nature reviews physics

Technical review

https://doi.org/10.1038/s42254-024-00791-4

M Check for updates

Roadmap on machine
learning glassy dynamics

Gerhard Jung'?, Rinske M. Alkemade?®, Victor Bapst*, Daniele Coslovich?®, Laura Filion®, Francgois P. Landes®,
Andrea J. Liu®73, Francesco Saverio Pezzicoli®, Hayato Shiba®®, Giovanni Volpe ®°, Francesco Zamponi®",

Ludovic Berthier ® "2 & Giulio Biroli™

Abstract

Sections

Unravelling the connections between microscopic structure, emergent
physical properties and slow dynamics has long been a challenge when
studying the glass transition. The absence of clear visible structural
orderinamorphous configurations complicates the identification of the
key physical mechanisms underpinning slow dynamics. The difficulty
insampling equilibrated configurations at low temperatures hampers
thorough numerical and theoretical investigations. We explore the
potential of machine learning (ML) techniques to face these challenges,
building on the algorithms that have revolutionized computer vision
and image recognition. We present both successful ML applications and
open problems for the future, such as transferability and interpretability
of ML approaches. To foster a collaborative community effort, we also
highlight the ‘GlassBench’ dataset, which provides simulation data

and benchmarks for both 2D and 3D glass formers. We compare the
performance of emerging ML methodologies, in line with benchmarking
practices inimage and text recognition. Our goal is to provide guidelines
for the development of ML techniques in systems displaying slow
dynamics and inspire new directions to improve our theoretical
understanding of glassy liquids.
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Key points

e Systematic characterization of amorphous glassy structures can
be addressed by unsupervised learning, which requires an adequate
choice of structural descriptors.

¢ Finding structure-dynamics relationships in glassy liquids is a task
that has many analogies with image recognition and can be tackled

using supervised learning with various neural network architectures
already successful in image recognition.

e Major challenges and potential breakthroughs await in transferring
trained models to extremely low temperatures, using them to create
ultrastable glasses and design new phenomenological glass models.

o Future directions also encompass generative modelling of
low-temperature equilibrium configurations and development
of self-supervised and reinforcement learning approaches.

e Publicly available datasets and unified benchmarks that are
fundamental to stimulate further development of ML techniques
in condensed matter physics are provided.

Introduction

Whensupercooled liquids undergo aglass transition, adramatic slow-
down of transport properties is observed and the resulting material
dynamically resembles a crystalline solid, yet one of the main character-
istic of glasses is that they maintain their amorphousliquid structure’.
Despite several decades of research involving experiments, theory
and computer simulations, many fundamental mechanisms remain
to be elucidated, such as macroscopic mechanical properties, highly
cooperative stress relaxationin glasses, and the statistical mechanics
nature of the glass transition itself.

The rise of deep learning in the past decade® was initially driven
by applications in computer vision, in particular image recognition
and feature detection, fields in which deep learning soon outper-
formed traditional techniques*. These original breakthroughs are now
startingto revolutionize several other areasin technology and science.
Our aim in this Technical Review is to address the potential of ML
methodstoboost research on fundamental aspects of glassy dynamics,
inparticular the ones that have animportantrole inadvancing theories
ofthe glass transition.

Inthis Technical Review, we identify three challenges in develop-
ing afundamental microscopic theory of glasses. One challenge is the
absence of any simple and visible structural order. Crystalline defects
inotherwise well-ordered structures are easily detectable, but finding
analogous structural features in amorphous materials remains an
open problem. Over the years, many different proposals for ‘defects’
or locally favoured structures have been proposed and developed®®.
This variety of proposals seems to indicate that even in amorphous
configurations, it could be possible to detect the emergence of some
kind of short-range and medium-range order. However, these identifi-
cations usually only apply to specific systems, and they are often only
weakly correlated withlocal dynamical relaxations. There s, therefore,
aclear need for new and more powerful system-independent ways to
systematically find preferred structuresin amorphous configurations.
This is a challenge for which new ML methods could be a great asset,

in particular owing to the progress in unsupervised learning. Several
approaches are being developed towards this goal® 2.

Another long-standing challenge has been understanding and
characterizing the fundamental mechanisms underpinning slow
and glassy dynamics, which are responsible for the glass transition.
To this aim, there has been a substantial effort to identify the micro-
scopic properties thatlead to dynamical relaxation. Given a snapshot
(an equilibrium configuration), several local properties have been
proposed to pinpoint the regions that have higher tendency to relax
withinawindow of, say, some fraction of the relaxation time. Examples
include the local Debye-Waller factor, eigenvectors of the Hessian of
inherentstructures, and so on”*, There is no consensus on what is the
best predictor of future dynamics. Moreover, the best choice could
change with temperature or be system-specific, according to several
theories of the glass transition. Owing to the advances in numerical
simulations of glass-forming liquids, it is now possible to produce
large datasets of initial configurations and subsequent dynamical
trajectories. This provides a natural playground to apply supervised
learning techniques in order to identify the local predictors of
dynamicalrelaxation. Several researchers have taken up this challenge
and developed ML methods to predict where local relaxations have
higher tendency to take place given an initial snapshot'*?.

Finally, the ultimate goal of the research efforts devoted to
the theory of glassy dynamics would be to combine the solutions
of the previous problems to develop an effective theory of the glass
transition. Until now, this challenge has been tackled starting from
some theoretical assumptions driven by experimental and simulation
results”. ML methods canalso make a difference in this challenge; they
canassist in this quest by providing acomplementary identification of
the mechanisms inducing relaxation?.

Thetimeisripetoinvestigate the ability of ML methods to advance
the fundamental understanding of glass-forming liquids. In this
Technical Review, focusing on the three main goals described above,
we present the recent contributions in this endeavour, discussing
the main difficulties ahead and possible paths to circumvent them.
InFig. 1, we give a visual overview over the different ML concepts that
will be discussed within the individual sections. We then describe a
framework ‘GlassBench’” intended to enable, encourage and structure
abroader community effort to further develop such ML approaches.
GlassBench consists of a dataset including simulation data for a 2D?
and a 3D glass former?**°, benchmarks on different tasks associated
to predictinglocal dynamics fromagiveninitial configuration,and an
assessment of the state of the art. Our purpose is to fuel and organize
new developments of advanced ML techniques, as done in the field of
image and text recognition, as well as generative modelling. (See, for
example, benchmarksinthe fields of computer vision, naturallanguage
processing, time series analysis and much more.) Finally, we discuss
future directions for research.

Machine learning locally favoured structures
Although glass-forming liquids and glasses lack long-range order, close
inspection of their atomic structure reveals particle arrangements that
are more regular, symmetric and of lower (free) energy than the aver-
age. Icosahedral local structures are the best known example of such
favourable arrangements, and they are found in several metallic alloys,
colloidal suspensions and computer models of glassy liquids®. Such
locally favoured structures (LFSs), distinct from the bulk of the particle
arrangements and yetincompatible with crystalline order, are also key
ingredients of some theoretical approaches to glass formation'*,
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Fig.1| Visual summary of the scope of this Technical Review. The individual
sections at the centre are connected to the big questions in the field of glass
physics. They are surrounded by the various machine learning concepts used to
answer them.

Despite the importance of structural analysis in glassy materials®®,
there is at present no generally accepted operational definition of
LFS. Standard approaches — such as Voronoi tessellation®?, topologi-
cal cluster classification® and other related methods*** — provide a
detailed classification of the possible local geometric arrangements.
These methods may indicate which local arrangements are the most
abundant or most stable, but they are sensitive to thermal fluctuations
andtendto provideatoo fine-grained classification, whichis difficult
to exploit in a theoretical setting. Bond-order parameters (BOPs)*
provide yet another way to characterize the local structure of dense
particle systems®. Although this approach offersin principle asystem-
atic description of the local arrangements, the choice of the relevant
BOP hastraditionally been guided by physical intuition®, which requires
specific and system-dependent a priori knowledge about the relevant
symmetries of the local arrangements.

Unsupervised learning methods offer natural system-independent
waystotackle theaboveissues” *°. Along with automatedidentification
of phase transitions**, one of the key applications of unsupervised
learning in condensed matter physics is characterization of the
properties of complex materials from high-dimensional datasets’®.
The general idea is to first characterize a faithful, high-dimensional
representation of the particle local environment based, for instance,
onasystematic bond-order expansion of thelocal density** (see ref. 45
forareview onstructural descriptors). Unsupervised ML methods are
then used to identify asmall number of collective coordinates, X, that
account for the relevant fluctuations of the local structure, thereby
reducing the dimensionality of the descriptors.

Dimensionality reduction techniques range from simple principal
component analysis (PCA), or its kernel variant, to more sophisticated
statistical learning methods, such as neural network auto-encoders
(AEs)”. These methods may in future be combined with more
advanced approaches, such as self-supervised learning or pre-training
(as discussed in the section ‘Self-supervised, semi-supervised and
reinforcementlearning’), possibly exploiting the intrinsic symmetries
of the system*®. Once the reduced structural representation of the
material structure is obtained, clustering methods can be applied to
pinpoint its heterogeneity’®.

The studies highlighted in ref. 38 focus mostly on ordered mate-
rials or disordered systems with covalent or hydrogen bonding, such
as amorphous carbon* or liquid water*®, in which the preferred geo-
metrical order is readily identified owing to low coordination numbers.
Dense amorphous systems are characterized instead by close-packed
arrangements, which provide a challenging benchmark for this kind
of structural analysis. In a series of papers”®*~!, dimensionality
reduction and clustering were applied to models of closed-packed
glass-formingliquids. In particular, BOPs, Gaussian mixture models and
aneural network AE have been used to reveal’ a significant structural
heterogeneity in glassy binary mixtures, suggesting that in these sys-
tems, one candistinguish fluctuating regions that display two different
types of local disorder. The spatial heterogeneity of these regions is
also correlated with the dynamic structural relaxation in the system.
Such structure-dynamics correlations are further discussed in the
next section.

Arelated study in ref. 10 has addressed the issue of clustering of
local structural arrangements using a different, information-theoretic
approach. At a qualitative level, the results of the analysis in refs. 9
and 10 appear consistent with one another. However, a more recent
investigation* revealed a notable system-dependence of structural
heterogeneity inglassy liquids. The gist of these findingsisillustrated
inFig.2, whichshowsrepresentative PCA maps obtained fromasmooth
bond-order (SBO) descriptor (more details are given in the Supplemen-
tary information). The distribution of the first two principal compo-
nentsis bimodal for anembedded-atom model of Cu¢,Zr,,, which has
awell-definedicosahedral LFS, whereasitis less heterogeneous for the
canonical Kob-Andersen (KA) mixture (which will be benchmarked
inthe section ‘Performance metrics and benchmarking’), whose local
arrangements display a homogeneous distribution of geometrical
states. Although these differences question the universality of the
concept of LFS, the first few principal component projections always
correlate with physically motivated structural measures®.

We expect that more information could be harvested by looking
at chemically resolved descriptors®* and on larger length scales
(medium-range order). Moreover, computing the intrinsic dimen-
sion of structural datasets*>*> may provide additional insight into the
nature of structural order and its system dependence.

A striking observation reported in ref. 49 is that neural network
AE and PCA yield identical reductions of the BOP descriptors. This
finding suggests at least two possible scenarios. The first possibility is
that the local structure in dense glassy mixtures is simple: it displays
abroad continuous spectrum of geometrical arrangements, possibly
decorated by features such as LFS, crystallites or structural defects.
Thesecond possibility is that the current identification of LFS is missing
some crucialingredient. The outcome of PCAis also straightforward to
interpret because the principal component directions provide direct
insight into the dominant structural parameters. In the presence of
agnostic, high-dimensional structural descriptors, such as the smooth
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Fig. 2| Principal component analysis maps of the first two principal
component projections X, and X, of the smooth bond-order (SBO) parameter
intwo representative systems. a, SBO parameter around Cu atomsin glassy
Cug4Zrs. b, SBO parameter around small particles in the Kob-Andersen (KA)
binary mixture around its mode-coupling temperature®. Note the contrast
between the bimodal structure in part a owing to icosahedral local structures*
and the homogeneous distribution of the projections in part b. The bottom panels
show the marginal distribution of the first principal component projection.

atomicoverlap parameters*, interpretationalways occurs a posteriori,
by searching for correlations between some of the reduced structural
and physically motivated structural measures’®.

On the one hand, these results question the utility of complex
deep learning methods in studying glass structure. On the other
hand, the descriptors used in refs. 9,10,49 do not exhaust all forms of
structural heterogeneity, and some may be affected by some deeper
shortcomings®. Development of structural descriptors remains
active®™*°, and these advances wait for applications in the context of
glassy materials. Addressing the above issues may become crucial in
future studies of more demanding benchmarks for structural char-
acterization, such as compositional order in polydisperse glassy
models®*%, medium-range order in oxides or metallic glasses®°,
and orientational order in glassy water®"®>. Computational studies of
these complex systems represent opportunities to gain insight into
the nature and role of local structure in glassy materials and to provide
solid grounds for predictive theoretical approaches based onstructure.

Another research line wherein structure-based ML approaches
are making progress aims at predicting macroscopic properties
of glasses relevant for applications, such as oxides or chalcogenide
glasses, over a wide range of chemical compositions®***. Work on
sodium-silicate glasses shows that physics-informed machine learning
models canreliably interpolate and extrapolate these properties based
onstructural information only®. These findings indicate that, despite
the apparent complexity of the feature space, the relationship between
local structure and macroscopic glass properties is often linear, which
makesit simple for machine learning models to generalize outside their
training set (see ref. 66 for aroadmap on this topic).

Having characterized amorphous structure, a crucial question
is whether the structural descriptors are connected to emergent
relaxation dynamics in the glass-forming liquid***. As will be clear
inthe section ‘Performance metrics and benchmarking’, present-day

unsupervised methods provide only limited insights into the
heterogeneity of the dynamics, exceptin specific systems dominated
by strongicosahedral order®®*’, Whether this is a technical limitation
of the unsupervised methods used to date, or is anintrinsic feature of
supercooled dynamics, remains to be clarified.

Prediction of structural relaxation

and dynamic heterogeneities

One of the central challenges for both computational and theoretical
studies of glass-forming liquids is to use aninitial snapshot to predict
the future dynamics of a configuration. Note that oneis notinterested
in predicting the whole future evolution but only the dynamical pro-
cesses leading to microscopic irreversible motion. Supervised ML
provides anatural tool to performsuch prediction, essentially by fitting
high-dimensional structural input to the relaxation dynamics, similar
inspiritto classificationinimage recognition. In general, three choices
need tobemadeto designamodel: which structural descriptorsto use
to characterize the input configuration, which labels to use to quantify
structural microscopic relaxation, and what model and ML algorithm
tousetofittheinputtothelabels. Varied techniques have already been
introducedto tackle this problem, ranging from ridge regression using
complex and coarse-grained structural descriptors to graph neural
networks using raw particle positions (Fig. 3).

Support vector classifiers (SVCs) have been used to classify soft
spotsrelaxing fast against slowly relaxing regionsinglasses”. (Note that
inref. 17, the term support vector machine was used, but here we use
thetermsupport vector classifier to stress the fact that the procedure
correspondsto a classification and not aregression.) Here, soft spots
aredefined as regions that have a highlikelihood of rearranging within
ashorttimescale. Asinputto this algorithm, each particle is assigned a
vector of local structural descriptors that captures the local density and
angular structure within shells at different distances from its centre.
From the trained SVC, a quantity called softness, S, can be extracted,
which correlates with the likelihood for the particle to rearrange in
the near future. Softness has been used to gain insight into a variety
of glass problems that encompass many types of glassy liquids and
disordered solids, ranging from strong to fragile and ductile to brittle,
with constituent particles ranging from atomic to granular, studied
in bulk and in thin films'®’°7, Furthermore, this approach also led to
a series of papers®®”°*° aiming at constructing an effective model for
the dynamicsin glassy fluids built around the evolution of the softness
field, which will be discussed in more detail in the next section.

Input: structure

?30 (2?

250!

Model

SVC, GNN,

MLP,CNN ——
and others  Prediction

Training

Fig.3 | Typical supervised machine learning (ML) procedure in condensed
matter. The raw input is encoded using structural descriptors or graphs. A model
istrained using labels that describe structural relaxation obtained from, for
example, molecular dynamics simulations. Colours indicate frozen (blue) or
rearranging (red) particles. ML techniques include support vector classification
(SVC), graph neural networks (GNNs), multilayer perceptrons (MLPs) and
convolutional neural networks (CNNs). After training, structural relaxationis
predicted for previously unseen structures.
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Whereas softness is associated to prediction onshort timescales,
several subsequent works have focused on predicting the dynamics,
ormore precisely the dynamic propensity®, onlonger timescales t = 7,,.
Here, 7, is the typical structural relaxation timescale on which each
particle moves on average approximately one particle diameter
(see the Supplementary information for more details). Dynamic
propensity quantifies the local dynamics of a glass-forming liquid by
capturing the typical behaviour of each particle in a structure using
theisoconfigurational ensemble®. This ensemble is formed by a set of
trajectories thatstart fromthe sameinitial structure but with different
initial velocities drawn from a Maxwell-Boltzmann distribution.
By calculating the mean distance travelled by a given particle in this
ensemble, one arrives at the dynamic propensity (|Ax(¢)]), . Owingto
this averaging, the dynamic propensity captures the part of the dynam-
icsencoded in theinitial structure, leaving out the part stemming from
the initial velocities, which cannot be captured by any structural
descriptor. Although some dynamical information is necessarily lost®?,
the dynamic propensity, which fluctuates from one particle to the
other, is an important measure for dynamic heterogeneity (DH) in
supercooled liquids. Atthe end of this section, we also discuss ways to
reintroduce the fluctuations around the isoconfigurational average
using different labels or new ML designs.

A graph neural network (GNN) was introduced™® in 2020 that can
predict the dynamic propensity markedly better thanasupport vector
machine (SVM) (wherein the input for the SVM was angular and radial
functions similar to ref. 17). In contrast to the SVM, the input to the
GNNisagraphstructureinwhich each particlein theinitial configura-
tionisrepresented by avertex, and edges are drawn between particles
withina cut-offradius of each other. In addition to the structure of this
graph, the vertices and edges also carry information: the particle spe-
cies (as vertex data) and the vectors connecting neighbours (as edge
data). The GNN model then consists of several multilayer perceptrons
(MLPs) thatiteratively update the features contained at the edges and
nodes, with each iteration passing information along the nodes
and edges of the network. After the final iteration, the features at the
nodes are passed through a final MLP that predicts the dynamic pro-
pensity. As all vertices are updated in parallel, the network predicts
mobilities of all particles simultaneously. This network is then opti-
mized to minimize the squared difference between the predicted and
true propensity using the £, norm.

Two improvements to this GNN approach have been proposed.
A substantially higher accuracy can be reached over nearly all time-
scales by considering not only single-particle dynamics but also
pairwise dynamics?®. Specifically, the GNN is trained to predict not
only the dynamic propensity but also the isoconfigurational changein
the distance between pairs of particles sharing an edge in the graph —
amodification called BOnd TArgeting Network (BOTAN)®. Intrigu-
ingly, even with the same overall architecture, BOTAN finds a better
prediction for the single-particle dynamics, showing that the extra
edge information improves the performance of the GNN. An alterna-
tive improvement on the GNN approach explicitly requires the GNN
to enforce the rotational symmetry, an idea sometimes referred to
as geometric deep learning or rotation equivariant network (SE(3))
(ref. 25). This adaptation also improved on the original work in ref. 18
over nearly all considered timescales.

In addition to the development of increasingly sophisticated ML
methods to predict the dynamic propensity, efforts have been made
to better capture important local features of the structural input. The
recursive updating properties of GNNs have beenincorporatedintoaset

of locally coarse-grained structural descriptors?. Fitting just three gen-

erations of descriptors withalinear regression algorithmis sufficient to
essentially reach the accuracy of the GNN —leading to afar simpler and
moreinterpretable algorithm for fitting glassy dynamics. Interestingly,
learning the dynamic propensity using these descriptors with non-linear
models (MLP and GNN) does not improve the ability to predict the
dynamics, as quantified by the Pearson correlation coefficient®.

This approach has been further developed by including
physics-inspired descriptors that, in the past 30 years of glassresearch,
have beenidentified asimportant structural proxies, inamodel known
as GlassMLP?. These additional structural descriptorsinclude potential
energy and properties of the Voronoi cells, and the choice of describ-
ing the system in terms of its inherent state”. The inherent state cor-
responds to the energy minimum configuration that is closest to the
actualinputstructure. These modificationsimprove the performance
of the network. GlassMLP further uses MLP for supervised learning,
whichenablesthe precise representation of non-linear or non-Gaussian
features such as probability distributions of propensities”. Using
transferability in system size, the network has been applied to deter-
mine dynamic correlation lengths and the geometry of rearranging
clusters over a wide range of temperatures. The GlassMLP model has
been enhanced to improve the transferability across timescales and
temperatures and to explore physical regimes wherein direct train-
ing cannot be performed®. In a vein similar to GlassMLP, structural
descriptors have beenimproved by going beyond inherent states and
by using cage states, inamodel known as CAGE”. In CAGE, cage states
areextracted fromrestricted ensemble averages of the local structure
using Monte Carlo simulations. The local environmentis, thus, better
described, which also helps improve the performance of the model.

By construction, all methods perform best at the temperature
at which they are trained. However, it is possible to apply a trained
network to other temperatures and test how predictions correlate
with true dynamics'®*7”%?, Good performance in such transfer
experiments indicates that the model captures relevant universal
features in the structure-dynamics relationship of glass-forming
liquids. Transferability has, for example, been used to investigate links
between amorphous structure and fragility’”” and to predict features
of DH for temperatures comparable to the experimental glass tran-
sition temperature®. In the section ‘Training a transferable model
across different temperatures’, we show additional transferability
experiments for several models.

Infuture work, it will be interesting to further exploit the transfer-
ability of supervised ML techniques to robustly extract information
onstructural relaxation at very low temperatures. One goal would con-
cerntheevolution of DHuponapproaching the glass transition and make
the connection with experimental results®*. One possible strategy to
improve transferability of trained models to low-temperatureregimesin
which dynamics cannotbe runforlongenough (thatis, regimesinwhich
little or no labelled data is available) would be to use self-supervised
learning®. More generally, self-supervised learning could also be used
to enhance performance of the deep approaches (as discussed in the
section ‘Self-supervised, semi-supervised and reinforcementlearning’).

To better capture the physical phenomena underpinning glassy
dynamics, itis necessary that the ML models not only faithfully predict
the dynamics at the single-particle level but also correctly reproduce
all statistical features of the propensity field, including spatial and
temporal correlations, such as those measured by the four-point sus-
ceptibility x,(¢) (ref. 86). For GNNs, aknown problem is over-smoothing:
the predicted propensity field tends to be smoother than the ground
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truth. Additional terms can be added to the loss function to prevent
over-smoothing, resultingin predictions that display more realistic cor-
relation functions, eveninarather simple MLP architecture”. An open
direction is the development of such improved loss functions, which
could also be used in deep architectures.

Arelatedideais to learn not only the isoconfigurational average
of the displacement, {|Ar,(¢)]);s,, but its full statistical distribution,
P, (Ar(t)). This could be accomplished either by additionally fitting
higher moments of the distribution or by taking a generative model
approach, inwhich one would generate realistic single-instance dynam-
icalfields (not averagedintheisoconfigurational ensemble). This task
couldbe achieved usinga variational auto-encoder approach®. Because
the spatial correlations of the isoconfigurational average are a priori
different from the spatial correlations of single instances, the hope is
that such generative models would reproduce these statistics more
faithfully than conventional ones. To train such models, information
beyond the isoconfigurational average is required, for instance, by
providing single-instance configurations, which can also be used to
regress the average. Finally, this approach might be usable to propose
new configurations on the structural relaxation timescale 7, with the
long-term goal being the ability to develop a Monte Carlo algorithm
that completely avoids the critical slowing down of the dynamics on
the approach to the glass transition. Similarly, the predictions could
be used to create ultra-stable glasses by generating prototypical
hard neighbourhoods and remove structural defects®. The section
‘Generative models’ discusses them in more detail, as well as their
applications for sampling low-temperature glassy structures.

In physics, explaining complex behaviour builds on the abil-
ity of theories and models to substantially compress the inherent
information of a natural phenomenon®. From this standpoint, large ML
models, involving hundreds or thousands of directly fitted parameters,
donot qualify asa physical theoryin the traditional sense of the term.
Moreover, owing to their non-linearity, neural-network models are still
rather difficult to interpret, although some progressis being made®*”".
This does not mean, however, that large ‘black-box” ML models are
useless in this context: their predictions can be instrumental as part
of a heuristic process, eventually leading to a simple solution to an
outstanding problem?”. This is nicely demonstrated by the results
presented in this section: building on the insight of ref. 18, the same
prediction accuracy as graph neural networks was achieved using a
far simpler and more transparent linear regression method?®. Linear
models, thus, retain astrong appeal for fundamental researchin glass
physics because of their simplicity and their direct mapping to the
underlying structural descriptor. Interpreting the outcome of ML
models also hinges on the ability of identifying the most relevant fea-
tures, a process known as ‘feature selection’. Analysis of the so-called
informationimbalance has emerged as ageneral and elegantapproach
to feature selection”. This method has been recently applied toidentify
the most relevant structural features for glassy dynamics®**.

Finally, anaturalaimfor future investigationsis toenlarge the ML
studies described above to encompass diverse glass-forming materials
withcomplex dynamics, including active glasses as model for biological
tissues’®”. Although it is generally accepted that equilibrium micro-
scopic dynamics do not influence long-time structural relaxation, it
is unclear which signature activity plays on structural descriptors in
active glasses®®. Similarly, very little information on the dynamical
properties of glasses during ageing’®, and whether similarly strong
structure-dynamics relationships can be found as for equilibrium
relaxation, exists.

Learning phenomenological glass models

Inthis section, we demonstrate the potential of combining ML methods
with physical insights to develop effective models and phenomeno-
logical theories of slow and glassy dynamics. The starting point s the
ML methods, described in the previous section, that identify the local
structure responsible for local relaxations on short timescales. The aim
isto usethisstructuralfield as abuilding block to construct aphenom-
enologicalmodel for how structural relaxation proceeds. Thisapproach
is built upon two useful classes of models to understand dynamics in
glass-formingliquids and amorphous solids subjected to mechanical
strain, namely, trap and elasto-plastic models.

Trap models start from high-temperature liquid, describing
the system as a distribution of energy barriers for rearrangements. One
implementation'®® adds a facilitation mechanism: in response to a
rearrangement, all the energy barriers are subject to a small random
drift. This facilitated trap model has been used to explain the emergence
of excess wings in the relaxation spectra'®’. Elasto-plastic models start
instead from low-temperature solid, describing the system in terms of
thermally induced rearrangement events that can trigger other rear-
rangements via long-range strain fields'>'°*. Both of these approaches
give insights into glassy dynamics and include facilitation effects in
some manner, butboth describe thelocal structure of theliquidinavery
coarse-grained, simplisticmanner. Asaresult,both classes of models must
make ad hocassumptions onthe nature of the local relaxation events. In
thecaseofthetrapmodel, facilitationisassumedtoleadtoashiftof energy
barriers, whereasin elasto-plastic models, the distribution of yield stress
isimposed.

A recent approach unites the trap and elasto-plastic models by
extending them to include the local structure in the form of a machine-
learned microscopicstructural descriptor, the softness S, asintroduced
inthe previous section. Softnessis sufficiently accurate that the probabil-
ity of rearranging for particles of agivensoftnessS, Py(S), has an Arrhenius
temperature dependence: P(R|S) = exp[-AE(S)/T + AX(S)], where AE is
the energy barrier and A is the entropic one, AF= AE - TAZ. This tem-
perature dependence suggests that particles of softness S have a well-
defined free-energy barrier for rearrangements AF(S). The spatial
variation of the softness then leads to a free-energy barrier field that
couplestothestressandstrainfields. Note thatany local structural meas-
ure that predicts rearrangements or local yield stress'® (whether
extracted using ML, as described here or in other sections of this paper,
or by other means®) couldin principle be exploited inasimilar manner to
construct phenomenological models of glassy dynamics or plasticity.

Owingtothis ability to extract afree-energy barrier estimate AF(S),
the softness can naturally be used to construct a phenomenological
trap model. However, softness allows one to go further by considering
spatial correlations. When a rearrangement occurs, it alters the soft-
ness of the rearranging particles and that of nearby particles through
near-field facilitation'. It also alters the softness of more distant
particles by creating astrain field that decays away from the rearrange-
ment. Because the strain field changes the local structural environment
of particles, it alters their softness. This far-field form of facilitation is
well-captured by elasto-plastic models'*>.

Thereisaninterplay betweenrearrangements (strain), elasticityand
changesinsoftness, with each one affecting the other two. A systematic
approachtodisentangling all of these effects’” hasbeenimplemented in
alattice structuro-elasto-plasticity model* for athermal systems under
load. Ithasbeen applied successfully to anumber of systems of varying
ductility®®*° and used to extract insights into the microscopic factors

that control ductility, such as the strength of near-field facilitation®°.
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These results pave the way towards models of structural relaxa-
tion dynamics in glassy liquids. A simple trap model, as in ref. 107,
builtuponthebarriers AF(S) and assuming an underlying distribution
of softness, p(S) was developed in ref. 108. One can also construct a
version of the facilitated trap model of ref. 100 that incorporates S.
Generalizing such models to supercooled liquids, however, is more
challenging because one mustinclude time-reversalinvariance. Above
the mode-coupling temperature, T, near-field facilitation should
be sufficient. The hypotheses that p(S) is nearly Gaussian'® and that
the near-field distribution of the change in softness AS(r) owing to
arearrangement at the origin is also nearly Gaussian are important
simplifications that allow formulation of a closed theory'”. For systems
below T, however, it hasbeen suggested that long-range facilitation via
strain occurs'®. The inclusion of time-reversal invariance in a model
such asathermal elasto-plastic model'® or structuro-elasto-plasticity
model with long-range facilitationis a challenging open problem that
needstobesolved. A precise predictor of future dynamics, as discussed
in the previous section, would be a useful tool to adjust such models.
Additionally, it would beinteresting to explore whether the free-energy
barriers AF for local relaxation, extracted from the amorphous struc-
ture using softness, could be learned more directly and used toimprove
effective glass models.

Another path forward is to switch from a field picture to a defect
picture. Most predictors of rearrangements yield particle-based quan-
tities that are readily converted to fields, but they highlight localized
regions that are susceptible to rearrangement®. These regions can
be viewed as structural defects that interact with each other and are
created and destroyed by strainand rearrangements. ML could be used
to learn these interactions and rules, to help build defect theories of
plasticity and glassy dynamics.

In this respect, one direction consists in letting a glass-forming
liquid evolve via the usual thermal motion (using molecular dynamics
(MD), for example). During such exploration, the energy is periodically
minimized to extractalibrary of mechanically stable zero-temperature
configurations (inherentstructures). Theideais thento use MLto clas-
sify pairs of inherent structures, instead of single configurations, and
check whether the pair is connected by a low-energy excitation corre-
spondingtoalocalized structural defect. Forexample, alargelibrary of
inherentstructures hasbeen constructed by suchanexplorationatavery
low temperature inside aglass basin''’. By means of supervised learning
techniques, itis possible to traina machine that takes a pair of inherent
structures and provides as an output, with good precision, the classical
energy barrier separating them. This strategy allowed for a speed-up
in the search for glass defects by more than one order of magnitude,
whichis notable given the complexity of these kind of calculations.

Although this preliminary study is mostly focused on very low-
energy defects that are associated with thermodynamic and transport
anomalies of the glass at cryogenic temperatures”’, it should in princi-
plebestraightforward to extend the techniques to detect other kinds
of defects, such as those associated with plastic events under shear®™
or relaxation events under equilibrium thermal motion%. Doing so is
apromising direction for further research.

Performance metrics and benchmarking

Detailed benchmarks for existing datasets, which may allow every
researcher to independently develop and test new ML approaches
without complex production and preprocessing of data, are essen-
tial for the development of ML techniques. We provide such bench-
marks for ML glass-forming liquids for different systems, different
dynamical observables and different metrics.

The benchmarks are based on the dataset GlassBench which is
publicly available”. The whole dataset is separated into a training
set which, as the name suggests, can be used to train the neural net-
work, and a test set which should be used only for benchmarking. In
addition toinitial amorphous structures and trajectories, we provide
pre-calculated dynamical descriptors and propensities, as introduced
inthe section ‘Prediction of structural relaxation and dynamic hetero-
geneities’. We have also uploaded a sample Python code for reading
and processing. Additional technical information on the data format
is provided with the dataset.

The tasks identified for GlassBench are directly related to the
open questions highlighted in the ‘Introduction’ section. The first
task is to train a model to predict single-particle propensity purely
from structural properties. Accuracy is quantified using the Pearson
correlation coefficient. Higher accuracy in the prediction indicates
that the learned structural descriptor is indeed an important precur-
sor for future relaxation, but it can also become essential when using
the model to generate new configurations. The second task is to train
atransferable model such thatit canbe accurately applied to different
temperatures. Thisisanimportant task to enable investigation of struc-
tural relaxation at temperatures that are unreachable for numerical
simulations. The third task is to train a model that correctly predicts
spatial DH, as quantified by the dynamic susceptibility. The length
scale of DH grows with decreasing temperature such that at very low
temperatures, some regions in the system actively rearrange whereas
others are completely frozen. DHs are not only important for prop-
erties of glass-forming materials but are also core to fundamental
theories of the glass transition®*'?,

The ML techniques used for the benchmarking are summarized
inTable 1. In the following section, we refer to them simply as models.

Table 1| Overview of the different techniques benchmarked in this Technical Review

ML techniques Training ML approach Free parameters  States® Trainingtime®  Training hardware Application time®
BOTAN? Supervised GNN 54,200 th. Hours NVIDIA A100 Seconds

CAGE* Supervised Ridge regression 2,775 th. + cage Minutes CPU Hours

GlassMLP? Supervised MLP 615 th. +inh. Minutes CPU Seconds

SE(3)* Supervised GNN 52,660 th. +inh. Hours NVIDIA Tesla VI00  Seconds

SBO* Unsupervised PCA 0 th. NA CPU Seconds

CPU, central processing unit; GNN, graph neural network; inh., inherent; ML, machine learning; MLP, multilayer perceptron; NA, not applicable; PCA, principle component analysis; th., thermal.
2Usage of thermal, inherent or cage states. ®Time required to train one model at a specific temperature and time for the Kob-Andersen system in 3D. “Time required to calculate the prediction

for a single configuration, including preparation such as calculation of inh. or cage states.
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Fig.4 | Training amodel to predict single-particle propensity purely from
structural properties. Pearson correlation p, between various structural
indicators with the ground truth. a, Three-dimensional Kob-Andersen (KA)
model at dimensionless temperature T = 0.44.b,c, Two-dimensional KA
(KA2D) systems at T=0.3. The dynamical variablein partsaand bis the
propensity of displacements R, and in part ¢, it is the bond-breaking propensity
Cg. Full symbols corresponding to supervised machine learning techniques
and open symbols to unsupervised techniques or physically motivated
structural descriptors. The vertical line marks the structural relaxation time 7,
the typical timescale on which particles rearrange, as defined in equation (1)
inthe Supplementary information. The exclusion zone on the top (grey-shaded
region) marks the highest achievable correlation given the finite number
of replicas.

A large variety of different models is represented, with very different
numbers of fitting parameters and training time. Furthermore, the
models use various ways to physically pre-process the structural input,
either by using inherent states” or even by performing a Monte Carlo
averaging of local cages®. These different factors, combined with

the benchmarking provided below, should help in choosing the most
suitable method for agiven purpose, withfocus on either the highest-
scoring predictions, computational efficiency, or interpretability.
In addition to these ML techniques, we also include the performance
of traditional structural descriptors based on physical intuition®*",
The model of glass-forming liquid that we selected to develop
GlassBench is the very popular KA mixture, which we study both in
2D and 3D.

Training amodel to predict single-particle propensity purely
from structural properties

The aim for the models is to learn correlations between the amor-
phous structure and the dynamic propensity of displacements,
R;(£) = (|Ar(0) ;s asintroduced in the section ‘Prediction of structural
relaxation and dynamic heterogeneities’. A common metric used to
assess the performance of different techniques is the Pearson
correlation coefficient:

_ cov(RMP, AMh
P var(RMPyvar(aM) |

@

between thelabels RMP for each particle i of type 1in the entire dataset
asobtained from MD simulations, and the ML output XM, (Calculating
the Pearson correlation for each structure individually and then aver-
agingyieldsslightly different results, and Pearson correlations appear
to be systematically higher. Similarly, calculating Pearson correlation
over particles of different type significantly increases the correla-
tion, and this should be avoided.) The results are shown in Fig. 4a.
All technical details are provided in the Supplementary information.
Supervised techniques nearly approach the maximal achievable
correlation over the entire range of timescales. CAGE performs best
forshorter times, whichappears reasonable because it uses extensive
Monte Carlo simulations to characterize the local cage structure at
shorttimes. For longer times, the SE(3) GNN extension has the strong-
est correlation, closely trailed by the other advanced techniques. There
is a pronounced gap between the supervised and the unsupervised
techniques, indicating that the amorphous structural features that
are predictive for dynamics do not stand outin a purely structural
analysis, as discussed in the section ‘Machine learning locally favoured
structures’.

The generality of these findings is seen in benchmarks for a 2D
ternary mixture of Lennard-Jones particles (KA2D) (Fig.4b). Apart from
minor differences, the performance of the individual techniquesis very
similar to a3D system. The most noteworthy differenceis perhaps that
BOTAN performs best of all methods at the structural relaxation time
t=1, whereasina3DKAsystem, the trendisreversed. Althoughthere
might be subtle differences between structural relaxation across
spatial dimensions, the above observation implies that the problem
oflearning correlations between structure and dynamics is essentially
independent of the spatial dimension.

The propensity of displacements R; is only one choice of how to
characterize relaxation dynamics, among many others. One alternative
isto use the bond-breaking correlation, Ci, which quantifies how many
nearest neighbours are lost by particle i during the relaxation pro-
cess®”2, The models also successfully learn correlations between the
bond-breaking propensity and the amorphous structure (Fig. 4c).
However, the performance of the modelsin the short-time predictions
is substantially reduced compared to the propensity of displacements.
This suggests that predicting the exact nature and position of the first
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rearrangement events is more difficult than simply predicting short-
time displacements. Around the structural relaxation time 7, and
beyond, the correlations shown in Fig. 4c for 5 are stronger than
for R;in Fig. 4b. This seemingly surprising result is connected to the
growing DH at longer times, which simplifies the prediction of larger
rearranging clusters from coarse-grained structural properties”.
Additionally, at times ¢ > 7, the propensity of displacement R; has
slowly decaying tails which are not captured by the models
(see Supplementary Fig. 2) and, thus, probably reduce the Pearson
correlation.

Training a transferable model across different temperatures
With the goal of predicting the dynamics at very low temperatures
that are inaccessible by direct computer simulations, an impor-
tant property of supervised ML techniques is their transferability,
in particular towards lower temperatures®**, In Fig. 5, we show the
capabilities of the models to transfer the structure-dynamics rela-
tionships they learned at a given temperature to make predictions
at a different temperature. The results are actually quite remarkable
because transferability is generically quite good for all models. This
shows that these relationships evolve smoothly across the range of
temperatures investigated here. In particular, the models trained at
1/T=2.0 (1,=210) perform nearly as well in predicting propensity
at1/T=2.25(z,=4,100) as the models trained directly at 1/T = 2.25.
The SE(3) method seems to be particularly suited to transfer to lower
temperatures, opening the possibility to study structural relaxation
at much lower temperatures.

Training amodel that correctly predicts spatial DH

Finally, we investigate the performance of the models to predict the
correctextent of DH. Atime-dependent scalar variable that quantifies
heterogeneities is the dynamic susceptibility
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Fig. 5| Training a transferable model to be accurate at different temperatures.
Transferability in temperature T of trained networks in the Kob-Andersen (KA)
system (3D) at the structural relaxation time 7,. Each network s trained at T,
(filled symbols) and applied to all four different temperatures (open symbols).
Colours indicate smooth T,.,;, transition from high temperature (red, 7= 0.64)
tolow temperature (blue, T=0.44).

GlassMLP SE(3)

v

1074~ T
10° 10! 10? 10° 104 10° 10 10? 10° 10*
t t

— T=0.44 T=0.50 —T=0.56 — T=0.64

Fig. 6 | Training amodel that correctly predicts spatial dynamic
heterogeneity. Dynamic susceptibility x,(¢) for different temperatures (T=0.44,
0.5,0.56 and 0.64), as predicted from machine learning techniques (dashed
lines), compared to the ground truth (fulllines) in the Kob-Andersen system
(3D). The colour code is the same as that in Fig. 5.

calculated from the system-averaged overlap function
Cr(t) =(1/N) Y;cny ©(0.3 - Ri(t)). Here, Nis the number of particles in
thesystem, and O(x) is th