, molecular dynamics simulations. Colours indicate frozen (blue) or 
rearranging (red) particles. ML techniques include support vector classification 
(SVC), graph neural networks (GNNs), multilayer perceptrons (MLPs) and 
convolutional neural networks (CNNs). After training, structural relaxation is 
predicted for previously unseen structures.
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Whereas softness is associated to prediction on short timescales, 
several subsequent works have focused on predicting the dynamics, 
or more precisely the dynamic propensity81, on longer timescales t ≈ τα. 
Here, τα is the typical structural relaxation timescale on which each 
particle moves on average approximately one particle diameter 
(see the Supplementary information for more details). Dynamic 
propensity quantifies the local dynamics of a glass-forming liquid by 
capturing the typical behaviour of each particle in a structure using 
the isoconfigurational ensemble81. This ensemble is formed by a set of 
trajectories that start from the same initial structure but with different 
initial velocities drawn from a Maxwell–Boltzmann distribution. 
By calculating the mean distance travelled by a given particle in this 
ensemble, one arrives at the dynamic propensity ∣ ∣r tΔ ( )i iso

. Owing to 
this averaging, the dynamic propensity captures the part of the dynam-
ics encoded in the initial structure, leaving out the part stemming from 
the initial velocities, which cannot be captured by any structural 
descriptor. Although some dynamical information is necessarily lost82, 
the dynamic propensity, which fluctuates from one particle to the 
other, is an important measure for dynamic heterogeneity (DH) in 
supercooled liquids. At the end of this section, we also discuss ways to 
reintroduce the fluctuations around the isoconfigurational average 
using different labels or new ML designs.

A graph neural network (GNN) was introduced18 in 2020 that can 
predict the dynamic propensity markedly better than a support vector 
machine (SVM) (wherein the input for the SVM was angular and radial 
functions similar to ref. 17). In contrast to the SVM, the input to the 
GNN is a graph structure in which each particle in the initial configura-
tion is represented by a vertex, and edges are drawn between particles 
within a cut-off radius of each other. In addition to the structure of this 
graph, the vertices and edges also carry information: the particle spe-
cies (as vertex data) and the vectors connecting neighbours (as edge 
data). The GNN model then consists of several multilayer perceptrons 
(MLPs) that iteratively update the features contained at the edges and 
nodes, with each iteration passing information along the nodes 
and edges of the network. After the final iteration, the features at the 
nodes are passed through a final MLP that predicts the dynamic pro-
pensity. As all vertices are updated in parallel, the network predicts 
mobilities of all particles simultaneously. This network is then opti-
mized to minimize the squared difference between the predicted and 
true propensity using the L2 norm.

Two improvements to this GNN approach have been proposed. 
A substantially higher accuracy can be reached over nearly all time-
scales by considering not only single-particle dynamics but also 
pairwise dynamics22. Specifically, the GNN is trained to predict not 
only the dynamic propensity but also the isoconfigurational change in 
the distance between pairs of particles sharing an edge in the graph — 
a modification called BOnd TArgeting Network (BOTAN)22. Intrigu-
ingly, even with the same overall architecture, BOTAN finds a better 
prediction for the single-particle dynamics, showing that the extra 
edge information improves the performance of the GNN. An alterna-
tive improvement on the GNN approach explicitly requires the GNN 
to enforce the rotational symmetry, an idea sometimes referred to 
as geometric deep learning or rotation equivariant network (SE(3)) 
(ref. 25). This adaptation also improved on the original work in ref. 18 
over nearly all considered timescales.

In addition to the development of increasingly sophisticated ML 
methods to predict the dynamic propensity, efforts have been made 
to better capture important local features of the structural input. The 
recursive updating properties of GNNs have been incorporated into a set 

of locally coarse-grained structural descriptors20. Fitting just three gen-
erations of descriptors with a linear regression algorithm is sufficient to 
essentially reach the accuracy of the GNN — leading to a far simpler and 
more interpretable algorithm for fitting glassy dynamics. Interestingly, 
learning the dynamic propensity using these descriptors with non-linear 
models (MLP and GNN) does not improve the ability to predict the 
dynamics, as quantified by the Pearson correlation coefficient21.

This approach has been further developed by including 
physics-inspired descriptors that, in the past 30 years of glass research, 
have been identified as important structural proxies, in a model known 
as GlassMLP27. These additional structural descriptors include potential 
energy and properties of the Voronoi cells, and the choice of describ-
ing the system in terms of its inherent state27. The inherent state cor-
responds to the energy minimum configuration that is closest to the 
actual input structure. These modifications improve the performance 
of the network. GlassMLP further uses MLP for supervised learning, 
which enables the precise representation of non-linear or non-Gaussian 
features such as probability distributions of propensities27. Using 
transferability in system size, the network has been applied to deter-
mine dynamic correlation lengths and the geometry of rearranging 
clusters over a wide range of temperatures. The GlassMLP model has 
been enhanced to improve the transferability across timescales and 
temperatures and to explore physical regimes wherein direct train-
ing cannot be performed83. In a vein similar to GlassMLP, structural 
descriptors have been improved by going beyond inherent states and 
by using cage states, in a model known as CAGE23. In CAGE, cage states 
are extracted from restricted ensemble averages of the local structure 
using Monte Carlo simulations. The local environment is, thus, better 
described, which also helps improve the performance of the model.

By construction, all methods perform best at the temperature 
at which they are trained. However, it is possible to apply a trained 
network to other temperatures and test how predictions correlate 
with true dynamics17,18,25,77,83. Good performance in such transfer 
experiments indicates that the model captures relevant universal 
features in the structure–dynamics relationship of glass-forming 
liquids. Transferability has, for example, been used to investigate links 
between amorphous structure and fragility77 and to predict features 
of DH for temperatures comparable to the experimental glass tran-
sition temperature83. In the section ‘Training a transferable model 
across different temperatures’, we show additional transferability 
experiments for several models.

In future work, it will be interesting to further exploit the transfer-
ability of supervised ML techniques to robustly extract information 
on structural relaxation at very low temperatures. One goal would con-
cern the evolution of DH upon approaching the glass transition and make 
the connection with experimental results84. One possible strategy to 
improve transferability of trained models to low-temperature regimes in 
which dynamics cannot be run for long enough (that is, regimes in which 
little or no labelled data is available) would be to use self-supervised 
learning85. More generally, self-supervised learning could also be used 
to enhance performance of the deep approaches (as discussed in the 
section ‘Self-supervised, semi-supervised and reinforcement learning’).

To better capture the physical phenomena underpinning glassy 
dynamics, it is necessary that the ML models not only faithfully predict 
the dynamics at the single-particle level but also correctly reproduce 
all statistical features of the propensity field, including spatial and 
temporal correlations, such as those measured by the four-point sus-
ceptibility χ4(t) (ref. 86). For GNNs, a known problem is over-smoothing: 
the predicted propensity field tends to be smoother than the ground 
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truth. Additional terms can be added to the loss function to prevent 
over-smoothing, resulting in predictions that display more realistic cor-
relation functions, even in a rather simple MLP architecture27. An open 
direction is the development of such improved loss functions, which 
could also be used in deep architectures.

A related idea is to learn not only the isoconfigurational average 
of the displacement, r t⟨|Δ ( )|⟩i iso, but its full statistical distribution, 
Piso(Δri(t)). This could be accomplished either by additionally fitting 
higher moments of the distribution or by taking a generative model 
approach, in which one would generate realistic single-instance dynam-
ical fields (not averaged in the isoconfigurational ensemble). This task 
could be achieved using a variational auto-encoder approach87. Because 
the spatial correlations of the isoconfigurational average are a priori 
different from the spatial correlations of single instances, the hope is 
that such generative models would reproduce these statistics more 
faithfully than conventional ones. To train such models, information 
beyond the isoconfigurational average is required, for instance, by 
providing single-instance configurations, which can also be used to 
regress the average. Finally, this approach might be usable to propose 
new configurations on the structural relaxation timescale τα, with the 
long-term goal being the ability to develop a Monte Carlo algorithm 
that completely avoids the critical slowing down of the dynamics on 
the approach to the glass transition. Similarly, the predictions could 
be used to create ultra-stable glasses by generating prototypical 
hard neighbourhoods and remove structural defects88. The section 
‘Generative models’ discusses them in more detail, as well as their 
applications for sampling low-temperature glassy structures.

In physics, explaining complex behaviour builds on the abil-
ity of theories and models to substantially compress the inherent 
information of a natural phenomenon89. From this standpoint, large ML 
models, involving hundreds or thousands of directly fitted parameters, 
do not qualify as a physical theory in the traditional sense of the term. 
Moreover, owing to their non-linearity, neural-network models are still 
rather difficult to interpret, although some progress is being made90,91. 
This does not mean, however, that large ‘black-box’ ML models are 
useless in this context: their predictions can be instrumental as part 
of a heuristic process, eventually leading to a simple solution to an 
outstanding problem92. This is nicely demonstrated by the results 
presented in this section: building on the insight of ref. 18, the same 
prediction accuracy as graph neural networks was achieved using a 
far simpler and more transparent linear regression method21. Linear 
models, thus, retain a strong appeal for fundamental research in glass 
physics because of their simplicity and their direct mapping to the 
underlying structural descriptor. Interpreting the outcome of ML 
models also hinges on the ability of identifying the most relevant fea-
tures, a process known as ‘feature selection’. Analysis of the so-called 
information imbalance has emerged as a general and elegant approach 
to feature selection93. This method has been recently applied to identify 
the most relevant structural features for glassy dynamics94,95.

Finally, a natural aim for future investigations is to enlarge the ML 
studies described above to encompass diverse glass-forming materials 
with complex dynamics, including active glasses as model for biological 
tissues96,97. Although it is generally accepted that equilibrium micro-
scopic dynamics do not influence long-time structural relaxation, it 
is unclear which signature activity plays on structural descriptors in 
active glasses98. Similarly, very little information on the dynamical 
properties of glasses during ageing99, and whether similarly strong 
structure–dynamics relationships can be found as for equilibrium 
relaxation, exists.

Learning phenomenological glass models
In this section, we demonstrate the potential of combining ML methods 
with physical insights to develop effective models and phenomeno-
logical theories of slow and glassy dynamics. The starting point is the 
ML methods, described in the previous section, that identify the local 
structure responsible for local relaxations on short timescales. The aim 
is to use this structural field as a building block to construct a phenom-
enological model for how structural relaxation proceeds. This approach 
is built upon two useful classes of models to understand dynamics in 
glass-forming liquids and amorphous solids subjected to mechanical 
strain, namely, trap and elasto-plastic models.

Trap models start from high-temperature liquid, describing 
the system as a distribution of energy barriers for rearrangements. One 
implementation100 adds a facilitation mechanism: in response to a 
rearrangement, all the energy barriers are subject to a small random 
drift. This facilitated trap model has been used to explain the emergence 
of excess wings in the relaxation spectra101. Elasto-plastic models start 
instead from low-temperature solid, describing the system in terms of 
thermally induced rearrangement events that can trigger other rear-
rangements via long-range strain fields102–104. Both of these approaches 
give insights into glassy dynamics and include facilitation effects in 
some manner, but both describe the local structure of the liquid in a very 
coarse-grained, simplistic manner. As a result, both classes of models must 
make ad hoc assumptions on the nature of the local relaxation events. In 
the case of the trap model, facilitation is assumed to lead to a shift of energy 
barriers, whereas in elasto-plastic models, the distribution of yield stress  
is imposed.

A recent approach unites the trap and elasto-plastic models by 
extending them to include the local structure in the form of a machine-
learned microscopic structural descriptor, the softness S, as introduced 
in the previous section. Softness is sufficiently accurate that the probabil-
ity of rearranging for particles of a given softness S, PR(S), has an Arrhenius 
temperature dependence: ∣P R S E S T S( ) = exp[−Δ ( )/ + ΔΣ( )], where ΔE is 
the energy barrier and ΔΣ is the entropic one, ΔF = ΔE − TΔΣ. This tem-
perature dependence suggests that particles of softness S have a well-
defined free-energy barrier for rearrangements ΔF(S). The spatial 
variation of the softness then leads to a free-energy barrier field that 
couples to the stress and strain fields. Note that any local structural meas-
ure that predicts rearrangements or local yield stress105 (whether 
extracted using ML, as described here or in other sections of this paper, 
or by other means8) could in principle be exploited in a similar manner to 
construct phenomenological models of glassy dynamics or plasticity.

Owing to this ability to extract a free-energy barrier estimate ΔF(S), 
the softness can naturally be used to construct a phenomenological 
trap model. However, softness allows one to go further by considering 
spatial correlations. When a rearrangement occurs, it alters the soft-
ness of the rearranging particles and that of nearby particles through 
near-field facilitation106. It also alters the softness of more distant 
particles by creating a strain field that decays away from the rearrange-
ment. Because the strain field changes the local structural environment 
of particles, it alters their softness. This far-field form of facilitation is 
well-captured by elasto-plastic models103.

There is an interplay between rearrangements (strain), elasticity and 
changes in softness, with each one affecting the other two. A systematic 
approach to disentangling all of these effects79 has been implemented in 
a lattice structuro-elasto-plasticity model28 for athermal systems under 
load. It has been applied successfully to a number of systems of varying 
ductility28,80 and used to extract insights into the microscopic factors 
that control ductility, such as the strength of near-field facilitation80.
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These results pave the way towards models of structural relaxa-
tion dynamics in glassy liquids. A simple trap model, as in ref. 107, 
built upon the barriers ΔF(S) and assuming an underlying distribution 
of softness, ρ(S) was developed in ref. 108. One can also construct a 
version of the facilitated trap model of ref. 100 that incorporates S. 
Generalizing such models to supercooled liquids, however, is more 
challenging because one must include time-reversal invariance. Above 
the mode-coupling temperature, Tc, near-field facilitation should  
be sufficient. The hypotheses that ρ(S) is nearly Gaussian16 and that 
the near-field distribution of the change in softness ΔS(r) owing to 
a rearrangement at the origin is also nearly Gaussian are important 
simplifications that allow formulation of a closed theory109. For systems 
below Tc, however, it has been suggested that long-range facilitation via 
strain occurs106. The inclusion of time-reversal invariance in a model 
such as a thermal elasto-plastic model103 or structuro-elasto-plasticity 
model with long-range facilitation is a challenging open problem that 
needs to be solved. A precise predictor of future dynamics, as discussed 
in the previous section, would be a useful tool to adjust such models. 
Additionally, it would be interesting to explore whether the free-energy 
barriers ΔF for local relaxation, extracted from the amorphous struc-
ture using softness, could be learned more directly and used to improve 
effective glass models.

Another path forward is to switch from a field picture to a defect 
picture. Most predictors of rearrangements yield particle-based quan-
tities that are readily converted to fields, but they highlight localized 
regions that are susceptible to rearrangement8. These regions can 
be viewed as structural defects that interact with each other and are 
created and destroyed by strain and rearrangements. ML could be used 
to learn these interactions and rules, to help build defect theories of 
plasticity and glassy dynamics.

In this respect, one direction consists in letting a glass-forming 
liquid evolve via the usual thermal motion (using molecular dynamics 
(MD), for example). During such exploration, the energy is periodically 
minimized to extract a library of mechanically stable zero-temperature 
configurations (inherent structures). The idea is then to use ML to clas-
sify pairs of inherent structures, instead of single configurations, and 
check whether the pair is connected by a low-energy excitation corre-
sponding to a localized structural defect. For example, a large library of 
inherent structures has been constructed by such an exploration at a very 
low temperature inside a glass basin110. By means of supervised learning 
techniques, it is possible to train a machine that takes a pair of inherent 
structures and provides as an output, with good precision, the classical 
energy barrier separating them. This strategy allowed for a speed-up 
in the search for glass defects by more than one order of magnitude,  
which is notable given the complexity of these kind of calculations.

Although this preliminary study is mostly focused on very low- 
energy defects that are associated with thermodynamic and transport 
anomalies of the glass at cryogenic temperatures110, it should in princi-
ple be straightforward to extend the techniques to detect other kinds 
of defects, such as those associated with plastic events under shear8,111 
or relaxation events under equilibrium thermal motion112. Doing so is 
a promising direction for further research.

Performance metrics and benchmarking
Detailed benchmarks for existing datasets, which may allow every 
researcher to independently develop and test new ML approaches 
without complex production and preprocessing of data, are essen-
tial for the development of ML techniques. We provide such bench-
marks for ML glass-forming liquids for different systems, different 
dynamical observables and different metrics.

The benchmarks are based on the dataset GlassBench which is 
publicly available29. The whole dataset is separated into a training 
set which, as the name suggests, can be used to train the neural net-
work, and a test set which should be used only for benchmarking. In 
addition to initial amorphous structures and trajectories, we provide 
pre-calculated dynamical descriptors and propensities, as introduced 
in the section ‘Prediction of structural relaxation and dynamic hetero-
geneities’. We have also uploaded a sample Python code for reading 
and processing. Additional technical information on the data format 
is provided with the dataset.

The tasks identified for GlassBench are directly related to the 
open questions highlighted in the ‘Introduction’ section. The first 
task is to train a model to predict single-particle propensity purely 
from structural properties. Accuracy is quantified using the Pearson 
correlation coefficient. Higher accuracy in the prediction indicates 
that the learned structural descriptor is indeed an important precur-
sor for future relaxation, but it can also become essential when using 
the model to generate new configurations. The second task is to train 
a transferable model such that it can be accurately applied to different 
temperatures. This is an important task to enable investigation of struc-
tural relaxation at temperatures that are unreachable for numerical 
simulations. The third task is to train a model that correctly predicts 
spatial DH, as quantified by the dynamic susceptibility. The length 
scale of DH grows with decreasing temperature such that at very low 
temperatures, some regions in the system actively rearrange whereas 
others are completely frozen. DHs are not only important for prop-
erties of glass-forming materials but are also core to fundamental 
theories of the glass transition84,113.

The ML techniques used for the benchmarking are summarized 
in Table 1. In the following section, we refer to them simply as models. 

Table 1 | Overview of the different techniques benchmarked in this Technical Review

ML techniques Training ML approach Free parameters Statesa Training timeb Training hardware Application timec

BOTAN22 Supervised GNN 54,200 th. Hours NVIDIA A100 Seconds

CAGE23 Supervised Ridge regression 2,775 th. + cage Minutes CPU Hours

GlassMLP27 Supervised MLP 615 th. + inh. Minutes CPU Seconds

SE(3)25 Supervised GNN 52,660 th. + inh. Hours NVIDIA Tesla V100 Seconds

SBO49 Unsupervised PCA 0 th. NA CPU Seconds

CPU, central processing unit; GNN, graph neural network; inh., inherent; ML, machine learning; MLP, multilayer perceptron; NA, not applicable; PCA, principle component analysis; th., thermal. 
aUsage of thermal, inherent or cage states. bTime required to train one model at a specific temperature and time for the Kob–Andersen system in 3D. cTime required to calculate the prediction 
for a single configuration, including preparation such as calculation of inh. or cage states.
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A large variety of different models is represented, with very different 
numbers of fitting parameters and training time. Furthermore, the 
models use various ways to physically pre-process the structural input, 
either by using inherent states27 or even by performing a Monte Carlo 
averaging of local cages23. These different factors, combined with 

the benchmarking provided below, should help in choosing the most 
suitable method for a given purpose, with focus on either the highest-
scoring predictions, computational efficiency, or interpretability. 
In addition to these ML techniques, we also include the performance 
of traditional structural descriptors based on physical intuition6,27,114. 
The model of glass-forming liquid that we selected to develop 
GlassBench is the very popular KA mixture, which we study both in 
2D and 3D.

Training a model to predict single-particle propensity purely 
from structural properties
The aim for the models is to learn correlations between the amor-
phous structure and the dynamic propensity of displacements, 

rR t t( ) ≡ ⟨|Δ ( )|⟩i i iso, as introduced in the section ‘Prediction of structural 
relaxation and dynamic heterogeneities’. A common metric used to 
assess the performance of different techniques is the Pearson 
correlation coefficient:

ρ =
cov( , )

var( )var( )
, (1)P

i i

i i

MD ML

MD ML

R X

R X

between the labels i
MDR  for each particle i of type 1 in the entire dataset 

as obtained from MD simulations, and the ML output X i
ML. (Calculating 

the Pearson correlation for each structure individually and then aver-
aging yields slightly different results, and Pearson correlations appear 
to be systematically higher. Similarly, calculating Pearson correlation 
over particles of different type significantly increases the correla-
tion, and this should be avoided.) The results are shown in Fig. 4a. 
All technical details are provided in the Supplementary information. 
Supervised techniques nearly approach the maximal achievable 
correlation over the entire range of timescales. CAGE performs best 
for shorter times, which appears reasonable because it uses extensive 
Monte Carlo simulations to characterize the local cage structure at 
short times. For longer times, the SE(3) GNN extension has the strong-
est correlation, closely trailed by the other advanced techniques. There 
is a pronounced gap between the supervised and the unsupervised 
techniques, indicating that the amorphous structural features that  
are predictive for dynamics do not stand out in a purely structural 
analysis, as discussed in the section ‘Machine learning locally favoured 
structures’.

The generality of these findings is seen in benchmarks for a 2D 
ternary mixture of Lennard–Jones particles (KA2D) (Fig. 4b). Apart from 
minor differences, the performance of the individual techniques is very 
similar to a 3D system. The most noteworthy difference is perhaps that 
BOTAN performs best of all methods at the structural relaxation time 
t ≈ τα, whereas in a 3D KA system, the trend is reversed. Although there 
might be subtle differences between structural relaxation across 
spatial dimensions, the above observation implies that the problem 
of learning correlations between structure and dynamics is essentially 
independent of the spatial dimension.

The propensity of displacements iR  is only one choice of how to 
characterize relaxation dynamics, among many others. One alternative 
is to use the bond-breaking correlation, i

BC , which quantifies how many 
nearest neighbours are lost by particle i during the relaxation pro-
cess27,112. The models also successfully learn correlations between the 
bond-breaking propensity and the amorphous structure (Fig. 4c). 
However, the performance of the models in the short-time predictions 
is substantially reduced compared to the propensity of displacements. 
This suggests that predicting the exact nature and position of the first 
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Fig. 4 | Training a model to predict single-particle propensity purely from 
structural properties. Pearson correlation ρP between various structural 
indicators with the ground truth. a, Three-dimensional Kob–Andersen (KA) 
model at dimensionless temperature T = 0.44. b,c, Two-dimensional KA 
(KA2D) systems at T = 0.3. The dynamical variable in parts a and b is the 
propensity of displacements R, and in part c, it is the bond-breaking propensity 

BC . Full symbols corresponding to supervised machine learning techniques 
and open symbols to unsupervised techniques or physically motivated 
structural descriptors. The vertical line marks the structural relaxation time τα, 
the typical timescale on which particles rearrange, as defined in equation (1) 
in the Supplementary information. The exclusion zone on the top (grey-shaded 
region) marks the highest achievable correlation given the finite number 
of replicas.
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rearrangement events is more difficult than simply predicting short-
time displacements. Around the structural relaxation time τα and 
beyond, the correlations shown in Fig. 4c for Ci

B are stronger than  
for Ri in Fig. 4b. This seemingly surprising result is connected to the 
growing DH at longer times, which simplifies the prediction of larger 
rearranging clusters from coarse-grained structural properties27.  
Additionally, at times t ≥ τα, the propensity of displacement Ri has 
slowly decaying tails which are not captured by the models  
(see Supplementary Fig. 2) and, thus, probably reduce the Pearson 
correlation.

Training a transferable model across different temperatures
With the goal of predicting the dynamics at very low temperatures 
that are inaccessible by direct computer simulations, an impor-
tant property of supervised ML techniques is their transferability, 
in particular towards lower temperatures25,83. In Fig. 5, we show the 
capabilities of the models to transfer the structure–dynamics rela-
tionships they learned at a given temperature to make predictions 
at a different temperature. The results are actually quite remarkable 
because transferability is generically quite good for all models. This 
shows that these relationships evolve smoothly across the range of 
temperatures investigated here. In particular, the models trained at 
1/T = 2.0 (τα = 210) perform nearly as well in predicting propensity 
at 1/T = 2.25 (τα = 4,100) as the models trained directly at 1/T = 2.25. 
The SE(3) method seems to be particularly suited to transfer to lower 
temperatures, opening the possibility to study structural relaxation 
at much lower temperatures.

Training a model that correctly predicts spatial DH
Finally, we investigate the performance of the models to predict the 
correct extent of DH. A time-dependent scalar variable that quantifies 
heterogeneities is the dynamic susceptibility

R R( )χ t N C t C t( ) = ( ) − ( ) (2)4
2 2

calculated from the system-averaged overlap function 
RRC t N t( ) = (1/ ) ∑ Θ (0.3 − ( ))i N i∈ . Here, N is the number of particles in 

the system, and Θ(x) is the Heaviside function. This definition separates 
particles into active ( > 0.3iR ) and frozen ( ≤ 0.3iR ). The threshold value 
of 0.3 is a common choice115,116 and corresponds to values slightly larger 
than the plateau in the mean-squared displacement115, implying that 
particles identified as active have typically left their initial cages. 
In Fig. 6, we compare the results of the predictions to the ground truth 
MD simulations. Despite the overall good performance in the Pearson 
correlation, there are strong differences between the various 
techniques. For example, the improvement in performance of SE(3) 
compared to BOTAN (Fig. 4) can be connected to their different learn-
ing of the correct DH. In an attention-based GNN extension, this 
heterogeneity was explicitly targeted during the training procedure 
to improve the performance of the deep network117. The best overall 
performance in predicting χ4(t) is achieved by GlassMLP, which was 
specifically constructed to learn and predict DH27. This analysis shows 
that the Pearson correlation is not entirely sufficient to quantify the 
performance of a model. Additional dynamical observables, such as 
the dynamic susceptibility χ4(t), should be investigated to better char-
acterize the ability of models to realistically describe structural 
relaxation in glass-forming liquids.

Other benchmarks and possible extensions
In the Supplementary information, we provide further benchmarking by 
investigating the following: the coefficient of determination R2, another 
popular measure to study the performance of ML models; the probability 
distributions of the predicted propensities, which correspond to a second 
contribution to DH; the scatter plots and the snapshots directly comparing 
the true and predicted propensities; the cross-correlations between the 
different structural descriptors and the models investigated in this section. 
We also provide additional information on learning curves, transferability 
to lower temperatures T = 0.4, and bond-breaking propensity.
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Another conclusion of additional benchmarks, which goes beyond 
our scope here, is that correlation coefficients display some system 
dependence68. Hard sphere glasses and systems with strong icosahedral 
order, for example, show systematically higher correlation coefficients 
between structural and dynamical descriptors than Kob–Andersen 
mixtures do21,49. The same statement holds true for different dynami-
cal descriptors and coarse-grained quantities. We, therefore, strongly 
encourage the use of identical datasets and labels (that is, dynamical 
descriptors) to enable comparability.

Among possible extensions of GlassBench, it would be particu-
larly worth including a diverse set of models of glass formers: fragile 
molecular glass formers, strong network-forming glasses and metal-
lic glasses. The first step in creating a new dataset is the sampling of 
independent configurations at a given temperature or density. This 
step could leverage enhanced sampling techniques such as parallel 
tempering118 or swap Monte Carlo119. Subsequently, for each structure, 
molecular dynamics or ab-initio dynamics simulations need to be per-
formed to study the structural relaxation of the systems and calculate 
the isoconfigurational average81.

It would also be interesting to broaden the tasks. For example, other 
ML models, such as the softness derived from SVC, target predicting 
local energy barriers for short-time rearrangements instead of long-time 
structural relaxation16,79 (see the section ‘Learning phenomenological 
glass models’). For this class of ML techniques, it would be preferable 
that the descriptor efficiently separates the particles by their probability 
of rearrangement, PR(S). To encourage further development in this area, 
it would be desirable to perform similar benchmarking and investigate 
whether modern ML models can outperform the state of the art.

Similarly, there is much interest in understanding plastic events 
and failure of glassy materials under external load. Unlike equilibrium 
structural relaxation, this protocol takes place far from equilibrium, 
but it displays similar characteristics. A few years ago, this field has 
been reviewed and benchmarked in a collaborative publication8. The 
focus, however, was not yet on advanced ML techniques — which further 
demonstrates the rapid development of this field. It would be interesting 
to analyse whether the techniques presented in this Technical Review 
can help in investigating glass deformation under shear18,120–122.

Outlook
Potential applications of ML techniques for studies of glass-forming liq-
uids and glasses go beyond what we covered in this article, focusing on 
fundamental aspects of glassy dynamics. Directions include investiga-
tion of specific material properties65,66,123,124 or material discovery63,125,126, 
machine learning force fields127 and particle identification in experi-
mental data128,129. Furthermore, the connection between ML and glassy 
physics has also gone in the reverse direction, by borrowing methods 
developed for the study of disordered systems to analyse central theo-
retical ML problems. In fact, the connection between the rough energy 
landscape of amorphous materials and optimization defined by loss 
functions with many local minima has been used to better understand 
and optimize learning of neural networks37,130–134.

We anticipate that ML will continue to impact glass research and 
lead to the development of new major directions in the field. We close 
this Technical Review by discussing exciting new concepts that have 
the potential to play an important part in future research.

Attention and transformers
An important advance in ML architectures is the ‘attention mecha-
nism’135. Using it in ML methods for glassy dynamics has a lot of 

potential. The fundamental concept behind attention is to assign a 
learnable level of importance to specific parts of the input or interme-
diate representation. This could be distinct words in sentences (see, 
for instance, ChatGPT), specific features of amorphous structures, 
channels in a deep representation or neighbouring atoms in a graph 
representation. Broadly speaking, this can be achieved by making 
learned weights themselves dependent on the input.

Examples of successful applications of attention are AlphaFold 
v2 and RoseTTAFold136,137, which both use a rotation-equivariant 
attention-based transformer to predict the 3D structure of proteins. 
This architecture differs from the graph network architectures dis-
cussed earlier by the dense character of its computation mechanism: 
all atoms in the input can exchange information with all other atoms 
(with a learned modulation as a function of the distance), allowing 
for a more flexible computation. Variants of these architectures tend 
to obtain results that are competitive with sparse graph networks 
on benchmark tasks138. A network with a self-attention mechanism 
has been developed for predicting glassy dynamics117, and it shows 
that the curse of overfitting can be avoided. The broader concept of 
input-dependent weights was also used in a similar context to learn DH 
over a wide range of temperatures at which attention must be paid to 
temperature-dependent length scales83. Both of the approaches are, 
however, rather direct applications of the idea of positional encoding 
for learning attention weights, and more complex networks, such as 
full-fledged transformers135, are expected to be used in future research.

Going in the opposite direction from transformers, attention 
mechanisms can also be used to make models more interpretable. For 
example, they can help identify the task-relevant sectors in the input 
data91. Additionally, attention can also be incorporated into other 
architectures, for example, in combination with a temporal encoding in 
time-series forecasting139, to identify relevant parts of past trajectories.

Self-supervised, semi-supervised and reinforcement learning
We have mainly focused on ‘traditional’ unsupervised and supervised 
learning techniques because they are better established in the field. 
However, there are several other learning paradigms that may be 
useful for future projects, some of which have started to be used in 
glass research.

To learn the connection between structural order and structural 
relaxation in a way that reconciles the unsupervised and super-
vised approaches, a possibility is to use semi-supervised learning140. 
Concretely, the idea is to perform self-supervised learning using only 
unlabelled input configurations by designing a pretext task, such 
as reinserting a particle which has been artificially removed from a 
configuration, de-noising positions of particles, or predicting local 
quantities (such as the potential energy of each particle or its dis-
tance to its quenched position)85. Once a representation has been 
learned to perform this mock task, one can fine-tune only a handful 
of parameters to correlate the learned representation to the relevant 
dynamical variable. Such self-supervised pre-training has proven effec-
tive in increasing performance for various downstream tasks that are 
similar in spirit to glassy dynamics prediction, such as the prediction 
of molecular properties141, crystalline material properties142 or organic 
semiconductors optoelectronic properties143.

In the application to glasses, the key element of this approach is 
to build most of the network without looking at labels, so the output 
of such a method may be more acceptable as a bona fide structural 
descriptor, as opposed to heavy networks relying purely on supervised 
learning. Additionally, it requires fewer labelled data which becomes 
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very important at low temperatures at which sampling becomes dif-
ficult. The described methodology could, therefore, also be used to 
improve transferability of pre-trained models.

Although reinforcement learning is a well-established tool in 
the field of ML144, it has found applications in physics for improved 
sampling145,146 or structure optimization147,148 only very recently. The 
general idea behind reinforcement learning is to learn to take specific 
actions when reaching certain states. The goal is to find the policy 
of actions leading to optimal results, as quantified by a reward function. 
Applying this approach to the example of searching ground states in 
spin glasses, the state would be the observed structure, the action 
would be a spin flip, and the reward would be the energy change after 
several spin flips146. Along these lines, the Metropolis–Hastings algo-
rithm has been formulated in a reinforcement learning setting suitable 
for simulations of spin systems149. This approach has been extended to 
learn new Monte Carlo moves that accelerate sampling of supercooled 
liquids150, establishing connections with related adaptive Monte Carlo 
methods151,152. One of the goals of this line of research is to improve and 
generalize the swap Monte Carlo algorithm, which demonstrated an 
impressive performance for specifically adapted glass models119,153 and 
has led to a series of insights into supercooled liquids101,112. Devising 
general-purpose enhanced sampling algorithms to simulate glassy 
systems represents an exciting challenge for future research154.

Generative models
Another promising emerging direction for applying ML techniques to 
problems relevant to fundamental aspects of glass physics is the use 
of generative models (GMs). One of the key problems in theoretical 
studies of glassy dynamics is that of sampling. In fact, for systems 
exhibiting glassy dynamics, it is very challenging to efficiently 
sample configurations xi from a Gibbs distribution of the form 
P x βU x Z( ) = exp[− ( )]/i i , where β−1 = kBT is the target inverse tempera-
ture and U(xi) is the known potential energy. Unlike the generative 
modelling of images, in which one estimates an unknown probability 
distribution from data, here the target distribution is known from the 
start, and sampling from it is the challenge.

Two early lines of research were proposed independently, one 
known as Boltzmann generators155 and one based on variational autore-
gressive networks156. The idea is to consider a much simpler distribution 

̂P z( ) such that one can easily sample zi in a single shot. This can, for 
example, be a Gaussian model, an autoregressive model or a Gibbs 
distribution at very high temperatures at which one can sample effi-
ciently. After learning, independent samples x can then be generated 
using the invertible map xi = f(zi) of the model. Computing the biased 
distribution PGM(x) of the generative model enables unbiasing xi in a 
last post-processing step155. This ensures that the samples are exactly 
drawn from the distribution P(x).

In practice, the method is only efficient if the weights are almost 
uniformly distributed. This requires that the generative distribution is 
as close as possible to the target distribution. To this aim, the machine 
is trained to minimize the Kullback–Leibler (KL) divergence between 
the generative and target distributions. Because the KL divergence 
between two distributions is not symmetric, two choices can be made. 
One choice is maximum likelihood training, in which one minimizes 
DKL(P‖PGM). This approach has the advantage that PGM has to cover 
well all the support of P(x). However, it also requires existing samples 
from P(x), which renders training impractical: to train a machine to 
sample from the target requires being able to sample from the target. 
The other choice is variational or energy-based training, in which one 

minimizes DKL(PGM‖P), which corresponds to the free energy of the 
generative model. Although this choice does not require sampling 
from PGM, it has the important drawback that the generative model 
might only cover part of the support of the target, a limitation known 
as mode collapse.

To deal with these problems, several architectures and training 
strategies have been proposed. To sample a two-state protein model,  
a normalizing flow architecture was used to represent the map f(z), 
and a training strategy was developed based on mixing the variational 
approach with maximum likelihood, for which experimental struc-
tures and short molecular dynamics simulations were used155. In a 
subsequent work, equivariant flows were used to implement physical 
symmetries157, and a higher-temperature Boltzmann distribution was 
used as a prior distribution158,159 (see also refs. 160,161). To sample 
crystalline structures, it has been proposed to generate displacements 
from a reference lattice structure instead of absolute particle posi-
tions162. A more efficient training strategy is based on mixing standard 
Monte Carlo moves with moves proposed by the generative model152. 
Applying Boltzmann generators to sample supercooled liquids yields 
performances in the same magnitude as those of previously known 
enhanced sampling techniques163.

Several studies have focused on other models in which sampling 
is challenging, such as spin glasses, hard optimization problems and 
lattice field theories146,156,164–176. How these methods compare to stand-
ard ones and whether the efficiency is universal or model dependent 
remain unclear177–180.

Finally, it could be worth combining the ML models discussed in 
the section ‘Prediction of structural relaxation and dynamic heteroge-
neities’, which can precisely predict future dynamics, with generative 
models. The former can be used to detect active regions or even parti-
cles which tend to rearrange, and the latter can subsequently propose 
new configurations based on local rearrangements.

Data availability
The dataset GlassBench and Python scripts used to create the bench-
marks presented in the section ‘Performance metrics and benchmark-
ing’ are publicly available and can be downloaded from Zenodo at 
https://doi.org/10.5281/zenodo.10118191 (ref. 29).
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